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Since the early works of Ritt [27], Wu [33], and Yang and Zhang [36], the
Characteristic Set Method has been extended and improved by many researchers.
This effort has produced more powerful decomposition algorithms, and now ap-
plies to different types of polynomial systems or decompositions: parametric al-
gebraic systems [13,17,35], differential systems [4,14,20], difference systems [19],
unmixed decompositions and primary decomposition [29] of polynomial ideals,
intersection multiplicities [24], cylindrical algebraic decomposition [11,22], quan-
tifier elimination [12], parametric [35] and non-parametric [9] semi-algebraic sys-
tems. Today, triangular decomposition algorithms are available in several soft-
ware packages [2,8,31,32,34]. Moreover, they provide back-engines for computer
algebra system front-end solvers, such as Maple’s solve command.

Despite of their successful application in various areas (automatic theorem
proving, dynamical systems, program verification, to name a few), solvers based
on triangular decompositions are sometimes put to challenge with input polyno-
mial systems that appear to be easy to solve by other methods, based on Gröbner
bases. Of course, one should keep in mind that different solvers may have differ-
ent specifications, not always easy to compare. Nevertheless, for certain classes
of systems, say zero-dimensional systems, one can expect that a triangular de-
composition on one hand, and the computation of a lexicographical Gröbner
basis (followed by the application of Lazard’ s Lextriangular algorithm [23])
on the other, produce essentially the same thing.

While the development of modular methods for computing Gröbner bases
took off in the 1980’s thanks to Traverso [30] and Faugère [18], with follow-up
works by Arnold [1] and others, the development of such methods for triangular
decompositions started only in 2005 with the paper [16] by Dahan, Moreno Maza,
Schost, Wu and Xie. This latter method computes a triangular decomposition
∆ of a zero-dimensional polynomial system V (F ) over the rational numbers by

1. first computing a triangular decomposition, say ∆p, of that system modulo
a sufficiently large prime number p;

2. transforming ∆p into a canonical triangular decomposition of V (F mod p),
called the equiprojectable decomposition, Ep of V (F mod p); and

3. finally, lifting Ep (using the techniques of Schost [28]) into the equipro-
jectable decomposition of V (F ).

Hence, this method helps to control the effect of expression swell at the level of
the numerical coefficients, which resulted in a significant efficiency improvement
on a number of famous test systems. However, this modular method has no
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benefits on expression swell when expression swell manifests as an (unnecessary)
inflation on the number of terms. This phenomenon is generally caused by the
so-called extraneous or spurious factors in resultants, which have been studied
in the case of Dixon resultants [21]. Most algorithms for computing triangular
decompositions compute iterated resultants, either explicitly or implicitly.

In broad terms, the iterated resultant res(f, T ) between f and a regular
chain T ⊆ k[X1 < . . .Xn] encodes conditions for the hypersurface V (f) and the
quasi-component W (T ) to have a non-empty intersection.

To be precise, we recall some of the results in Section 6 of [10]. Assume that
T is a zero-dimensional regular chain. We denote by VM (T ) the multiset of the
zeros of T , where each zero of T appears a number of times equal to its local
multiplicity as defined in Chapter 4 of [15]. If T is normalized, that is, the initial
of every polynomial in T is a constant, then we have:

res(f, T ) =
∏

α∈VM (T )

f(α).

This Poisson Formula tells us that, if T is normalized, then res(f, T ) is “fully
meaningful”. In other words, it does not contain extraneous factors. Now, let us
relax the fact that T is normalized. For i = 1, . . . , n, we denote respectively by
ti, hi, ri: (1) the polynomial of T whose main variable is Xi, (2) the initial of ti,
(3) the iterated resultant res({t1, . . . , ti−1}, hi). In particular, we have r1 = h1.
We also define: (1) en = deg(f,Xn), (2) fi = res({ti+1, . . . , tn}, f), for 0 ≤ i ≤
n− 1, (3) ei = deg(fi, xi), for 1 ≤ i ≤ n− 1. Then, res(T, f) is given by:

he11

 ∏
β1∈VM (t1)

h2(β1)

e2

· · ·

 ∏
βn−1∈VM (t1,...,tn−1)

hn(βn−1)

en  ∏
α∈VM (T )

f(α)


From that second Poisson formula, we can see that all factors but the rightmost
one (that is, the one from the first Poisson formula) are extraneous. Indeed, in the
intersection V (f) ∩W (T ) there are no points cancelling the initials h2, . . . , hn.

These observations generalize to regular chains of positive dimension (just
seeing the field k as a field of rational functions) and can explain how the cal-
culation of iterated resultants can cause expression swells in triangular decom-
position algorithms. To deal with that problem, the authors of [10] study a few
trivariate systems consisting of a polynomial f(X1, X2, X3) and a regular chain
T = {t2(X1, X2), t3(X1, X2, X3)}. They compute res(T, f) by

1. specializing X1 at sufficiently many well-chosen values a,
2. computing R(a) := res(N(a), f(a)) where f(a) = f(a,X2, X3) and N(a) is

the normalized regular chain generating the ideal 〈t2(a,X2), t3(a,X2, X3)〉
in k[X2, X3], and

3. combining the R(a)’s and applying rational function reconstruction.

The numerator of the reconstructed fraction is essentially the desired non-extra-
neous factor of res(T, f).
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In a recent article [7], we have extended the ideas of [10] so that one can
actually compute V (f) ∩W (T ) and not just obtain conditions on the existence
of those common solutions for f and T . Computing such intersections is the core
routine of the incremental triangular decomposition method initiated by Lazard
in [22] and further developed by Chen and Moreno Maza [10,25]. Consequently,
we have implemented the proposed techniques and measured the benefits that
they bring to the solver presented in [2].

We stress the fact that our objective is to optimize the Intersect algorithm [10]
for computing intersections of the form V (f)∩W (T ). Moreover, one of the main
applications of our work in this area is to support algorithms in differential
algebra, as in the articles [5,6]. With the challenges of that application1 in mind
and noting the success obtained in applying regular chain theory to differential
algebra, our approach to optimize the Intersect algorithm must remain free of
(explicit) Gröbner basis computations.

We observe that if Gröbner basis computations are to be used to support
triangular decompositions, efficient algorithms exist since the 1990’s. As shown
in [26], applying Lazard’ s Lextriangular to the lexicographical Gröbner basis
G(F ) of a zero-dimensional polynomial ideal 〈F 〉 produces a triangular decom-
position of the algebraic variety V (F ) in a time which is negligible comparing
to that of computing G(F ). This efficiency follows from the structure of a lexi-
cographical Gröbner basis as stated by the Gianni-Kalkbrener theorem [23].

The presentation of the modular method presented in [7] for computing
V (f) ∩ W (T ) is dedicated to the case where T is one-dimensional. The cases
where T is of dimension higher than one are work in progress and will be dis-
cussed in this talk.

Our approach to the design of such a modular method is as follows. We start
by identifying hypotheses under which V (f)∩W (T ) is given by a single regular
chain C. These hypotheses can be seen as genericity assumptions, in particular
when T is one-dimensional since C is then shape lemma in the sense of [3].

Next, we develop a modular method which computes C, if the genericity
assumptions hold, and detects which assumptions do not hold otherwise. One
intention of that algorithm is that, whenever a genericity assumption fails, one
should be able to recycle the computations performed by the modular method,
in order to finish the computations.

This is then followed by a third step where the modular method is enhanced
by relaxing the genericity assumptions. We also describe two variants of this
modular method: one deterministic and one probabilistic. Experimentation is
provided and offers promising results. Indeed, our solver based on this modular
method can process various systems which were previously unsolved by our solver
(without the modular method).

1 The differential ideal generated by finitely many differential polynomials is generally
not finitely generated, when regarded as an algebraic ideal.
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