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Czech Tech. Univ. Prague, Czechia

These are lecture notes for a mini-course course given in October 2023 at Institut
Henri Poincaré, Paris, in the scope of the research programme “Recent trends in
computer algebra”. I am especially grateful to Mohab Safey El Din for giving me
the opportunity to present this material.

The objective of these lecture notes is to collect in an informal manner a certain
number of elementary technical concepts and illustrative examples relevant for un-
derstanding the mathematical background of the moment-SOS hierarchy approach
to polynomial optimization.

Polynomial optimization consists of minimizing a polynomial of many real variables
subject to polynomial equality and inequality constraints. The moment-SOS hier-
archy is an approach to polynomial optimization that solves it globally at the price
of solving a family of convex optimization problems of increasing size.

I hope that the lecture notes can serve as a gentle introduction to a fascinating but
sometimes technically difficult branch of applied mathematics.
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Reader’s guide

These lecture notes are conceived as an informal introduction to the moment-SOS
hierarchy approach to polynomial optimization. Each key concept and idea is illus-
trated by an example and sometimes a picture. When a notion appears for the first
time, it is emphasized in italic and indexed at the end of the document. Since prior-
ity is given to readability and accessibility, sometimes at the price of mathematical
rigor and more complicated notions and notations, the reader interested in details
and precise mathematical statements is referred to the notes and citations ending
each chapter.
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Notations

We tried to stick as much as possible with the following conventions for mathematical
notations: lowercase roman for scalars, lowercase bold for vectors, uppercase bold for
matrices, math script for sets, except math blackboard for the set of real numbers,
vectors and symmetric matrices.
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Chapter 1

The moment cone and its dual

The purpose of this chapter is to introduce two convex cones in duality: the positive
polynomial cone and the moment cone.

1.1 Positive polynomials

Let R[x]d denote the vector space of polynomials of degree at most d in the vector

of indeterminates x ∈ Rn. Its dimension is the binomial coefficient nd := (n+d)!
n!d!

.
The vector space R[x]d can be indexed by Nn

d := {a ∈ Nn :
∑n

i=1 ai ≤ d}. Let
b(x) := (ba(x))a∈Nn

d
∈ R[x]nd denote a basis for this space, with the convention that

b0(x) := 1, so that every element p ∈ R[x]d can be expressed as a linear combination

p(x) =
∑
a∈Nn

d

paba(x) = pTb(x) (1.1)

with coefficient vector1 p := (pa)a∈Nn
d
∈ Rnd .

A notationally convenient choice of basis are monomials :

ba(x) = xa :=
∏

i=1,...,n

xaii .

Example 1.1. Let n = 1, d = 4 and p(x) = 3 − 2x2 + x4. Then nd = 5 and p(x)
has coefficient vector p = (p0, p1, p2, p3, p4) = (3, 0,−2, 0, 1) ∈ R5 in the monomial
basis b(x) = (1, x, x2, x3, x4) = (xa)a=0,1,...,4.

Example 1.2. The monomial p(x) = x10 has coefficient vector p = (pa)a=0,1,...,10 =
(126, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1)/512 ∈ R10 in the Chebyshev polynomial basis
b(x) = (ta(x))a=0,1,...,10 defined by t0(x) := 1, t1(x) := x, ta+1(x) := 2xta(x) −
ta−1(x), a ≥ 1.

Example 1.3. The Motzkin polynomial p(x) := 1 + x21x
2
2(x

2
1 + x22 − 3) has n = 2

variables, degree d = 6 and nonzero coefficients p00 = p42 = p24 = 1, p22 = −3 in a
monomial basis of dimension nd = 28.

1pT denotes the row vector transpose of column vector p.

3
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Figure 1.1: A basic semialgebraic set defined by quadratic inequalities

Given a vector g(x) = (gk(x))k=1,...,m ∈ R[x]m, the set

X := {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m} (1.2)

is called basic semialgebraic. It is defined as the intersection of finitely many sets
defined by polynomial inequalities. More generally, a semialgebraic set is defined as
a union of finitely many basic semialgebraic sets.

Note that when defining X in (1.2) we used polynomial inequalities. By choos-
ing polynomials of opposite signs, e.g. gk+1 := −gk for some k, we can however
also model polynomial equations of the kind gk(x) = 0. A set defined by finitely
many polynomial equations on the real numbers is called a real algebraic set or real
algebraic variety .

Example 1.4. The Euclidean ball of radius R

BR := {x ∈ Rn : xTx ≤ R2}

is an elementary example of basic semialgebraic set X that can be defined as in (1.2)
with m = 1 and g1(x) = R2 − xTx. Now if m = 2 and g1(x) = −g2(x) = R2 − xTx
the set X = {x ∈ Rn : xTx = R2} defined in (1.2) is the sphere, the boundary of
the ball, an elementary example of a real algebraic variety.

Example 1.5. If n = 2, m = 3 with g1(x) = 4−x21−x22, g2(x) = −1−2x1−x2−x1x2,
g3(x) = 1 + x1 + x1x2, the set X defined in (1.2) is represented on Figure 1.1 in
gray. Its boundary (thick black) consists of a circular arc (bottom) and two hyperbolic
branches (top).

Example 1.6. If n = 3, m = 2, g1(x) = 1 − x21 − x22 − x23 + 2x1x2x3, g2(x) =
3 − x21 − x22 − x23, the set X has the pillow shape of Figure 1.2. Note that by
construction X ⊂ B√3.
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Figure 1.2: The pillow as a basic semialgebraic set

The set of polynomials of degree up to d that are positive2 on X is denoted by

Pd(X ) := {p ∈ R[x]d : p(x) ≥ 0, ∀x ∈X }.

It can be checked that this set is a convex 3 cone4. It is called the positive polynomial
cone.

Example 1.7. The Motzkin polynomial of Example 1.3 belongs to P6(R2), i.e. it
is globally positive, see Figure 1.3 for a logarithmic scale representation. Observe
that the polynomial is zero at the 4 points x1 = ±1, x2 = ±1, and it tends to one
from above along the 4 asymptotes x1 = 0, x2 → ±∞ and x1 → ±∞, x2 = 0.

Example 1.8. The polynomial g1 defining the pillow X of Example 1.6 belongs to
P6(X ) by construction, but it does not belong to P6(B√3) since it is negative e.g.
at the point x = (−1, 1, 1) ∈ B√3.

1.2 Moments

Now consider a functional acting linearly on R[x]d. In basis b, such a functional can
be represented with a vector y ∈ Rnd :

`y : R[x]d → R
p(x) = pTb(x) 7→ `y(p) = pTy.

(1.3)

Informally, `y linearizes polynomials. The space of vectors y is dual5 to R[x]d, and
we denote it by R[x]?d.

2By positive we mean non-negative, i.e. the value zero is allowed.
3A set is convex if it contains the line segment joining any two points.
4A set is a cone if is closed under positive scalar multiplication.
5The dual to a vector space is the set of its (bounded) linear functionals.
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Figure 1.3: The logarithm of the Motzkin polynomial

Example 1.9. In the monomial basis, the linear functional `y acting on the poly-
nomial p of Example 1.1 writes `y(p) = 3y0 − 2y2 + y4.

Example 1.10. In the monomial basis, the linear functional `y acting on the
Motzkin polynomial p of Example 1.3 writes `y(p) = y00 − 3y22 + y42 + y24.

Now let us give some more examples of linear functionals.

Example 1.11. Evaluation at a given point x: p 7→ p(x). In the monomial basis,
this functional writes `y(p) =

∑
a pax

a, i.e. y := (xa)a. If n = 1, d = 4 and x = −2,
we have `y(p) = p0 − 2p1 + 4p2 − 8p3 + 16p4.

Example 1.12. Evaluation at several points (xk)k with weights (wk)k: p 7→
∑

k wkp(xk).
The number of points is not necessarily finite. Sometimes we assume that the weights
are non-negative and sum up to one, i.e. wk ≥ 0,

∑
k wk = 1.

Example 1.13. Integration with respect to a given measure6 µ on a given set X :
p 7→

∫
X
p(x)dµ(x). Informally, this linear functional can be interpreted as a contin-

uous counterpart of the discrete weighted point evaluation of Example 1.12. Measure
µ can be interpreted as a way to distribute the mass on set X . Each measure µ can
be identified to its linear functional

`y(p) =

∫
X

p(x)dµ(x).

If the linear functional is normalized and positive, i.e. `y(1) = 1 and `y(p) ≥ 0
whenever p ∈P(Rn), it is referred to as a probability measure.

6By measure we mean a non-negative Borel regular measure.
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Example 1.14. A classical choice of measure in Example 1.13 is the Lebesgue or
uniform measure, which distributes the mass evenly on a given set X . It is generally
denoted dx and the value of the linear functional

`y(p) =

∫
X

p(x)dx

is the average value or expectation of polynomial p on X . The value `y(1) =
∫

X
dx

is called the Lebesgue measure or volume of X .

Example 1.15. Another classical choice of measure in Example 1.13 is the (stan-
dard) Gaussian measure, which distributes more weight near the origin and decays
quickly out of the origin. The constant factor in the corresponding linear functional

`y(p) = (2π)−
1
n

∫
Rn

p(x)e−
1
2
xTxdx

makes it a probability measure.

Example 1.16. The linear functional of Example 1.12 also corresponds to a proba-
bility measure as soon as the weights are non-negative and sum up to one. It is called
an atomic measure, a particular case of which is the linear functional of Example
1.11 which is called a point or Dirac measure at x, denoted δx.

Since a polynomial is a finite linear combination of basis elements, integration with
respect to a measure as in Example 1.13 can be written as a finite sum

`y(p) =

∫
X

p(x)dµ(x) =

∫
X

(∑
a

paba(x)

)
dµ(x) =

∑
a

pa

∫
X

ba(x)dµ(x)

that can be expressed as

`y(p) =
∑
a

pa

∫
X

ba(x)dµ(x) =
∑
a

paya = pTy

consistently with the representation (1.3) upon defining the moment of order a ∈ Nn
d

ya :=

∫
X

ba(x)dµ(x) = `y(ba)

as the image of the basis element ba through the linear functional. The moment
vector is then

y :=

∫
X

b(x)dµ(x) (1.4)

where vector integration is meant entrywise.

Example 1.17. As a follow-up to Example 1.11, let us compute the moments of the
Dirac measure at the point z = −2 in the monomial basis up to degree 4. It holds
ya =

∫
xaδ−2(dx) = (−2)a so y = (y0, y1, y2, y3, y4) = (1,−2, 4,−8, 16).
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Example 1.18. As a follow-up to Example 1.14, let us compute the moments of
the Lebesgue measure of X = [−1, 1] in the monomial basis up to degree 4. It holds

ya =
∫ 1

−1 x
adx = 1a+1−(−1)a+1

a+1
so y = (y0, y1, y2, y3, y4) = (2, 0, 2

3
, 0, 2

5
).

Example 1.19. Since a probability measure is a (non-negative normalized) weighted
point evaluation, the convex hull of a set X , i.e. the set of convex combinations
of its points, can be expressed as the set of first degree moments of its probability
measures:

conv X :=

{∑
k

wkxk : xk ∈X , wk ≥ 0,
∑
k

wk = 1

}
=

{∫
X

x dµ(x) : µ probability measure on X

}
.

So far we have seen that integration of polynomials with respect to a given measure
µ can be represented by its moment vector y. Now we can ask the converse question:
given a vector y, does it represent a measure µ ? This is the celebrated (truncated)
moment problem.

Moment problem. Given X and y, is there a measure µ such that (1.4) holds ?

The set of moments of degree up to d of measures on X is denoted by

Md(X ) :=

{
y ∈ R[x]?d : y =

∫
X

b(x)dµ(x) for some measure µ on X

}
. (1.5)

It can be checked that this set is a finite-dimensional convex cone. It is called the
moment cone.

Hence y ∈Md(X ) if and only if y represents a measure on X . It turns out that if
X is compact7, then cone Md(X ) is dual8 to cone Pd(X ).

Theorem 1.1. If X is compact, it holds

Md(X ) = Pd(X )? := {y ∈ R[x]?d : `y(p) ≥ 0 for all p ∈Pd(X )} .

So if there is a polynomial p ∈Pd(X ) such that `y(p) < 0 then y does not belong
to Md(X ) i.e. it does not represent a measure on X .

Example 1.20. On Figure 1.4 we represent the set of moments (y1, y2, y3) in the
monomial basis (x, x2, x3) of all probability measures (i.e. y0 = 1) on [−1, 1]. It
is the convex hull of the moment curve {(x, x2, x3) : x ∈ [−1, 1]} (thick black), see
Example 1.19. The point (1, 0, 0) does not belong to this set, and this can be checked
with the polynomial p(x) = (1 − x)2 ∈ P2([−1, 1]) which satisfies `y(p) = −1 for
y = (1, 1, 0, 0).

7A finite-dimensional set is compact if it is bounded and closed.
8The dual of a cone is the set of all its (bounded) positive linear functionals.
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Figure 1.4: The set of moments of probability measures on [−1, 1] is the convex
hull of the moment curve (thick black)

For compact X , both Pd(X ) and Md(X ) are convex and closed, and Md(X ) =
Pd(X )? implies Md(X )? = Pd(X )?? = Pd(X ). So the positive polynomial cone
is dual to the moment cone.

1.3 Notes

Real algebraic geometry is concerned with polynomial equations and inequalities
over the real numbers. It is exposed in [1] and [4] with a focus on computer algebra
algorithms.

For an account of the numerical benefits of using Chebyshev polynomials over mono-
mials in function approximation, see [38].

Background material on positive polynomials and moments and their dualities can
be found in [23, 21]. More advanced material on positive polynomials and the
moment problem can be found in [25, 36]. See in particular [36, Ch. 17-18] for the
truncated moment problem.

Duality Theorem 1.1 is a finite-dimensional version of the Riesz-Haviland Theorem.
A modern statement and proof can be found e.g. in [23, Theorem 5.13].

An accessible introduction to univariate measure theory can be found in [33, Part
I]. More advanced topics on multivariate measure theory are covered in [33, Part
III].
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Chapter 2

Semidefinite relaxations of the
moment cone

The solution to the moment problem reduces to finding whether a vector belongs
to the moment cone. It turns out however that this problem is difficult in its full
generality. In the sequel we describe an approximate solution to the moment prob-
lem, in the sense that we construct a family of outer approximations of the moment
cone. The approximations are indexed by a relaxation order that controls tight-
ness: the higher the order, the tighter the relaxation. Crucially, for a given order,
testing whether a vector belongs to a semidefinite relaxation reduces to semidefi-
nite optimization, a well-studied problem of convex optimization for which efficient
algorithms are available.

2.1 Semidefinite cone

Let Sm denote the Euclidean space of symmetric matrices of Rm×m. Given a real
quadratic form1 f : Rm → R, the (unique) matrix X ∈ Sm such that f(y) = yTXy
for all y ∈ Rm is called the Gram matrix of f . We say that a matrix is positive
semidefinite when it is the Gram matrix of a positive quadratic form. In other
words, a matrix X ∈ Sm is positive semidefinite, denoted by X � 0, if and only if
yTXy ≥ 0, ∀y ∈ Rm or equivalently, if and only if the minimum eigenvalue of X is
non-negative. This last statement makes sense since symmetric matrices have only
real eigenvalues.

Example 2.1. Note that X � 0 is not meant as a nonnegativity constraint on
the individual entries of matrix X. If X is positive semidefinite, then its diagonal
entries are positive scalars, but there are positive semidefinite matrices with negative
off-diagonal entries, i.e.

X =

(
2 −1
−1 2

)
and there are matrices with non-negative entries which are not positive semidefinite,

1A quadratic form is a polynomial with all terms of degree exactly two.

11
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i.e.

X =

(
1 2
2 1

)
.

The set of all positive quadratic forms, or equivalently, or all positive semidefinite
matrices, is a cone that we will use systematically in our further developments. It
is called the positive semidefinite cone, or just semidefinite cone for short, and it is
denoted as {X ∈ Sm : X � 0}.
The intersection of the semidefinite cone with a linear subspace is a convex set called
a spectrahedron. It can be expressed with a linear matrix inequality (LMI)

{x ∈ Rn : A(x) := A0 +
n∑
i=1

xiAi � 0} (2.1)

where matrices Ai ∈ Sm, i = 0, 1, . . . , n are given. Note that spectrahedron (2.1) is
a cone if and only if A0 = 0.

Note that an LMI constraint is generally nonlinear, but it is always convex. To
prove convexity, rewrite the matrix constraint as a scalar constraint

vTA(x)v = (vTA0v) +
n∑
i=1

(vTAiv)xi ≥ 0

which is linear on x ∈ Rn for all v ∈ Rm, hence defining a convex set as an inter-
section of half-spaces.

Example 2.2. If all matrices Ai are diagonal, then the LMI in (2.1) reduces to
linear inequalities, and the corresponding spectrahedron reduces to a polyhedron.

Example 2.3. Consider the spectrahedron

{x ∈ R2 : A(x) =

(
1 + x1 x2
x2 1− x1

)
� 0}.

Matrix A(x) is positive semidefinite if and only if its trace (sum of eigenvalues) and
determinant (product of eigenvalues) are positive. Since trace A(x) = 2, it follows
that the spectrahedron is the unit ball {x ∈ R2 : det A(x) = 1− x21 − x22 ≥ 0} = B2.

Example 2.4. The spectrahedron defined as the set of vectors x ∈ R2 satisfying

A(x) =

 2− 2x1 x2 −1 + x1
x2 1 + x1 0

−1 + x1 0 1

 � 0

is the convex set represented in gray on Figure 2.1. The cubic polynomial det A(x) =
(1 + x1)

2(1 − x1) − x22 vanishes on the spectrahedron boundary (thick black). Ob-
serve that rank A(x) = 2 along this curve, except at the point on the left where
rank A((−1, 0)) = 1.
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Figure 2.1: Cubic spectrahedron

Example 2.5. The convex pillow of Example 1.6 is the spectrahedron defined by

A(x) =

 1 x1 x2
x1 1 x3
x2 x3 1

 � 0.

The cubic polynomial det A(x) = 1−x21−x22−x23+2x1x2x3 vanishes on the boundary,
where the rank of A is equal to 2, except at 4 distinguished points where it drops down
to 1.

Let us build the univariate polynomial

t 7→ det (tIm + A(x)) =
m∑
k=0

gm−k(x)tk (2.2)

where Im denotes the identity matrix of size m, hence g0(x) = 1. Coefficients gk ∈
R[x], k = 1, . . . ,m are multivariate polynomials. They are elementary symmetric
functions of the eigenvalues of A(x). For example g1(x) = trace A(x) and gm(x) =
det A(x).

By construction, the roots of polynomial (2.2) are all real and equal to the eigenval-
ues of matrix −A(x). If this matrix has negative eigenvalues, then polynomial (2.2)
has all negative roots, and hence all its coefficients gk(x), k = 1, . . . ,m are positive.
The following result follows from this observation.

Lemma 2.1. A spectrahedron is a convex closed basic semialgebraic set:

{x ∈ Rn : A(x) � 0} = {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m} .

Example 2.6. Returning to Example 2.5, the elementary symmetric functions of
the eigenvalues of A(x) are the polynomials g1(x) = 3, g2(x) = 3 − x21 − x22 − x23,
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(a) Spectrahedron in space (x1, x2, u) (b) Shadow in plane (x1, x2)

Figure 2.2: A spectrahedron (left) and its shadow (right)

g3(x) = 1−x21−x22−x23 + 2x1x2x3. So the convex pillow of Example 1.6 and Figure
1.2 is the intersection of the cubic semialgebraic set {x ∈ R3 : g3(x) ≥ 0} with the
ball B√3 = {x ∈ R3 : g2(x) ≥ 0}.

Since all spectrahedra are convex closed basic semialgebraic, one may then wonder
conversely whether all convex closed basic semialgebraic sets are spectrahedra. The
answer is negative (for reasons that we do not explain here).

Example 2.7. The TV-screen set {x ∈ R2 : 1−x41−x42 ≥ 0} is convex closed basic
semialgebraic but it is not a spectrahedron.

Consequently, in order to represent convex closed basic semialgebraic sets, we have
to go beyond spectrahedra. Let us consider spectrahedral shadows , which are pro-
jections of spectrahedra:

{x ∈ Rn : A0 +
n∑
i=1

xiAi +
N∑
j=1

ujBj � 0 for some u ∈ RN}. (2.3)

Spectrahedral shadows are constructed by introducing new variables u called liftings.

Example 2.8. On Figure 2.2 we represent a spectrahedron (left) and its planar
shadow (right). The shadow is modeled with one lifting variable:

{x ∈ R2 :

 1 + x1 x2 0
x2 −x1 + u −x2
0 −x2 1− u

 � 0, for some u ∈ R}.

It can be shown that the shadow is the union of an ellipse and a triangle. Hence it
is a non-basic semi-algebraic set, and as such it cannot be a spectrahedron.

Example 2.9. A spectrahedral shadow representation of the TV-screen set of Ex-
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ample 2.7 is the set of vectors x ∈ R2 such that
1 + u1 u2 0 0 0 0
u2 1− u1 0 0 0 0
0 0 1 x1 0 0
0 0 x1 u1 0 0
0 0 0 0 1 x2
0 0 0 0 x2 u2

 � 0

for some u ∈ R2.

Finding whether a given vector belongs to a spectrahedral shadow, or the (slightly)
more general problem of minimizing a linear function within a spectrahedral shadow,
reduces to semidefinite optimization, a well-studied class of convex optimization
problems for which efficient numerical algorithms based on interior-point methods
are available.

Since spectrahedral shadows are convex closed semialgebraic sets, one may then
wonder conversely whether all convex closed semialgebraic sets are spectrahedral
shadows. Whereas this is true for planar sets (n = 2) and convex hulls of one-
dimensional semi-algebraic sets in Rn for any n, in general the answer is negative
(for reasons that we do not explain here).

Example 2.10. The bivariate sextic moment cone M6(R2) is not a spectrahedral
shadow.

This motivates us to study spectrahedral shadows as approximations to convex
semialgebraic sets, rather than exact representations.

2.2 Polynomial sums of squares (SOS)

An even degree polynomial p(x) ∈ R[x]2d is a sum of squares (SOS) if it can be
expressed as a finite sum p(x) =

∑N
i=1 q

2
i (x) for some distinct qi(x) = qTi b(x) ∈

R[x]d, i = 1, . . . , N . Hence

p(x) =
N∑
i=1

q2i (x) =
N∑
i=1

(qTi b(x))2 =
N∑
i=1

bT (x)qiq
T
i b(x) = bT (x)Pb(x) (2.4)

where P :=
∑N

i=1 qiq
T
i ∈ Snd is a positive semidefinite matrix of rank N ≤ nd, the

Gram matrix of p expressed as a quadratic function of the basis b. Given p, finding
whether it is SOS amounts to finding whether it has a positive semidefinite Gram
matrix P whose entries are linearly related to p. In other words, the set of SOS
polynomials is a spectrahedral shadow.

Example 2.11. Let n = 1, d = 1, p(x) = 1 + x+ x2. Then there is a unique Gram
matrix representing p in the monomial basis, namely

P =

(
1 1

2
1
2

1

)
=

3

2

(
1
1

)(
1
1

)T
+

1

2

(
1
−1

)(
1
−1

)T
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Figure 2.3: Gram spectrahedron of 1 + x+ x2 + x3 + x4 + x5 + x6

from which it follows that p(x) = (
√
6
2

(1 + x))2 + (
√
2
2

(1− x))2 = q21(x) + q22(x).

Example 2.12. Let n = 1, d = 2, p(x) = 1 + x + x2 + x3 + x4. Then the set of
Gram matrices representing p in the monomial basis is described by the LMI

P(u) =

 1 1
2

−u
1
2

1 + 2u 1
2

−u 1
2

1

 � 0

where u is a real lifting. It turns out that P(u) � 0 if and only if u belongs to the
interval of eigenvalues of P(u) containing the origin.

Example 2.13. Let n = 1, d = 2, p(x) = 1 + x+ x2 + x3 + x4 + x5 + x6. Then the
set of Gram matrices representing p in the monomial basis is described by the LMI

P(u) =


1 1

2
−u1 −u2

1
2

1 + 2u1
1
2

+ u2 −u3
−u1 1

2
+ u2 1 + 2u3

1
2

−u2 −u3 1
2

1

 � 0

where u ∈ R3 is a lifting vector. The corresponding spectrahedron is represented on
Figure 2.3. In particular the choice u = 1

2
(1, 2, 1) corresponds to an SOS represen-

tation with rank P(u) = 2 terms.

2.3 Approximations of the positive polynomial cone

Let us denote by Σ[x]2d ⊂ R[x]2d the cone of SOS polynomials of degree at most 2d.
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If a polynomial is SOS then clearly it is positive, i.e. Σ[x]2d ⊂ P(Rn)2d. One may
then wonder conversely whether all positive polynomials are SOS. The answer is
negative, except in three special cases.

Theorem 2.1. Σ[x]2d = P(Rn)2d if and only if n = 1 or d = 1 or n = d = 2.

Example 2.14. The most famous and simplest (n = 2, d = 3) example of a poly-
nomial which is positive but not SOS is the Motzkin polynomial of Example 1.3.

On a compact basic semialgebraic set

X := {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}

we can however approximate P(X )d as closely as desired with the help of SOS
cones of increasing degrees. Let us now describe this construction.

For convenience let g0(x) := 1 and without loss of generality, suppose that g1(x) :=
R2 − xTx for R sufficienty large2. Let3

rg := max
k=0,1,...,m

⌈
deg gk

2

⌉
, rmin := max

(
rg,

⌈
deg p

2

⌉)
(2.5)

and given r ∈ N such that r ≥ rg, let

rk :=

⌈
r − deg gk

2

⌉
.

Define the truncated quadratic module

Qd,r(g) := {p ∈ R[x]d : p =
m∑
k=0

skgk, sk ∈ Σ[x]2rk , k = 0, 1, . . . ,m}

a convex cone which is a spectrahedral shadow, with lifting variables the SOS poly-
nomials sk (of degree at most 2rk) and their corresponding Gram matrices.

On the one hand, observe that necessarily 2r ≥ d since it is not possible to represent
a degree d polynomial as a sum of polynomials of smaller degrees. On the other hand,
observe that when 2r > d there is a cancellation of all terms of degrees d+ 1, . . . , 2r
when summing up the polynomials skgk.

Observe that the notation Qd,r(g) emphasizes that the truncated quadratic module
depends on the polynomials g defining X , rather than on the intrinsic geometry of
X . If the same set is described by two different sets of polynomials, the respective
truncated quadratic modules may differ.

2Since X is bounded, it is included in a ball of sufficiently large radius R.
3The notation dae stands for the smallest integer not smaller than a ∈ R.
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By construction it holds

Qd,r(g) ⊂ Qd,r+1(g) ⊂Pd(X ). (2.6)

Moreover, we have the following approximation result which states that the positive
polynomial cone can be approximated from inside arbitrarily well4 with quadratic
modules.

Theorem 2.2. If X is compact, it holds

Qd,∞(g) = Pd(X ).

Example 2.15. Consider again the Motzkin polynomial p(x) := 1+x21x
2
2(x

2
1+x22−3)

of Examples 1.3 and 2.14. When R = 1, m = 1 with g1(x) = 1 − x21 − x22 i.e.
X = B1, it holds p ∈ Q6,3(g) with the SOS liftings s0(x) = (x1(1− x22))2 + (x2(1−
x21))

2 + (x1x2)
2 and s1(x) = 1, i.e. p(x) = s0(x) + s1(x)(1− x21 − x22).

2.4 Approximations of the moment cone

Since the truncated quadratic module Qd,r(g) is an inner approximation of the
positive polynomial cone Pd(X ), by duality it follows that the dual truncated
quadratic module

Rd,r(g) := Q?
d,r(g)

is an outer approximation, or relaxation of the moment cone.

Dualizing inclusions (2.6) and recalling Theorem 1.1, we obtain embedded relax-
ations for the moment cone

Rd,r(g) ⊃ Rd,r+1(g) ⊃Md(X ) (2.7)

and the dual to Theorem 2.2 which states that the moment cone can be approximated
from outside arbitrarily well with dual quadratic modules.

Theorem 2.3. If X is compact, it holds

Rd,∞(g) = Md(X ).

Now we explicitly construct the dual truncated quadratic modules as spectrahedral
shadows. By definition

Rd,r(g) = {y ∈ R[x]?d : `y(p) ≥ 0, ∀p ∈ Qd,r(g)}
4The horizontal bar over a set means closure.
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where the linear functional `y(p) was defined in (1.3). Then it follows that

Rd,r(g) = {y ∈ R[x]?d : `y(
∑m

k=0 skgk) ≥ 0, ∀sk ∈ Σ[x]2rk , k = 0, 1, . . . ,m}
= {y ∈ R[x]?d : `y(skgk) ≥ 0, ∀sk ∈ R[x]2rk , k = 0, 1, . . . ,m}
= {y ∈ R[x]?d : `y(q2gk) ≥ 0, ∀q ∈ R[x]rk , k = 0, 1, . . . ,m}
= {y ∈ R[x]?d : Mrk(gky) � 0, k = 0, 1, . . . ,m}

where matrix Mrk(gky) represents the quadratic form q 7→ `y(gkq
2) in basis b, i.e.

Mrk(gky) := `y(gkbbT ) (2.8)

with the linear functional acting entrywise on matrices. The notation Mrk(gky)
reflects the fact that the matrix depends linearly on gk (for given y) and also linearly
on y (for given gk).

The set of vectors y such that the symmetric linear matrix Mrk(gky) is positive
semidefinite describes a spectrahedron. This is also the case for

Rd,r(g) = {y ∈ R[x]?d : Mrk(gky) � 0, k = 0, 1, . . . ,m} (2.9)

since the intersection of finitely many spectrahedra is a spectrahedron. Since this
cone is an outer approximation of the moment cone, its elements are not necessarily
moments of a measure, so they are sometimes called pseudo-moments .

Matrix Mrk(gky) is called a localizing matrix . When k = 0 and hence r0 = r, g0 = 1,
matrix Mr(y) is called the moment matrix .

Since the product of monomials is a monomial, i.e. xaxb = xa+b and `y(xaxb) =
`y(xa+b) = ya+b, in the monomial basis the univariate moment matrices have Hankel
structure, i.e. they have constant anti-diagonals.

Example 2.16. If n = 1 in the monomial basis, it holds

M0(y) = y0, M1(y) =

(
y0 y1
y1 y2

)
, M2(y) =

 y0 y1 y2
y1 y2 y3
y2 y3 y4

 .

In the multivariate case, the structure is more complicated.

Example 2.17. If n = 2 in the monomial basis, it holds

M0(y) = y00, M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 , M2(y) =


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 .

In the Chebyshev polynomial basis, the univariate moment matrices have Hankel (i.e.
constant anti-diagonals) plus Toeplitz (i.e. constant diagonals) structure. Indeed,
the product of two Chebsyhev polynomials is the sum of two Chebyshev polynomials:
ta(x)tb(x) = 1

2
(ta+b(x) + t|a−b|(x)).
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Example 2.18. If n = 1 in the Chebyshev basis, it holds

M1(y) = 1
2

(
y0 y1
y1 y2

)
+ 1

2

(
y0 y1
y1 y0

)
=

(
y0 y1
y1

1
2
(y0 + y2)

)
,

M2(y) = 1
2

 y0 y1 y2
y1 y2 y3
y2 y3 y4

+ 1
2

 y0 y1 y2
y1 y0 y1
y2 y1 y0

 =

 y0 y1 y2
y1

1
2
(y0 + y2)

1
2
(y1 + y3)

y2
1
2
(y1 + y3)

1
2
(y0 + y4)

 .

The localizing matrices are weighted sums of shifted moment matrices. For nota-
tional convenience all the illustrative examples in the remainder of this document
are expressed in the momonial basis.

Example 2.19. If n = 2 and g(x) = 1− 2x1 + 3x2 in the monomial basis:

M1(gy) =

 y00 − 2y10 + 3y01 y10 − 2y20 + 3y11 y01 − 2y11 + 3y02
y10 − 2y20 + 3y11 y20 − 2y30 + 3y21 y11 − 2y21 + 3y12
y01 − 2y11 + 3y02 y11 − 2y21 + 3y12 y02 − 2y12 + 3y03

 .

Example 2.20. In Example 1.19 we saw that the convex hull of a set X are all
first degree moments of probability measures on X :

conv X = {(ya)|a|=1 : y ∈M1(X ), y0 = 1}.

Using moment and localization matrices as in (2.9), we can construct a family of
outer approximations which are spectrahedral shadows:

Xr := {(ya)|a|=1 : y ∈Mrk(gky) � 0, y0 = 1}

so that inclusions (2.7) and Theorem 2.3 imply

Xr ⊃Xr+1 ⊃X∞ = conv X .

Example 2.21. Let n = 2, m = 3 with g1(x) = 4−x21−x22, g2(x) = −1−2x1−x2−
x1x2, g3(x) = 1 + x1 + x1x2, as in Example 1.5. On Figure 2.4 are represented the
outer approximations Xr for r = 1, 2 (dark gray) and the set X (light gray, thick
black boundary). We observe that X2 = conv X .

Example 2.22. Let n = m = 2 with g1(x) = 4− x21 − x22 and g2(x) = x31 + x1x
2
2 −

x41 − x21x
2
2 − x42. On Figure 2.5 are represented the outer approximations Xr for

r = 2, . . . , 5 (dark gray) and the set X (light gray, thick black boundary). We ob-
serve that consistently with Example 2.20, spectrahedral shadow approximations are
embedded and tighter when r increases. It can however be shown that the singularity5

of g2 at the origin prevents the relaxations to be exact, i.e. there is no finite value
of r for which Xr = conv X despite the fact that conv X = X .

5Singularity means that the (square-free) polynomial and its first partial derivatives are van-
ishing.
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Figure 2.4: Embedded outer approximations (dark gray) of a non-convex set de-
scribed by quadratic inequalities (light gray).

Figure 2.5: Embedded outer approximations (dark gray) of a convex set (light gray)
whose boundary is the zero level set of a singular quartic (thick black).



22 CHAPTER 2. SEMIDEFINITE RELAXATIONS OF THE MOMENT CONE

After defining the basic semialgebraic set (1.2) with inequalities gk(x) ≥ 0, we ob-
served that we can also use equations gk(x) = 0. In the truncated quadratic module
(2.9), the corresponding localizing matrix is then identically zero, i.e. Mrk(gky) = 0.
This generates a linear system of equations satisfied by the pseudo-moments.

Example 2.23. Consider the discrete set

X = {−1,+1}3 = {x ∈ R3 : x2k − 1 = 0, k = 1, 2, 3}

and the corresponding moment cone M2(X ). Then its first relaxation is

R(g)1 = {y ∈ R10 :


y000 y100 y010 y001
y100 y200 y101 y101
y010 y110 y020 y011
y001 y101 y011 y002

 � 0,
y200 − y000 = 0,
y020 − y000 = 0,
y002 − y000 = 0,

y000 = 1}.

After substitution, we observe that in the space of second order moments (y110, y101, y011)
the relaxation  1 y101 y101

y110 1 y011
y101 y011 1

 � 0

corresponds to the pillow of Examples 1.6, 2.5 and 2.6. Note however that X1 6=
conv X = [−1, 1]3 because the boundary of the pillow is not flat.

2.5 Notes

Semidefinite optimization, also called semidefinite programming, or optimization
over linear matrix inequalities (LMIs), has been a well-studied topic in applied
mathematics since the mid 1990s. It is a versatile extension of linear and convex
quadratic optimization for which efficient numerical algorithms can be designed [2].
A brief and elementary introduction to semidefinite optimization can be found in
[3, Ch. 2].

The convex pillow of Example 2.5 is also called the elliptope. It corresponds to
the set of correlation matrices arising in semidefinite relaxations of binary combi-
natorial optimization problems, as explained in Example 2.23. See e.g. [2, §4.3] for
semidefinite relaxations of combinatorial optimization problems.

The TV-screen set of Example 2.7 is described in [6, Ex. 3.2.2]. Hyperbolic polyno-
mials, also called real zero polynomials, are used in this reference to prove that this
convex set cannot be a spectrahedron. The spectrahedral shadow of Example 2.9
is described in [8, §1.1]. See [32] for a tutorial on hyperbolic polynomials and their
connection with semidefinite optimization. Lemma 2.1 on the basic semialgebraic
formulation of spectrahedra can be found in [32, Theorem 20].

Spectrahedral shadows and their applications in convex optimization, are studied in
[2] under the name of semidefinite representable sets, see [2, §4.2]. In the context of
polynomial optimization, they are studied in [20, Ch. 11], [3, Ch. 6] or [21, Ch. 13].
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The spectrahedral shadow of Example 2.8 was studied in [18, §2.3] in the context of
LMIs for systems control.

It is shown in [34] that convex hulls of one-dimensional semialgebraic sets, as well
as planar convex semialgebraic sets, are spectrahedral shadows. However, in higher
dimensions, it is shown in [35] that there are convex closed semialgebraic sets that are
not spectrahedral shadows. In particular, Example 2.10 follows from [35, Corollary
4.25].

Introductions to polynomial SOS can be found in [29], [23, §3], [3, Ch. 3] or [21,
Ch. 2]. Theorem 2.1 is due to Hilbert in 1888, but the Motzkin polynomial of
Example 1.3 was found only in 1967. Quadratic modules can be used to construct
SOS representations of polynomials which are strictly positive on semialgebraic sets.
Theorem 2.2 was proposed by Putinar in 1993 [31].

The semidefinite relaxations of the moment cone were introduced in 2001 by Lasserre
in the context of polynomial optimization [19]. See [10] for an example of the
use of the Chebyshev polynomial basis to manipulate moment problems arising in
dynamical systems.

See [21, §13.2] for the use of moment relaxations to construct outer approximations
of the convex hull of semialgebraic sets. In the three cases identified by Hilbert in
Theorem 2.1, the convex hull of a rationally parametrized algebraic set is a spec-
trahedral shadow [9]. Example 2.21 was introduced in [13]. Example 2.22 was
introduced in [7].
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Chapter 3

Polynomial optimization and
moment relaxations

In this chapter, we use the moment cone to reformulate a polynomial optimization
problem as a moment problem. Then we use moment relaxations to deal numerically
with the moment cone. This is the main idea behind the moment-SOS hierarchy.

3.1 Polynomial optimization

Given a vector g ∈ R[x]m, define as in (1.2) the basic semialgebraic set

X := {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}

and assume it is included in a unit ball BR of sufficiently large radius R, so that
without loss of generality we can enforce g1(x) := R2 − xTx.

Let p ∈ R[x] be given and consider the polynomial optimization problem (POP)
consisting of minimizing p over X , namely

p? := min
x

p(x) s.t. x ∈X (3.1)

Since X is compact and p is continuous, the minimum is attained at a given point
x? ∈X called a minimizer. It is such that p achieves its minimum i.e. p(x?) = p?.

We do not have any convexity property on p or X , so that problem (3.1) may feature
several local minima, possibly several global minima, possibly infinitely many.

Example 3.1. Let p(x) = (1− x2)2 and X = B2. Then POP (3.1) has two global
minimizers x? ∈ {−1,+1} with minimum p? = 0.

Example 3.2. Let p(x) = g1(x) = 1 − x21 − x22, g2(x) = x1x2. Then POP (3.1)
has infinitely many global minimizers x? with the same minimum p? = 0 along the
circular arcs {x ∈ R2 : g1(x) = 0, g2(x) ≥ 0}, see Figure 3.2.

25
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Figure 3.1: Polynomial (1− x2)2 with its two global minimizers at x = ±1.

Figure 3.2: All the points on the circular arcs {x ∈ R2 : 1− x21− x22 = 0, x1x2 ≥ 0}
(thick black) are optimal within unit ball B1 (gray).
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3.2 Moment reformulation

Suppose we can generate distinct points xk ∈X , k = 1, . . . , N , and we can evaluate
p at these points. Obviously, we obtain an upper bound mink=1,...,N p(xk) ≥ p? on
the minimum. If N is large, the upper bound can be a good approximation to the
minimum. Moreover, the point xk? achieving the upper bound mink=1,...,N p(xk) =
p(xk?) can be a good approximation to the minimizer.

Given the points {xk}k=1,...,N ⊂X , consider the optimization problem

min
w

N∑
k=1

wkp(xk) s.t. wk ≥ 0,
N∑
k=1

wk = 1 (3.2)

which is linear in the unknown vector w = (wk)k=1,...,N of non-negative weights
summing up to one. Since the points xk are distinct, the unique optimal solution
w? to linear optimization problem (3.2) consists of putting the maximum weight on
the point achieving the minimum, i.e. w?k = 1 if k = k? and w?k = 0 if k 6= k?.

Now recall Examples 1.12 and 1.13 and the interpretation of a probability measure
on X as a function distributing the mass on X , such that the weight is everywhere
non-negative and summing up to one. When N →∞, linear problem (3.2) becomes
the optimization problem

p?M := min
µ

∫
X

p(x)dµ(x) s.t. µ probability measure on X (3.3)

which is linear in the unknown probability measure µ on X .

Since p is a polynomial, it can be expressed as in (1.1) as a linear combination of
basis elements, i.e.

p(x) = pTb(x)

and hence the objective function in linear problem (3.3) can be expressed as a linear
function ∫

X

p(x)dµ(x) = pT
∫

X

b(x)dµ(x) = pTy

of the vector of moments y of measure µ, as defined in (1.4). Overall, recalling the
definition (1.5) of the moment cone Md(X ), linear measure problem (3.3) can be
reformulated as the moment optimization problem (MOP)

p?M = min
y

pTy s.t. y ∈Md(X ), y0 = 1 (3.4)

which is linear in the unknown moment vector y.

Theorem 3.1. POP (3.1) and MOP (3.4) have the same value, i.e. p? = p?M .
Moreover, the moment vector y? = b(x?) is an optimal solution to MOP (3.4)
whenever x? is an optimal solution to POP (3.1).
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The proof of this result is elementary: on the one hand, observe that if x? is optimal
for POP, then y? = b(x?) is the vector of moments of the Dirac measure at x?,
recall Example 1.11, and hence it is admissible for MOP, but not necessarily optimal.
Hence it yields a value pTy? = p(x?) = p? which is an upper bound on the optimal
value p?M of the MOM, i.e. p? ≥ p?M ; on the other hand, from the definition of p?

it holds p(x) ≥ p? for all x ∈ X , and hence for any probability measure µ on X
we have

∫
X
p(x)dµ(x) ≥

∫
X
p?dµ(x) = p? and therefore for any moment vector

y ∈ Md(X ) we have pTy ≥ p?. MOP consists of minimizing this linear function
over all moment vectors, hence p?M ≥ p?.

Observe that if there are several global minima (x?k)k=1,2,... to POP, then each mo-
ment vector y?k = b(x?) is an optimal solution to MOP. Since MOP is linear, it
follows that any convex combination

∑
k wky

?
k with wk ≥ 0 and

∑
k wk = 1 is also

optimal for MOP.

3.3 Moment relaxations

In order to solve numerically MOP (3.4), we can now use the outer approximations
described in Section 3.3. Given r ∈ N such that r ≥ rmin as defined in (2.5), consider
the semidefinite optimization problem

p?r := min
y

pTy s.t. y ∈ Rd,r(g), y0 = 1 (3.5)

where Rd,r(g) is described in (2.9). Optimization problem (3.5) is called the moment
relaxation of order r of the POP. Accordingly, integer r is called the relaxation order .
The proof of the following fundamental result follows readily from the inclusion
relations (2.7) and from Theorem 2.3.

Theorem 3.2. Moment relaxations (3.5) generate a non-decreasing monotone
sequence of lower bounds converging to the value of MOP (3.4). It holds

p?r ≤ p?r+1 ≤ p?

and
p?∞ = p?.

Recalling from Theorem 3.1 that the values of MOP (3.4) and POP (3.1) coincide,
it means that we can solve the POP at the price of solving a family or hierarchy
of semidefinite optimization problems. The family of moment relaxations (3.5) for
increasing values of relaxation order r is called the moment hierarchy .

Moment problem (3.5) has a dual semidefinite optimization problem on the SOS
cone that we do not describe here. It can be shown that there is no duality gap
between the primal moment problem and the dual SOS problem. The family of
primal moment and dual SOS problems is called the moment-SOS hierarchy .
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Example 3.3. Consider the POP of Example 3.1 where n = 1, d = 4, m = 1,
p(x) = 1 − 2x2 + x4 and g1(x) := 4 − x2. The first relaxation in the moment
hierarchy has order r = rmin = 2 and it reads

p?2 = miny∈R5 y0 − 2y2 + y4

s.t. M2(y) =

 y0 y1 y2
y1 y2 y3
y2 y3 y4

 � 0

M1(g1y) =

(
4y0 − y2 4y1 − y3
4y1 − y3 4y2 − y4

)
� 0

y0 = 1.

Solving numerically1 this semidefinite optimization problem yields a solution2 y =
(1, 0, 1, 0, 1) and the lower bound p?2 = 0 which is equal to the global minimum p? = 0.

Example 3.4. Consider the POP of Example 3.2 where n = 2, d = 2, m = 2,
p(x) = g1(x) = 1 − x21 − x22, g2(x) = x1x2. The first relaxation in the moment
hierarchy has order r = rmin = 1 and it reads

p?1 = miny∈R6 y00 − y20 − y02

s.t. M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 � 0

M0(g1y) = y00 − y20 − y02 ≥ 0
M0(g2y) = y11 ≥ 0
y00 = 1.

Solving numerically this semidefinite optimization problem yields y00 = 1, y10 =
y01 = 0, y20 = y02 = 1

2
, y11 = 1

4
and the lower bound p?1 = 0 which is equal to the

global minimum p? = 0.

Example 3.5. Consider the problem consisting of minimizing −x2 (or equivalently
maximizing x2) on the non-convex set X of Example 2.21, i.e. the POP

p∗ = minx −x2
s.t. 4− x21 − x22 ≥ 0

−1− 2x1 − x2 − x1x2 ≥ 0
1 + x1 + x1x2 ≥ 0.

Its first moment relaxation (r = rmin = 1) is

p∗1 = miny∈R6 −y01

s.t.

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0

4y00 − y20 − y02 ≥ 0
−y00 − 2y10 − y01 − y11 ≥ 0
y00 + y10 + y11 ≥ 0
y00 = 1

1We are using the interface GloptiPoly and the semidefinite solver SeDuMi under Matlab.
2Numerical outputs are rounded to the nearest integers or rationals, or to 4 significant digits.
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and its second moment relaxation (r = 2) is

p∗2 = miny∈R15 −y01

s.t.


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 ≥ 0

 4y00 − y20 − y02 4y10 − y30 − y12 4y01 − y21 − y03
4y10 − y30 − y12 4y20 − y40 − y22 4y11 − y31 − y13
4y01 − y21 − y03 4y11 − y31 − y13 4y02 − y22 − y04

 ≥ 0 −y00 − 2y10 − y01 − y11 −y10 − 2y20 − y11 − y21 −y01 − 2y11 − y02 − y12
−y10 − 2y20 − y11 − y21 −y20 − 2y30 − y21 − y31 −y11 − 2y21 − y12 − y22
−y01 − 2y11 − y02 − y12 −y11 − 2y21 − y12 − y22 −y02 − 2y12 − y03 − y13

 ≥ 0 y00 + y10 + y11 y10 + y20 + y21 y01 + y11 + y12
y10 + y20 + y21 y20 + y30 + y31 y11 + y21 + y22
y01 + y11 + y12 y11 + y21 + y22 y02 + y12 + y13

 ≥ 0

y00 = 1.

Numerically we obtain p?1 ≈ −1 and p?2 ≈ −0.6180 ≈ p? = −
√
5−1
2

. So here the first
moment relaxation gives a strict lower bound on the global maximum, and the second
moment relaxation gives the global maximum. Notice that when the POP objective
function has degree d = 1, i.e. p(x) = pTx, solving the moment relaxation (3.5) is
equivalent to solving the semidefinite optimization problem

p?r = min
x

pTx s.t. x ∈Xr

on the outer approximation Xr of the convex hull of X introduced in Example 2.20.
Indeed, from Figure 2.4, we see that minimizing −x2 on X1 yields x?2 = −1, whereas
minimizing −x2 on X2 yields x?2 ≈ −0.6180. This is the global minimum since
optimizing a linear function on a set is the same as optimizing the linear function
on the convex hull of the set, and X2 = conv X as observed in Example 2.4.

Example 3.6. Consider the POP consisting of minimizing x1 on the convex set
X of Example 2.22. As in Example 3.5 the polynomial to be minimized is linear
and hence the moment relaxations are formulated on the outer approximations Xr

of X . From Figure 2.5 we see however that near the origin x = (0, 0) the outer
approximations are not tight. Because of the singularity at the origin of the polyno-
mial defining the boundary of X , there will be no finite value of r for which p?r = p?.
Numerically, we obtain the following sequence

(p?r)r=2,3,4,5,... ≈ (−0.1315,−0.04983,−0.02843,−0.02233, . . .)

converging monotonically from below to p? = 0. Now if instead of minimizing x1, we
minimize −x1, we obtain immediately p?2 = p? = −1 at the first moment relaxation.
Notice that there is no singularity of the polynomial defining the boundary at the
point x = (1, 0).
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3.4 Notes

The moment-SOS hierarchy as presented in these notes was conceived by Lasserre
in 2001 [19]. In this reference, duality between moments and SOS is emphasized,
and convergence of the hierarchy is proven using Putinar’s Theorem 2.2. The whole
approach is explained in details in the survey [23]. Several books on polynomial
optimization are based on these foundations: [20, 21, 11, 28].

GloptiPoly is a Matlab package that allows to model moment relaxations of POP as
semidefinite optimization problems [12, 15]. The semidefinite optimization problems
are then solved by a third-party conic solver such as SeDuMi [37].
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Chapter 4

Solution recovery

When using the moment-SOS hierarchy, we would like to know whether a given
moment relaxation of a polynomial optimization problem is exact, i.e. whether
solving the relaxed problem solves the original problem. In this chapter we describe
various strategies to detect exactness and recover the optimal solutions from the
moments.

4.1 Finite convergence

In the previous chapter we saw that a monotically non-decreasing sequence of lower
bounds p?r ≤ p?r+1 ≤ p? on the value p? of a POP can be obtained by solving a
hierarchy of moment relaxations of increasing size, ruled by the relaxation order r.
The sequence converges asymptotically, i.e. p?∞ = p?, but it may happen that this
convergence is finite, i.e. there is a finite value of r? such that p?r? = p?. It turns out
that this situation is generic in the following sense.

Theorem 4.1. In the finite-dimensional space of coefficients of polynomials defining
POP (3.1), there is a low-dimensional algebraic variety which is such that if we
choose an instance of POP (3.1) outside this variety, then the moment hierarchy
has finite convergence, i.e. there exists a finite r∗ such that p∗r = p∗ for all r ≥ r∗.

Equivalently, finite convergence occurs under arbitrarily small perturbations of the
POP data, and problems for which finite convergence does not occur are exceptional
and degenerate in some sense, see e.g. the singular POP of Example 3.6.

4.2 Finitely many solutions

Theorem 4.1 does not tell us however a priori at which relaxation order finite conver-
gence occurs. To detect finite convergence, we can use the following conditions. Let
y? be the solution of moment relaxation (3.5) at a given relaxation order r ≥ rmin.

The first candidate for optimality is the vector of first degree moments.
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Lemma 4.1. Let x? = (y?a)|a|=1. If x? ∈X and p(x?) = p?r then p?r = p?.

The proof is elementary. Every admissible vector for the POP yields an upper bound
on the value of the POP. If this upper bound is a lower bound, it means that it is
optimal.

Another useful property to check is whether the moment matrix has rank one.

Lemma 4.2. If
rank Mr(y

?) = 1. (4.1)

then p?r = p?.

The proof goes as follows. From the definition (2.8) of the moment matrix

Mr(y) = `y(bbT )

if rank Mr(y
?) = 1 for some y? then

Mr(y
?) = b(x?)b(x?)T = y?(y?)T

that is y? = b(x?) is the vector of moments of the Dirac measure at some x? as in
Example 1.12. Since y? is admissible for moment relaxation (3.5), it follows that
for all k = 1, . . . ,m, Mrk(gky

?) = gk(x
?)b(x?)b(x?)T � 0 and hence gk(x

?) ≥ 0
which means that x? ∈ X is admissible for POP (3.1). Since the value of the
moment relaxation p?r = p(x?) is a lower bound on p? the value of the POP, and x?

is admissible for the POP, it follows that x? is optimal and therefore p?r = p?.

Theorem 4.2. If for some r∗ ≥ rmin, vector y∗ is such that

rank Mr∗−rg(y∗) = rank Mr∗(y∗) (4.2)

then p∗r∗ = p∗.

Note that Lemma 4.1 is a particular case of Theorem 4.2 since if rank Mr∗(y∗) = 1
for some r∗ then rank Mr(y

∗) = 1 for all r ∈ [rmin, r
∗]. Similarly, Lemma 4.1 is

a particular case of Theorem 4.2 since then the vector y∗ = ((x∗)a)a is such that
rank Mr(y

∗) = 1 for all r ≥ rmin.

If condition (4.2) is satisfied, then there are N := rank Mr∗(y?) weights wk ≥ 0,∑N
k=1wk = 1 and points x?k ∈X such that

Mr(y
?) =

N∑
k=1

wkb(x?k)b(x?k)
T (4.3)

and p? = p(x?k) for all k = 1, . . . , N . We can apply numerical linear algebra algo-
rithms (not described here) on Mr(y

?) to extract the N global optima x?k for POP
(3.1).
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Example 4.1. For the POP of Example 3.3, it holds rg = 1 and at the first relax-
ation (r = rmin = 2) we obtain the moment matrix

M2(y
?) =

 1 0 1
0 1 0
1 0 1


whose submatrix

M1(y
?) =

(
1 0
0 1

)
is such that rank M1(y

?) = rank M2(y
?) = 2 and the condition of Theorem 4.2

is satisfied for r∗ = 2. Eigenvalue computations on the moment matrix yield the
rank-one decomposition

M2(y
?) =

1

2

 1
1
1

 1
1
1

T

+
1

2

 1
−1

1

 1
−1

1

T

which is equation (4.3) with the expected two global minimizers x?1 = 1, x?2 = −1
and equal weights w1 = w2 = 1

2
.

Example 4.2. For the POP of Example 3.5, at the first relaxation we obtain the
moment matrix

M1(y
?) =

 1 −1 1
−1 2 0

1 0 2


which has rank 2, so we cannot apply Lemma 4.1 or Theorem 4.2. At the second
relaxation we obtain the moment matrix

M2(y
?) ≈


1.0000 −0.6180 0.6180 0.3820 −0.3820 0.3820
−0.6180 0.3820 −0.3820 −0.2361 0.2361 −0.2361

0.6180 −0.3820 0.3820 0.2361 −0.2361 0.2361
0.3820 −0.2361 0.2361 0.1459 −0.1459 0.1459
−0.3820 0.2361 −0.2361 −0.1459 0.1459 −0.1459

0.3820 −0.2361 0.2361 0.1459 −0.1459 0.1459


which has numerically rank 1: it has a singular value approx. equal to 2.2016 and
its other singular values are of the order of 10−8 or less. According to Lemma 4.1,
the first degree moments yield the global optimizer (y?10, y

?
01) ≈ (−0.6180, 0.6180)

corresponding to the analytic solution x? = (1−
√
5

2
, 1+

√
5

2
).

4.3 Solutions in a real algebraic variety

If the POP has infinitely many solutions, e.g. as in Example 3.4, we cannot use
Lemma 4.1 and Theorem 4.2 because the rank of the moment matrix Mr(y

?) does
not have to stabilize when r increases. Instead, we can approximate the set of
solutions with the help of the eigenstructure of the moment matrix.
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Let µ be a measure on X . Given a set1 A ⊂X , the measure of this set is the real
number µ(A ) :=

∫
A
dµ(x). The support of measure µ, denoted sptµ, is the smallest

closed set such that the measure of its complement is zero, i.e. µ(X \spt µ) = 0.

Let V denote the smallest real algebraic variety which contains spt µ. It is the
common zero set of finitely many polynomials. These polynomials generate an
ideal2 denoted by I . As usual, let b denote a basis vector for the vector space
of polynomials of degree at most d, and let Md(y) :=

∫
X

b(x)b(x)Tdµ(x) ∈ Snd

denote the moment matrix of order d of µ.

Lemma 4.3. For all d ∈ N, nd − rank Md(y) is the dimension of the vector space
of polynomials of degree up to d that vanish on variety V . For d large enough,
rank Md(y) is a polynomial3 in d whose degree is the dimension of V , and the
kernel4 ker Md(y) generates ideal I .

Example 4.3. Returning to Example 3.4, the global minimum is already achieved
at the first relaxation, but the corresponding moment matrix

M1(y
?) =

 1 0 0
0 0.5000 0.2500
0 0.2500 0.5000


has full rank. The moment matrix obtained at the second relaxation is

M2(y
?) =


1 0 0 0.5002 0.2542 0.4998
0 0.5002 0.2542 0 0 0
0 0.2542 0.4998 0 0 0

0.5002 0 0 0.3962 0.1271 0.1040
0.2542 0 0 0.1271 0.1040 0.1271
0.4998 0 0 0.1040 0.1271 0.3958


and it has numerical rank 5, while its submatrix M1 has rank 3. The 1-dimensional
kernel of M2 is spanned by the vector p1 = (1, 0, 0,−1, 0,−1) corresponding to the
polynomial p1(x) = pT1 b(x) = 1− x21 − x22. At the third relaxation, M1 has rank 3,
M2 has rank 5 and M3 has rank 7, a linear growth. The 3-dimensional kernel of M3

is spanned by the polynomials p1(x) = 1− x21 − x22, p2(x) = (x1 − x2)p1(x), p3(x) =
(x1 + x2)p1(x). They belong to the ideal I generated by the polynomial 1− x21− x22.
These polynomials all vanish on the variety V := {x ∈ R2 : 1− x21− x22 = 0}, which
is strictly larger than the set of globally optimal solutions to the POP.

Lemma 4.3 tells us that the set of polynomials vanishing on sptµ can be constructed
from the kernel of the moment matrix of µ. The common set of zeros of these
polynomials is an algebraic variety. In POP however, because of the constraints,
the set of global optimizers is not necessarily a variety. Example 4.3 illustrates that
the set of global optimizers can be strictly smaller than the variety that contains
them. In order to get tighter approximations on the set of global optimizers, we can
further exploit knowledge from the eigenstructure of the moment matrix.

1More rigorously, set A should belong to the Borel sigma-algebra of X .
2An ideal is a set of polynomials which is closed under linear combinations with polynomial

coefficients.
3This polynomial is called the Hilbert function of the variety.
4Given a symmetric matrix A ∈ Sm, its null-space or kernel is ker A := {v ∈ Rm : Av = 0}.
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4.4 Christoffel-Darboux polynomial

Since the moment matrix Md is positive semi-definite, it has a spectral decomposi-
tion

Md = QEQT

where Q ∈ Rnd×nd is an orthonormal5 matrix with columns qi, i = 1, . . . , nd, and
E is a diagonal matrix whose entries are the eigenvalues ei+1 ≥ ei ≥ 0 of Md. By
construction, each eigenvector qi is the coefficient vector of a polynomial qi ∈ R[x]
such that

qTi Mdqi = qTi

(∫
X

b(x)b(x)Tdµ(x)

)
qi =

∫
X

q2i (x)dµ(x) = ei, i = 1, . . . , nd.

Lemma 4.3 tells us that if d is large enough, the ideal I of polynomials vanishing
on sptµ consists of polynomials qi such that ei = 0, i.e. those in the kernel of the
moment matrix. Let us now use the other polynomials to get tighter approximations
of spt µ, and hence of the set of global optimizers of the POP.

Given a small parameter βd > 0, let us construct the following Christoffel-Darboux
polynomial

pβd(x) :=

nd∑
i=1

q2i (x)

ei + βd
. (4.4)

Note that this polynomial is SOS of degree 2d and hence it is positive. Equation
(4.4) can be written in matrix form as

pβd(x) = b(x)T (Md + βdInd
)−1b(x)

since an invertible symmetric matrix and its inverse share the same eigenvectors.
Let us now argue that spt µ can be well approximated by the set of points x such
that pβd(x) is small.

Observe that if ei is small, the term q2i (x) takes small values on sptµ, and its relative
weight (ei + β)−1 is large in the sum (4.4). Conversely, if ei is large, q2i (x) takes
larger values on spt µ and its relative weight is smaller in the sum. Therefore, the
sublevel set

{x ∈X : pβd(x) ≤ αd}
for αd > 0 small is likely to be a good approximation to spt µ. The explicit choice
of αd, βd as functions of d, and the corresponding convergence results depend on
assumptions made on µ and the geometry of its support.

Let us mention here just one result, in the case µ is supported on the graph of a
function

f : X ⊂ Rn → F ⊂ R
x 7→ xn+1 = f(x)

i.e. the vector of moments is given by

y =

∫
X

∫
F

b(x, xn+1) dµ(x, xn+1) =

∫
X

b(x, f(x)) dx

5An orthonormal matrix has columns qi satisfying qT
i qi = 1 and qT

i qj = 0 if i 6= j.
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Figure 4.1: Logarithmic sublevel sets of the Christoffel-Darboux polynomial (gray)
and argmin approximant (thick black).

for b a basis vector of polynomials of degree up to d in the joint variables (x, xn+1).

Given x ∈X , let us define6 the Christoffel-Darboux approximant

fβd(x) := min{argminxn+1∈F pβd(x, xn+1)}. (4.5)

Theorem 4.3. With the choice βd = 23−
√
d, if the set S ⊂X of continuity points

of f is such that X \S has Lebesgue measure zero, then limd→∞ fd,βd(x) = f(x) for
all x ∈ S and limd→∞

∫
X
|f(x)− fd,βd(x)|dx = 0.

Note that for each given x ∈ X , finding the argmin(s), i.e. the minimizer(s)
x?n+1 ∈ F such that pβd(x, x?n+1) = minxn+1∈F pβd(x, xn+1), amounts to finding the
roots of a univariate polynomial, a classical operation that boils down to numerical
linear algebra.

Example 4.4. The POP of Examples 3.2, 3.4 and 4.3 is such that the set of global
minimizers is on the circular arcs {x ∈ R2 : 1 − x21 − x22 = 0, x1x2 ≥ 0} which
is also the graph {(x1, x2) : x2 = f(x1) ∈ [−1, 1], x1 ∈ [−1, 1]} of the function
f(x1) := sign(x1)

√
1− x21, see Figure 3.2. Consider the moment matrix M2(y

?) of
size 6 solving the second moment relaxation. With parameter β2 = 10−8, the sublevel
sets of the Christoffel-Darboux polynomial pβ2 in (4.4) are represented in gray on
Figure 4.1. We see that the small sublevel sets are concentrated on the unit circle.
Also represented in thick black is the graph of function fβ2 in (4.5), an approximant
of function f . The graph of fβ2 cannot be distinguished from the graph of f .

6The set of minimizers is denoted by argmin.
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4.5 Notes

The genericity result of Theorem 4.1 is from [27].

Theorem 4.2 is based on flat extension results of Curto and Fialkow in the 1990s
[5], see [23, §5] or [20, §3.2.2].

The extraction algorithm to recover the solutions from the moments is described
in [14] and explained in [23, §7.6]. It is implemented in the GloptiPoly software
[12, 15].

For background material on polynomial ideals and algebraic varieties, see [4]. Lemma
4.3 is from [30, Prop. 1], see also [22, Ch. 5].

The Christoffel-Darboux polynomial and its applications are surveyed in [22]. The-
orem 4.3 is from [26, Theorem 1], see also [22, §8.1].



40 CHAPTER 4. SOLUTION RECOVERY



Chapter 5

Limitations and extensions

Polynomial optimization problems (POPs) are difficult to solve in general, since
they include as particular cases all combinatorial optimization problems. Still, the
moment-SOS hierarchy performs well on most of the POPs encountered in practice.
In particular, it behaves well on problems which have some specific features, such
as convexity of the data, see e.g. [21, Ch. 13]. More generally, the relaxation
order which is required to get a global optimality certificate can be interpreted as a
measure of difficulty of a given POP.

The moment-SOS hierarchy is a numerical approach to POP: it relies on semidefinite
optimization algorithms implemented in floating point arithmetic, and hence subject
to conditioning problems and numerical inaccuracy. In some critical applications,
this inaccuracy is not acceptable, and an exact solution is required. The solution
to a POP with integer coefficients can be coded with algebraic numbers (i.e. roots
of univariate polynomials with integer coefficients), and it can be obtained with
computer algebra algorithms (e.g. Gröbner basis computations). Since the main
computational ingredient in the moment-SOS hierarchy is semidefinite optimization,
we can solve exactly a POP at the price of solving exactly semidefinite optimization
problems. Computer algebra algorithms have been developed for that [16, 17], but
they are currently limited to semidefinite optimization problems of small dimensions.

More generally, a main limitation of the moment-SOS hierarchy is the rapid growth
of the size of the semidefinite optimization problems as a function of the relaxation
order r. In the moment relaxation of order r of a POP with n variables, the number
of moments is the binomial coefficient n2r, and the size of the moment matrix is
nr. These numbers grow quickly with n and r. For example, if n = 43, the second
(r = 2) moment relaxation of a quadratic POP features a moment matrix of size
almost 1000 (and hence almost half a million entries) that depends on a vector of
moments of size almost 200000, a challenging semidefinite optimization problem for
a standard laptop at the time of writing these notes (2023).

For POPs with a moderate number of constraints, the computational complexity of
solving the moment relaxation depends mostly on the size of the largest semidefinite
matrix. So it is crucial to exploit as much as possible the problem structure to
reduce this size, and decompose the large semidefinite matrices into sums of smaller
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semidefinite matrices. This can be achieved by exploiting symmetry and/or sparsity,
see [23, §8], [21, Ch. 8] or [24].

Numerically it is generally preferable to use other bases than monomials to manip-
ulate polynomials. In numerical linear algebra, Chebyshev polynomials of degrees
by the thousands can routinely be used for function approximation [38]. Whether
semidefinite solvers used in the moment-SOS hierarchy can benefit computationally
from alternative polynomial bases remains to be seen.

Since the mid 2000s, there has been a lot of research activities to develop and apply
the moment-SOS hierarchy beyond POPs. This includes e.g. polynomial optimal
control and polynomial partial differential equations, but also many other problems
in data science [11].
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