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Stretched exponentials and beyond

Asymptotic counting

Landau notation
Let (an)n≥0 and (bn)n≥0, bn > 0 be two sequences.

an = O(bn) if lim sup
n→∞

|an|
bn

< ∞

an = Θ(bn) if 0 < lim inf
n→∞

|an|
bn

and lim sup
n→∞

|an|
bn

< ∞

an ∼ bn if lim
n→∞

|an|
bn

= 1

Examples:

Stirling’s formula
n! = O(nn)

n! = Θ
(
nn+1/2 e−n)

n! ∼
√

2πnnne−n

Binomial coeffs(2n
n
)

= O(4n)(2n
n
)

= Θ
(

4n
√

n

)
(2n

n
)

∼ 4n
√

πn

Double factorials
(2n − 1)!! = O(n!2n)

(2n − 1)!! = Θ
(

n!2n
√

n

)
(2n − 1)!! ∼ n!2n

√
πn
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Stretched exponentials and beyond

What is a stretched exponential?

General question
How does a sequence (an)n≥0 behave for large n?

Often we observe
C · Rn · nα,

for constants C , R, α ∈ R.

Much more seldom we observe (or are able to prove)
C · Rn · µnσ

· nα,

with a stretched exponential µnσ with µ > 0 and σ ∈ (0, 1).

Some deeper reasons why they are “seldom”
Generating function cannot be algebraic
It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only
only with an irregular singularity, e.g., exp( z

1−z )
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Stretched exponentials and beyond

Appearances of stretched exponentials

Known exactly:
Number theory (integer partitions):

∼ (4
√

3)−1eπ(2n/3)1/2
n−1

Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):
∼ C14ne−3( π log 2

2 )2/3n1/3
n−5/6

Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):
Θ
(

n2n(12e−2)nea1(3n)1/3
n−2/3

)

Conjectured:
Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:

≈ µne−cn1/2

Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:
≈ µne−cn3/7

and recently more and more appear in group theory, queuing theory, . . .
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Stretched exponentials in DAG counting
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Biology: d-combining tree-child networks

Definition
A d-ary rooted phylogenetic network is a DAG with nodes of the type:

• unique root: indegree 0, outdegree 2
• leaf: indegree 1, outdegree 0
• tree node: indegree 1, outdegree 2
• reticulation node: indegree d , outdegree 1

Furthermore, the n leaves are labeled bijectively by {1, . . . , n}.
Tree-child: every non-leaf node has at least one child that is not a reticulation.

1
2

3

4

2

3

1

4

x

y
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Asymptotics of d-combining tree-child networks
A stretched exponential µnσ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number TC(d)
n of d-combining tree-child networks with n leaves satisfies

TC(d)
n = Θ

(
(n!)d γ(d)n e3a1β(d)n1/3

nα(d)
)

for n → ∞,

with a1 ≈−2.338: largest root of the Airy function Ai(x) and

α(d) = −d(3d − 1)
2(d + 1) , β(d) =

(
d − 1
d + 1

)2/3
, γ(d) = 4(d + 1)d−1

(d − 1)! .

Questions we will answer next
How to prove this?
Why is there a stretched exponential?
Why does the Airy function appear?
→ Previously, e.g., in random maps [Banderier, Flajolet, Schaeffer,
Soria 2001] and Brownian excursion area [Flajolet, Louchard 2001]

Ai′′(x) = x Ai(x)
Michael Wallner | TU Wien | 04.12.2023 7 / 35
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How to prove this?
1 Combinatorics: reduce the problem

Asymptotically, only maximally reticulated networks important:
Let TC(d)

n,k be TC networks with n leaves and k reticulation nodes, then

TC(d)
n ∼ cdTC(d)

n,n−1

where c2 =
√

2 and cd = 1 for d ≥ 3.
Bijection of TC(d)

n,n−1 to Young tableaux with walls (or special words)

2 Two parameter recurrence relation

en,m = µn,m en−1,m+1 + νn,m en−1,m−1

n ≥ 3 and m ≥ 0, en,−1 = e2,n = 0 except for e2,0 = 1,

where

µn,m = 1 + 2(d − 1)
(d + 1)n + (d − 1)m − 2(d + 1) and νn,m =

d∏
i=2

(
1 − 2(m + i)

(d + 1)(n + m)

)
.

We are interested in e2n,0, as TC(d)
n = Θ

(
(n!)d

(
γ(d)

4

)n
n1−d e2n,0

)
.
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More objects with bivariate recurrences giving stretched exponentials

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

Young tableaux with walls

2

1

3

TC networks

Compressed trees

q0 q2 q4

b
a

a

a a

a

b

b
b b

q1 q3

Minimal automata

BAADBACFCBEDECDFEF
Constrained words
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Computer Science: Compacted trees

Definition
A compacted k-ary tree is a DAG with nodes of the type:

• unique root: outdegree k
• unique sink: outdegree 0
• internal nodes: outdegree k

Furthermore,
(O) the children are ordered and
(U) all fringe subgraphs are unique.

A relaxed k-ary tree is a compacted k-ary tree without condition (U).

Compacted binary tree

=

Relaxed binary tree
Michael Wallner | TU Wien | 04.12.2023 10 / 35
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Why are they interesting?

Applications:
XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
Data storage [Meinel, Theobald 1998], [Knuth 1968]
Compilers [Aho, Sethi, Ullman 1986]
LISP [Goto 1974]
etc.

Efficient compaction algorithm: expected time O(n)
A tree of size n has a expected compacted size

C n√
log n

,

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question
How many compacted trees of (compacted) size n exist?
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Asymptotics of relaxed k-ary trees
A stretched exponential µnσ appears!

Theorem [Ghosh Dastidar, W 2024+]
The number rn of relaxed k-ary trees with n internal nodes satisfies

rn = Θ
(

(n!)k−1 γ(k)n e3a1β(k)n1/3
nα(k)

)
,

with a1 ≈−2.338: largest root of the Airy function Ai(x) and

α(k) = 7k − 8
6 , β(k) =

(
k(k − 1)

2

)1/3
, γ(k) = kk

(k − 1)k−1 .

Proof strategy
1 Bijective Comb.: Bijection to decorated Dyck paths
2 Enumerative Comb.: Two-parameter recurrence
3 Calculus + ODEs: Heuristic analysis of recurrence
4 Computer algebra: Inductive proof of asymptotically tight bounds

Ai′′(x) = x Ai(x)
Michael Wallner | TU Wien | 04.12.2023 12 / 35



Stretched exponentials and beyond | Stretched exponentials in DAG counting

Asymptotics of relaxed k-ary trees
A stretched exponential µnσ appears!

Theorem [Ghosh Dastidar, W 2024+]
The number rn of relaxed k-ary trees with n internal nodes satisfies

rn = Θ
(

(n!)k−1 γ(k)n e3a1β(k)n1/3
nα(k)

)
,

with a1 ≈−2.338: largest root of the Airy function Ai(x) and

α(k) = 7k − 8
6 , β(k) =

(
k(k − 1)

2

)1/3
, γ(k) = kk

(k − 1)k−1 .

Proof strategy
1 Bijective Comb.: Bijection to decorated Dyck paths
2 Enumerative Comb.: Two-parameter recurrence
3 Calculus + ODEs: Heuristic analysis of recurrence
4 Computer algebra: Inductive proof of asymptotically tight bounds

Ai′′(x) = x Ai(x)
Michael Wallner | TU Wien | 04.12.2023 12 / 35



Stretched exponentials and beyond | Stretched exponentials in DAG counting

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]
The number of relaxed and compacted binary trees satisfy for n → ∞

rn = Θ
(

n! 4ne3a1n1/3
n
)

and cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x).

Conjecture
Experimentally we find

rn ∼ γr n!4ne3a1n1/3
n and cn ∼ γcn!4ne3a1n1/3

n3/4,

where
γr ≈ 166.95208957 and γc ≈ 173.12670485.
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Bijection to decorated paths
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Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...

going up: add up step
passing a pointer: add horizontal step and mark box corresponding to pointer label
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Decorated paths
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One box is marked below each horizontal step
Each vertical step has weight 1
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Recurrence for decorated paths
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Recurrence: Let an,m be the number of paths ending at (n, m)
an,m = an,m−1 + (m + 1)an−1,m, for n ≥ m
a0,0 = 1.

Number of relaxed trees is rn = an,n
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Recurrence: Let ãn,m be the number of paths ending at (n, m) with weights divided by column number

ãn,m = ãn,m−1 + m + 1
n ãn−1,m, for n ≥ m

ã0,0 = 1.

Number of relaxed trees is rn = n! ãn,n
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Recurrence: Let di,j be the number of decorated paths ending at (i , j) shown on the right

di,j = di−1,j+1 +
(

1 − 2(j − 1)
i + j

)
di−1,j−1, for i > 0, j ≥ 0

d0,0 = 1.

Number of relaxed trees is rn = n! d2n,0
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Intuition stretched exponential: Pushed Dyck paths
Dyck paths of length 2n where paths of height h get weight 2−h

h

2n
0
0

Consider paths with max height h = nα (for 0 < α ≤ 1/2):
Number of paths ≈ 4ne−c1n1−2α

, Weight = 2−nα

= e− log(2)nα

.

Weighted number of paths ≈ 4ne−c1n1−2α−log(2)nα

Maximum occurs when α = 1/3 and is equal to 4ne−cn1/3 .
Our case: weights decrease similarly with height so we expect similar behavior
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Heuristics: What happens for large (fixed) n?

dn,m = dn−1,m+1 +
(

1 − 2(m − 1)
n + m

)
dn−1,m−1
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m + 1
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5.0×10281
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Figure: Plots of dn,m against m + 1. Left: n = 100, Right: n = 1000.

Let’s zoom in to the left (small m) where interesting things are happening.

It seems to be converging to something...

Ansatz: dn,m ≈ h(n)f
(

m + 1
g(n)

)
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = µn,m dn−1,m+1 + νn,m dn−1,m−1, m ≥ 0

Ansatz: dn,m ≈ h(n)f
(

m + 1
g(n)

)

1 Unweighted case µn,m = νn,m = 1 with m ≥ 0:

h(n) ≈ c
n4n, g(n) =

√
n, f (x) = xe−x2

.

2 Unweighted case µn,m = νn,m = 1 with m arbitrary:

h(n) ≈ c√
n

4n, g(n) =
√

n, f (x) = e−x2
.

3 Relaxed binary trees µn,m = 1 and νn,m = 1 − 2(m−1)
n+m with m ≥ 0:

⇒ Based on the relation with pushed Dyck paths, we guess g(n) = 3
√

n.

What are h(n) and f (x)?
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Heuristic analysis of weighted paths of relaxed binary trees

dn,m = dn−1,m+1 +
(

1 − 2(m + 1)
n + m

)
dn−1,m−1

Ansatz (a): dn,m ≈ h(n)f
(

m + 1
3

√
n

)
.

Substitute into recurrence and set m = x 3
√

n − 1:
h(n)

h(n − 1) ≈ 2 + f ′′(x) − 2xf (x)
f (x) n−2/3 + O(n−1)

Ansatz (b): Set sn := h(n)
h(n−1) and assume

sn = 2 + cn−2/3 + O(n−1) ⇒ h(n) ≈ 2ne 3c
2 n1/3

Solution
f ′′(x) = (2x + c)f (x)

⇒ f (x) = Ai(2−2/3(2x + c))

where c is a constant

and Ai is the Airy function.

Boundary condition: dn,−1 = 0 and dn,m ≥ 0.
Then f (0) = 0 implies c = 22/3a1, where a1 ≈ −2.338 satisfies Ai(a1) = 0.
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Inductive proof
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Stretched exponentials and beyond | Inductive proof

Proof method

Find explicit sequences Xn,m and Yn,m with the same asymptotic form, such that
Xn,m ≤ dn,m ≤ Yn,m,

for all m and all n large enough.

How to find them?
1 Use heuristics
2 Adapt until Xn,m and Yn,m satisfy the recurrence of dn,m with the equalities replaced by

inequalities:
= −→ ≤ and ≥

3 Prove Xn,m ≤ dn,m ≤ Yn,m by induction.
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Stretched exponentials and beyond | Inductive proof

Relaxed trees: Proof idea – lower bound

Main idea
Suppose (Xn,m)n≥m≥0 and (sn)n≥1 satisfy

Xn,msn ≤ Xn−1,m+1 +
(

1 − 2(m + 1)
n + m

)
Xn−1,m−1, (1)

for all sufficiently large n and all integers m ∈ [0, n].

Define (hn)n≥0 by h0 = 1 and hn = snhn−1; then prove that
Xn,mhn ≤ b0dn,m

for some constant b0 by induction:

Xn,mhn
(1)
≤ Xn−1,m+1hn−1 +

(
1 − 2(m + 1)

n + m

)
Xn−1,m−1hn−1

(Induction)
≤ b0dn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
b0dn−1,m−1

Rec. dn,m= b0dn,m.
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Stretched exponentials and beyond | Inductive proof

Lower bound – Expansion

1 Transform to Pn,m ≥ 0 for

Pn,m := −Xn,msn + Xn−1,m+1 +
(

1 − 2(m + 1)
n + m

)
Xn−1,m−1.

where (σi , τj ∈ R)

sn := σ0 + σ1

n1/3 + σ2

n2/3 + σ3
n + σ4

n7/6 ,

Xn,m :=
(

1 + τ2m2 + τ1m
n

)
Ai
(

a1 + 21/3(m + 1)
n1/3

)
.

2 Expand Ai(z) in a neighborhood of

α = a1 + 21/3m
n1/3 ,

using Ai′′(z) = zAi(z). Then
Pn,m = pn,mAi(α) + p′

n,mAi′(α),
where pn,m and p′

n,m are power series in n−1/6 whose coefficients are polynomials in m.
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Stretched exponentials and beyond | Inductive proof

Lower bound – Colorful Polygons
3 Choose σi and τi to kill lower order terms in

Pn,m =
∑

ai,jminj

Pn,m = pn,mAi(α) + p′
n,mAi′(α)

blue terms: σ0 = 2
red terms: σ1 = 0
green terms: σ2 = 22/3a1

yellow terms: σ3 = 8/3 and τ2 = −2/3

Case analysis on non-zero coefficients!
⇒ Pn,m ≥ 0 for m ∈ [0, n2/3−ε)
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Stretched exponentials and beyond | Inductive proof

Results and further perturbations

Theorem
The number rn (cn) of relaxed (compacted) binary trees, bn of minimal DFAs recognizing a finite
binary language, and yn of 3 × n Young tableaux with walls in the bottom row satisfy for n → ∞

rn = Θ
(

n! 4ne3a1n1/3
n
)

, [Elvey Price, Fang, W 2021]

cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
, [Elvey Price, Fang, W 2021]

bn = Θ
(

n! 8ne3a1n1/3
n7/8

)
, [Elvey Price, Fang, W 2020]

yn = Θ
(

n! 12nea1(3n)1/3
n−2/3

)
, [Banderier, W 2021]

with a1 ≈−2.338: largest root of the Airy function Ai(x).

Associated recurrence relations (n ≥ m ≥ 0):
rn = an,n, where an,m = an,m−1 + (m + 1)an−1,m

cn = cn,n, where cn,m = cn,m−1 + (m + 1)cn−1,m − (m − 1)cn−2,m−1

bn = bn,n, where bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1

yn = yn,n, where yn,m = yn,m−1 + (2n + m − 1)yn−1,m
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Compacted binary trees of bounded right height
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Stretched exponentials and beyond | Compacted binary trees of bounded right height

Bounded right height
The right height of a binary tree is the maximal number of right children on any path from the root to
a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number rk,n (ck,n) of relaxed (compacted) trees with right height at most k satisfies for n → ∞

rk,n ∼ γkn!
(

4 cos
(

π

k + 3

)2
)n

n− k
2 ,

ck,n ∼ κkn!
(

4 cos
(

π

k + 3

)2
)n

n− k
2 − 1

k+3 −( 1
4 − 1

k+3 ) cos( π
k+3 )−2

,

where γk , κk ∈ R \ {0} are independent of n.

Michael Wallner | TU Wien | 04.12.2023 29 / 35



Stretched exponentials and beyond | Compacted binary trees of bounded right height

Bounded right height
The right height of a binary tree is the maximal number of right children on any path from the root to
a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number rk,n (ck,n) of relaxed (compacted) trees with right height at most k satisfies for n → ∞

rk,n ∼ γkn!
(

4 cos
(

π

k + 3

)2
)n

n− k
2 ,

ck,n ∼ κkn!
(

4 cos
(

π

k + 3

)2
)n

n− k
2 − 1

k+3 −( 1
4 − 1

k+3 ) cos( π
k+3 )−2

,

where γk , κk ∈ R \ {0} are independent of n.

Michael Wallner | TU Wien | 04.12.2023 29 / 35



Stretched exponentials and beyond | Compacted binary trees of bounded right height

Main idea: Exponential generating functions

Problem: super-exponential growth rk,n = Θ(n!) but unlabeled structures!
Idea: derive a symbolic method for compacted trees using exponential generating functions

Let T (z) =
∑

n≥0 tn
zn

n! be an EGF of the class T .

T (z) 7→ zT (z)

Append a new node with a pointer to the class T . T

Proof:
tk = k![zk ]zT (z) = k︸︷︷︸

k possible
pointers

· tk−1︸︷︷︸

k−1 internal
nodes
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Further constructions

S : T (z) 7→ 1
1−z T (z)

Append a (possibly empty) sequence
at the root.

TS = ∪ T ∪ T ∪

D : T (z) 7→ d
dz T (z)

Delete top node but preserve its pointers.
T

I : T (z) 7→
∫

T (z)
Add top node without pointers.

T

P : T (z) 7→ z d
dz T (z)

Add a new pointer to the top node.
T
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Stretched exponentials and beyond | Compacted binary trees of bounded right height

Bounded right height ≤ 1: R1(z)

Symbolic construction

(1 − 2z) R ′
1(z) − R1(z) = 0,

R1(0) = 1,

then we get the closed form

R1(z) = 1√
1 − 2z

,

and the coefficients

r1,n = n!
2n

(
2n
n

)
= (2n − 1) · (2n − 3) · · · 3 · 1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right height at most one”].
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Bounded right height ≤ 2: R2(z)

Symbolic construction (
1 − 3z + z2)R ′′

2 (z) + (2z − 3) R ′
2(z) = 0,

R2(0) = 1, R ′
2(0) = 1,

then we get the closed form

R ′
2(z) = 1

1 − 3z + z2 ,

and the coefficients

r2,n = (n − 1)!√
5

(1 +
√

5
2

)2n

−

(
1 −

√
5

2

)2n
 .
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Bounded right height ≤ 3: R3(z)

Symbolic construction(
1 − 4z + 3z2)R ′′′

3 (z) + (9z − 6) R ′′
3 (z) + 2R ′

3(z) = 0,

R3(0) = 1, R ′
3(0) = 1, R ′′

3 (0) = 3
2 ,

then we get the closed form

R3(z) =
(

3z − 2 +
√

3
√

1 − 4z + 3z2
√

3 − 2

)1/
√

3

,

and the asymptotics of the coefficients

r3,n = n![zn]R3(z) = n!
√

6
(
2 −

√
3
)1/

√
3

3n

n3/2√
π

(
1 + O

(
1
n

))
.
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Stretched exponentials and beyond | Compacted binary trees of bounded right height

Differential operators

Theorem
Let D = d

dz and (Lk)k≥0 be a family of differential operators given by
L0 = (1 − z),
L1 = (1 − 2z)D − 1,

Lk = Lk−1 · D − Lk−2 · D2 · z , k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right height ≤ k satisfies
Lk · Rk = 0.

(1 − 2z) d
dz R1(z) − R1(z) = 0

(z2 − 3z + 1) d2

dz2 R2(z) + (2z − 3) d
dz R2(z) = 0

(3z2 − 4z + 1) d3

dz3 R3(z) + (9z − 6) d2

dz2 R3(z) + 2 d
dz R3(z) = 0
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Stretched exponentials and beyond | Compacted binary trees of bounded right height

Proof of asymptotics of compacted trees of bounded right height

1 Let ℓk,i ∈ C[z ] be such that
Lk = ℓk,k(z)Dk + ℓk,k−1(z)Dk−1 + . . . + ℓk,0(z).

Find recurrences for ℓk,i(z) using Guess’n’Prove techniques.

2 Use singularity analysis directly on ODE Lk · Rk = 0:

1 Exponential growth ρk :
Roots of ℓk,k(z) are candidates.
ℓk,k(z) is a transformed Chebyshev polynomial of the second kind. Hence,

ρk =
1

4 cos
(

π
k+3

)2 .

2 Subexponential growth:
Prove that other coefficients ℓk,i (z) are nice.
Use the indicial polynomial derived from the ℓk,i (z).
Find a basis of solutions for differential equation: Only one is singular at ρk !
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Conclusion
Theorem [Genitrini, Gittenberger, Kauers, W 2020]

, [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees with right height at most k satisfy for n → ∞

rk,n ∼ γkn! 4n cos
(

π

k+3

)2n
n− k

2 and ck,n ∼ κkn! 4n cos
(

π

k+3

)2n
n

− k
2 − 1

k+3 − k−1

4(k+3) cos( π
k+3 )2

.

The number unbounded relaxed and compacted binary trees satisfy

rn = Θ
(

n! 4ne3a1n1/3
n
)

and cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x).

Many future research directions:
Multiplicative constants
Universality of ec a1 n1/3

Further applications: Do you know similar recurrences?
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Backup
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Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees
ck,n ∼ κkn!rn

k nαk and rk,n ∼ γkn!rn
k nβk .

k rk rk ≈ κk ≈ αk αk ≈ γk ≈ βk βk ≈
1 2 2.000 0.708 − 3

4 −0.750 0.564 − 1
2 −0.5

2 4 cos( π
5 )2 2.618 0.561 − 6

5 − 1
20 cos( π

5 )2 −1.276 0.447 −1 −1.0
3 3 3.000 0.605 − 16

9 −1.778 0.493 − 3
2 −1.5

4 4 cos( π
7 )2 3.246 0.873 − 15

7 − 3
28 cos( π

7 )2 −2.275 0.726 −2 −2.0
5 4 cos( π

8 )2 3.414 1.625 − 21
8 − 1

8 cos( π
8 )2 −2.772 1.379 − 5

2 −2.5
6 4 cos( π

9 )2 3.532 3.782 − 28
9 − 5

36 cos( π
9 )2 −3.268 3.260 −3 −3.0

7 4 cos( π
10 )2 3.618 10.708 − 18

5 − 3
20 cos( π

10 )2 −3.766 9.350 − 7
2 −3.5
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Construction of R1(z)

Let R1(z) =
∑

ℓ≥0 r1,n
zn

n! be the EGF of relaxed binary trees with bounded right height ≤ 1.

Decomposition of R1(z)

R1(z) =
∑
n≥0

R1,ℓ(z)

where R1,ℓ(z) is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from
level 0 to level 1.

R1,0(z) = R0(z) = 1
1 − z

R1,1(z) = ?
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Construction of R1,1(z)

Symbolic specification
1 delete initial sequence
2 decompose
3 append and add pointer
4 add initial sequence

R1,1(z)

R1,1(z) = S︸︷︷︸
init.
seq.

◦ I︸︷︷︸
lvl 0
node

◦ S ◦ P︸ ︷︷ ︸
red pointer

and seq.

(
zR1,0(z)︸ ︷︷ ︸

grey node +
last seq.

)

R1,1(z) = 1
1 − z

∫ 1
1 − z z (zR1,0(z))′ dz
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Construction of R1,ℓ(z)

Observation

Same structure as for R1,1(z)

R1,`−1

R1,ℓ(z) = 1
1 − z

∫ 1
1 − z z (zR1,ℓ−1(z))′ dz , ℓ ≥ 1,

R1,0(z) = R0(z) = 1
1 − z .

Recall that R1(z) =
∑

ℓ≥0 R1,ℓ(z). Summing the previous equation (formally) for ℓ ≥ 1 gives

1 − 2z
1 − z R ′

1(z) − 1
1 − z R1(z) − ((1 − z)R1,0(z))′ = 0.
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A special class of ODEs

Consider an ordinary generating function of the kind
∂r Y (z) + a1(z)∂r−1Y (z) + · · · + ar (z)Y (z) = 0, (2)

where the ai ≡ ai(z) are meromorphic in a simply connected domain Ω. Let ωζ(f ) be the order of the
pole of f at ζ.

Definition (Regular singularity)
The differential equation (2) is said to have a singularity at ζ if at least one of the ωζ(f ) is positive.
The point ζ is said to be a regular singularity if

ωζ(a1) ≤ 1, ωζ(a2) ≤ 2, . . . , ωζ(ar ) ≤ r ,

and an irregular singularity otherwise.

Relaxed trees

ℓk,k(z)∂kRk(z) + ℓk,k−1(z)∂k−1Rk(z) + . . . + ℓk,0(z)Rk(z) = 0
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The indicial polynomial

Structure of the ODE:
∂r Y (z) + a1(z)∂r−1Y (z) + · · · + ar (z)Y (z) = 0.

Definition (Indicial polynomial)
Given an equation of the form (2) and a regular singular point ζ, the indicial polynomial I(α) at ζ is
defined as

I(α) = αr + δ1αr−1 + · · · + δr , αℓ := α(α − 1) · · · (α − ℓ + 1),
where δi := limz→ζ(z − ζ)iai(z). The indicial equation at ζ is the algebraic equation I(α) = 0.

All the solutions of the differential equations behave for z → ζ like
(z − ζ)α log(z − ζ)β

for some α ∈ C, β ∈ N.
α is a root of the indicial polynomial
β is related to multiple roots of the indicial polynomial and roots at integer distances
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A basis for our class of ODEs

Theorem
Consider a differential equation (2) and a regular singular point ζ such that ωζ(ai ) ≤ 1 for all
i = 1, . . . , r , and δ1 ≥ 0.

Then, the vector space of analytic solutions defined in a slit neighborhood of
ζ admits a basis of r − 1 analytic solutions

(z − ζ)mHm(z − ζ), m = 0, 1, . . . , r − 2,

where Hm is analytic at 0 (Hm(0) ̸= 0). The r-th basis function depends on δ1:
1 For δ1 ∈ {0, 1, . . . , r − 1} it is of the form

(z − ζ)r−1−δ1H(z − ζ) log(z − ζ);

2 For δ1 ∈ {r , r + 1, . . .} it is of the form
(z − ζ)r−1−δ1H(z − ζ) + H0(z − ζ) (log(z − ζ))k

, with k ∈ {0, 1};

3 For δ1 ̸∈ Z it is of the form
(z − ζ)r−1−δ1H(z − ζ);

where H is analytic at 0 with H(0) ̸= 0.
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What is the Airy function?

Properties
Ai(x) = 1

π

∫∞
0 cos

(
t3

3 + xt
)

dt

Largest root a1 ≈ −2.338
limx→∞ Ai(x) = 0
Also defined by Ai′′(x) = xAi(x)

[Banderier, Flajolet, Schaeffer,
Soria 2001]: Random Maps
[Flajolet, Louchard 2001]:
Brownian excursion area

Michael Wallner | TU Wien | 04.12.2023 35 / 35



Stretched exponentials and beyond | Backup

Refined heuristic analysis
1 Ansatz of order 1:

dn,m ≈ h(n)f
(

m + 1
3

√
n

)
,

sn = 2 + cn−2/3 + O(n−1).
yields estimates c = 22/3a1 such that

h(n) ≈ 2ne3a1(n/2)1/3
and f (κ) = Ai(21/3κ + a1).

2 Ansatz of order 2:

dn,m ≈ h(n)
(

f0
(

m + 1
3

√
n

)
+ n−1/3f1

(
m + 1

3
√

n

))
,

sn = 2 + cn−2/3 + dn−1 + O(n−4/3).
yields estimates d = 8/3 such that

h(n) ∼ const · 2ne3a1(n/2)1/3
n4/3 and f0(κ) = Ai(21/3κ + a1).

This way we conjecture the asymptotic form for relaxed binary trees:

rn = n!d2n,0 = Θ
(

n!4ne3a1n1/3
n
)

.
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Lower bound – Case analysis
3 Treat pn,m and p′

n,m separately and prove that all dominating terms in the respective regimes
(corners of convex hull) are positive.

pn,m =
∑

ãi,jminj p′
n,m =

∑
ã′

i,jminj

non-zero coefficients
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Technicalities for compacted trees and minimal DFAs
Lots of technicalities:

Before induction, we have to remove the negative term from the recurrence, but we have to do so
precisely for asymptotics to stay the same.
We only prove bounds for small m; we prove that large m terms don’t matter
The lower bound is negative for very large m, so we have to be careful with induction
We only prove the bounds for sufficiently large n, but this only makes a difference to the constant
term. Proof involves colorful Newton polygons:
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Compacted (unlabeled binary) trees
Size: number of internal nodes
cn: number of compacted trees of size n

(cn)n≥0 = (1, 1, 3, 15, 111, 1119, 14487, . . . )
Important: Subtrees are unique!

Simple bounds

n! ≤ cn ≤ 1
n + 1

(
2n
n

)
n!
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