Stretched exponentials and beyond

Computer Algebra for Functional Equations in Combinatorics and Physics

Michael Wallner
https://dmg.tuwien.ac.at/mwallner
Institute of Discrete Mathematics and Geometry, TU Wien, Austria
(Austrian Science Fund (FWF): P 34142)

December 4, 2023

Asymptotic counting

Landau notation

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}, b_{n}>0$ be two sequences.

- $a_{n}=\mathcal{O}\left(b_{n}\right) \quad$ if $\quad \limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
- $a_{n}=\Theta\left(b_{n}\right) \quad$ if $0<\liminf _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}$ and $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
$\square a_{n} \sim b_{n} \quad$ if $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}=1$

Asymptotic counting

Landau notation

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}, b_{n}>0$ be two sequences.

- $a_{n}=\mathcal{O}\left(b_{n}\right) \quad$ if $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
- $a_{n}=\Theta\left(b_{n}\right) \quad$ if $0<\liminf _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}$ and $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
$\square a_{n} \sim b_{n} \quad$ if $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}=1$

Examples:

> Stirling's formula
> $■ n!=\mathcal{O}\left(n^{n}\right)$
> $■ n!=\Theta\left(n^{n+1 / 2} e^{-n}\right)$
> $\square n!\sim \sqrt{2 \pi n} n^{n} e^{-n}$

Asymptotic counting

Landau notation

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}, b_{n}>0$ be two sequences.

- $a_{n}=\mathcal{O}\left(b_{n}\right) \quad$ if $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
- $a_{n}=\Theta\left(b_{n}\right) \quad$ if $0<\liminf _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}$ and $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
$\square a_{n} \sim b_{n} \quad$ if $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}=1$

Examples:

$$
\begin{aligned}
& \text { Stirling's formula } \\
& ■ n!=\mathcal{O}\left(n^{n}\right) \\
& ■ n!=\Theta\left(n^{n+1 / 2} e^{-n}\right) \\
& ■ n!\sim \sqrt{2 \pi n} n^{n} e^{-n}
\end{aligned}
$$

> Binomial coeffs
> $■\binom{2 n}{n}=\mathcal{O}\left(4^{n}\right)$
> $\square\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$
> $\square\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$

Asymptotic counting

Landau notation

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}, b_{n}>0$ be two sequences.

- $a_{n}=\mathcal{O}\left(b_{n}\right) \quad$ if $\quad \limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
- $a_{n}=\Theta\left(b_{n}\right) \quad$ if $0<\liminf _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}$ and $\limsup _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$
$\square a_{n} \sim b_{n} \quad$ if $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}=1$

Examples:

$$
\begin{aligned}
& \text { Stirling's formula } \\
& \square n!=\mathcal{O}\left(n^{n}\right) \\
& \square n!=\Theta\left(n^{n+1 / 2} e^{-n}\right) \\
& \square n!\sim \sqrt{2 \pi n} n^{n} e^{-n}
\end{aligned}
$$

Binomial coeffs

- $\binom{2 n}{n}=\mathcal{O}\left(4^{n}\right)$
- $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$
- $\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$

Double factorials

- $(2 n-1)!!=\mathcal{O}\left(n!2^{n}\right)$
- $(2 n-1)!!=\Theta\left(\frac{n!2^{n}}{\sqrt{n}}\right)$
- $(2 n-1)!!\sim \frac{n!2^{n}}{\sqrt{\pi n}}$

What is a stretched exponential?

General question
How does a sequence $\left(a_{n}\right)_{n \geq 0}$ behave for large n ?

- Often we observe

$$
C \cdot R^{n} \cdot n^{\alpha}
$$

for constants $C, R, \alpha \in \mathbb{R}$.

What is a stretched exponential?

General question

How does a sequence $\left(a_{n}\right)_{n \geq 0}$ behave for large n ?

- Often we observe

$$
C \cdot R^{n} \cdot n^{\alpha},
$$

for constants $C, R, \alpha \in \mathbb{R}$.

- Much more seldom we observe (or are able to prove)

$$
C \cdot R^{n} \cdot \mu^{n^{\sigma}} \cdot n^{\alpha},
$$

with a stretched exponential $\mu^{n^{\sigma}}$ with $\mu>0$ and $\sigma \in(0,1)$.

What is a stretched exponential?

General question

How does a sequence $\left(a_{n}\right)_{n \geq 0}$ behave for large n ?

- Often we observe

$$
C \cdot R^{n} \cdot n^{\alpha}
$$

for constants $C, R, \alpha \in \mathbb{R}$.

- Much more seldom we observe (or are able to prove)

$$
C \cdot R^{n} \cdot \mu^{n^{\sigma}} \cdot n^{\alpha}
$$

with a stretched exponential $\mu^{n^{\sigma}}$ with $\mu>0$ and $\sigma \in(0,1)$.

Some deeper reasons why they are "seldom"

■ Generating function cannot be algebraic

- It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only only with an irregular singularity, e.g., $\exp \left(\frac{z}{1-z}\right)$

Appearances of stretched exponentials

Known exactly:

- Number theory (integer partitions):

$$
\sim(4 \sqrt{3})^{-1} e^{\pi(2 n / 3)^{1 / 2}} n^{-1}
$$

- Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):

$$
\sim C_{1} 4^{n} e^{-3\left(\frac{\pi \log 2}{2}\right)^{2 / 3} n^{1 / 3}} n^{-5 / 6}
$$

■ Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):

$$
\Theta\left(n^{2 n}\left(12 e^{-2}\right)^{n} e^{a_{1}(3 n)^{1 / 3}} n^{-2 / 3}\right)
$$

Appearances of stretched exponentials

Known exactly:

- Number theory (integer partitions):

$$
\sim(4 \sqrt{3})^{-1} e^{\pi(2 n / 3)^{1 / 2}} n^{-1}
$$

- Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):

$$
\sim C_{1} 4^{n} e^{-3\left(\frac{\pi \log 2}{2}\right)^{2 / 3} n^{1 / 3}} n^{-5 / 6}
$$

■ Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):

$$
\Theta\left(n^{2 n}\left(12 e^{-2}\right)^{n} e^{a_{1}(3 n)^{1 / 3}} n^{-2 / 3}\right)
$$

Conjectured:

■ Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:

$$
\approx \mu^{n} e^{-c n^{1 / 2}}
$$

■ Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:

$$
\approx \mu^{n} e^{-c n^{3 / 7}}
$$

■ and recently more and more appear in group theory, queuing theory, ...

Stretched exponentials in DAG counting

Biology: d-combining tree-child networks

Definition

A d-ary rooted phylogenetic network is a DAG with nodes of the type:

- unique root:
- leaf.
- tree node:
- reticulation node: indegree d, outdegree 1

Furthermore, the n leaves are labeled bijectively by $\{1, \ldots, n\}$.
Tree-child: every non-leaf node has at least one child that is not a reticulation.

Asymptotics of d-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number $\mathrm{TC}_{n}^{(d)}$ of d-combining tree-child networks with n leaves satisfies

$$
\mathrm{TC}_{n}^{(d)}=\Theta\left((n!)^{d} \gamma(d)^{n} e^{3 \mathrm{a}_{1} \beta(d) n^{1 / 3}} n^{\alpha(d)}\right) \quad \text { for } n \rightarrow \infty,
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$ and

$$
\alpha(d)=-\frac{d(3 d-1)}{2(d+1)}, \quad \beta(d)=\left(\frac{d-1}{d+1}\right)^{2 / 3}, \quad \gamma(d)=4 \frac{(d+1)^{d-1}}{(d-1)!} .
$$

$$
\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)
$$

Asymptotics of d-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number $\mathrm{TC}_{n}^{(d)}$ of d-combining tree-child networks with n leaves satisfies

$$
\mathrm{TC}_{n}^{(d)}=\Theta\left((n!)^{d} \gamma(d)^{n} e^{3 \alpha_{1} \beta(d) n^{1 / 3}} n^{\alpha(d)}\right) \quad \text { for } n \rightarrow \infty
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$ and

$$
\alpha(d)=-\frac{d(3 d-1)}{2(d+1)}, \quad \beta(d)=\left(\frac{d-1}{d+1}\right)^{2 / 3}, \quad \gamma(d)=4 \frac{(d+1)^{d-1}}{(d-1)!} .
$$

Questions we will answer next

- How to prove this?
- Why is there a stretched exponential?
- Why does the Airy function appear?
\rightarrow Previously, e.g., in random maps [Banderier, Flajolet, Schaeffer, Soria 2001] and Brownian excursion area [Flajolet, Louchard 2001]

$$
\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)
$$

How to prove this?

1 Combinatorics: reduce the problem

How to prove this?

1 Combinatorics: reduce the problem

- Asymptotically, only maximally reticulated networks important:

Let $\mathrm{TC}_{n, k}^{(d)}$ be TC networks with n leaves and k reticulation nodes, then

$$
\mathrm{TC}_{n}^{(d)} \sim c_{d} \mathrm{TC}_{n, n-1}^{(d)}
$$

where $c_{2}=\sqrt{2}$ and $c_{d}=1$ for $d \geq 3$.

How to prove this?

1 Combinatorics: reduce the problem

- Asymptotically, only maximally reticulated networks important:

Let $\mathrm{TC}_{n, k}^{(d)}$ be TC networks with n leaves and k reticulation nodes, then

$$
\mathrm{TC}_{n}^{(d)} \sim c_{d} \mathrm{TC}_{n, n-1}^{(d)}
$$

where $c_{2}=\sqrt{2}$ and $c_{d}=1$ for $d \geq 3$.

- Bijection of $\mathrm{TC}_{n, n-1}^{(d)}$ to Young tableaux with walls (or special words)

How to prove this?

1 Combinatorics: reduce the problem

- Asymptotically, only maximally reticulated networks important:

Let $\mathrm{TC}_{n, k}^{(d)}$ be TC networks with n leaves and k reticulation nodes, then

$$
\mathrm{TC}_{n}^{(d)} \sim c_{d} \mathrm{TC}_{n, n-1}^{(d)}
$$

where $c_{2}=\sqrt{2}$ and $c_{d}=1$ for $d \geq 3$.

- Bijection of $\mathrm{TC}_{n, n-1}^{(d)}$ to Young tableaux with walls (or special words)

2 Two parameter recurrence relation

$$
e_{n, m}=\mu_{n, m} e_{n-1, m+1}+\nu_{n, m} e_{n-1, m-1}
$$

$n \geq 3$ and $m \geq 0, e_{n,-1}=e_{2, n}=0$ except for $e_{2,0}=1$,

How to prove this?

1 Combinatorics: reduce the problem

- Asymptotically, only maximally reticulated networks important:

Let $\mathrm{TC}_{n, k}^{(d)}$ be TC networks with n leaves and k reticulation nodes, then

$$
\mathrm{TC}_{n}^{(d)} \sim c_{d} \mathrm{TC}_{n, n-1}^{(d)}
$$

where $c_{2}=\sqrt{2}$ and $c_{d}=1$ for $d \geq 3$.

- Bijection of $\mathrm{TC}_{n, n-1}^{(d)}$ to Young tableaux with walls (or special words)

2 Two parameter recurrence relation

$$
e_{n, m}=\mu_{n, m} e_{n-1, m+1}+\nu_{n, m} e_{n-1, m-1}
$$

$n \geq 3$ and $m \geq 0, e_{n,-1}=e_{2, n}=0$ except for $e_{2,0}=1$, where

$$
\mu_{n, m}=1+\frac{2(d-1)}{(d+1) n+(d-1) m-2(d+1)} \quad \text { and } \quad \nu_{n, m}=\prod_{i=2}^{d}\left(1-\frac{2(m+i)}{(d+1)(n+m)}\right)
$$

We are interested in $e_{2 n, 0}$, as $\mathrm{TC}_{n}^{(d)}=\Theta\left((n!)^{d}\left(\frac{\gamma(d)}{4}\right)^{n} n^{1-d} e_{2 n, 0}\right)$.

6	10	14	15	17	18
3	5	9	12	13	16
2	1	7	4	11	8

Young tableaux with walls

TC networks

Compressed trees

Minimal automata

BAADBACFCBEDECDFEF

Constrained words

Computer Science: Compacted trees

Definition

A compacted k-ary tree is a DAG with nodes of the type:

- unique root: outdegree k
- unique sink: outdegree 0
- internal nodes: outdegree k

Furthermore,
(0) the children are ordered and
(U) all fringe subgraphs are unique.

A relaxed k-ary tree is a compacted k-ary tree without condition (U).

Compacted binary tree

Relaxed binary tree

Why are they interesting?

- Applications:

■ XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
■ Data storage [Meinel, Theobald 1998], [Knuth 1968]
■ Compilers [Aho, Sethi, Ullman 1986]

- LISP [Goto 1974]
- etc.

Why are they interesting?

- Applications:

■ XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
■ Data storage [Meinel, Theobald 1998], [Knuth 1968]
■ Compilers [Aho, Sethi, Ullman 1986]

- LISP [Goto 1974]
- etc.
- Efficient compaction algorithm: expected time $\mathcal{O}(n)$

Why are they interesting?

- Applications:

■ XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
■ Data storage [Meinel, Theobald 1998], [Knuth 1968]
■ Compilers [Aho, Sethi, Ullman 1986]

- LISP [Goto 1974]
- etc.

■ Efficient compaction algorithm: expected time $\mathcal{O}(n)$
■ A tree of size n has a expected compacted size

$$
C \frac{n}{\sqrt{\log n}}
$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Why are they interesting?

- Applications:

■ XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
■ Data storage [Meinel, Theobald 1998], [Knuth 1968]
■ Compilers [Aho, Sethi, Ullman 1986]

- LISP [Goto 1974]
- etc.
- Efficient compaction algorithm: expected time $\mathcal{O}(n)$

■ A tree of size n has a expected compacted size

$$
C \frac{n}{\sqrt{\log n}}
$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question
How many compacted trees of (compacted) size n exist?

Asymptotics of relaxed k-ary trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r_{n} of relaxed k-ary trees with n internal nodes satisfies

$$
r_{n}=\Theta\left((n!)^{k-1} \gamma(k)^{n} e^{3 a_{1} \beta(k) n^{1 / 3}} n^{\alpha(k)}\right)
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$ and

$$
\alpha(k)=\frac{7 k-8}{6}, \quad \beta(k)=\left(\frac{k(k-1)}{2}\right)^{1 / 3}, \quad \gamma(k)=\frac{k^{k}}{(k-1)^{k-1}} .
$$

Asymptotics of relaxed k-ary trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r_{n} of relaxed k-ary trees with n internal nodes satisfies

$$
r_{n}=\Theta\left((n!)^{k-1} \gamma(k)^{n} e^{3 a_{1} \beta(k) n^{1 / 3}} n^{\alpha(k)}\right)
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$ and

$$
\alpha(k)=\frac{7 k-8}{6}, \quad \beta(k)=\left(\frac{k(k-1)}{2}\right)^{1 / 3}, \quad \gamma(k)=\frac{k^{k}}{(k-1)^{k-1}} .
$$

Proof strategy

1 Bijective Comb.: Bijection to decorated Dyck paths
2 Enumerative Comb.: Two-parameter recurrence
3 Calculus + ODEs: Heuristic analysis of recurrence
4 Computer algebra: Inductive proof of asymptotically tight bounds

$$
\operatorname{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)
$$

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for $n \rightarrow \infty$

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \quad \text { and } \quad c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right),
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\operatorname{Ai}(x)$.

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for $n \rightarrow \infty$

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \quad \text { and } \quad c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\operatorname{Ai}(x)$.

Conjecture

Experimentally we find

$$
r_{n} \sim \gamma_{r} n!4^{n} e^{3 a_{1} 1^{1 / 3}} n \quad \quad \text { and } \quad c_{n} \sim \gamma_{c} n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}
$$

where

$$
\gamma_{r} \approx 166.95208957
$$

and

$$
\gamma_{c} \approx 173.12670485 .
$$

Bijection to decorated paths

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order

Bijection to decorated paths

11 Spanning tree distinguishes internal edges and pointers
$\boxed{2}$ Label nodes and pointers in post-order

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
\square Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...
■ going up: add up step
■ passing a pointer: add horizontal step and mark box corresponding to pointer label

Decorated paths

- Path starts at $(0,-1)$ and ends at (n, n)
- Path never crosses the diagonal
- Each vertical step has weight 1

Decorated paths

- Path starts at $(0,-1)$ and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step

Decorated paths

- Path starts at $(0,-1)$ and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step
- Each vertical step has weight 1

Recurrence for decorated paths

Recurrence: Let $a_{n, m}$ be the number of paths ending at (n, m)

$$
\begin{array}{rlr}
a_{n, m} & =a_{n, m-1}+(m+1) a_{n-1, m}, & \text { for } n \geq m \\
a_{0,0} & =1 &
\end{array}
$$

Number of relaxed trees is $r_{n}=a_{n, n}$

Recurrence for decorated paths

Recurrence: Let $a_{n, m}$ be the number of paths ending at (n, m)

$$
\begin{aligned}
a_{n, m} & =a_{n, m-1}+(m+1) a_{n-1, m}, & \text { for } n \geq m \\
a_{0,0} & =1 &
\end{aligned}
$$

Number of relaxed trees is $r_{n}=a_{n, n}$

Recurrence for decorated paths

Recurrence: Let $\tilde{a}_{n, m}$ be the number of paths ending at (n, m) with weights divided by column number

$$
\begin{array}{rlr}
\tilde{a}_{n, m} & =\tilde{a}_{n, m-1}+\frac{m+1}{n} \tilde{a}_{n-1, m}, & \text { for } n \geq m \\
\tilde{a}_{0,0} & =1 . &
\end{array}
$$

Number of relaxed trees is $r_{n}=n!\tilde{a}_{n, n}$

Recurrence for decorated paths

Recurrence: Let $\tilde{a}_{n, m}$ be the number of paths ending at (n, m) with weights divided by column number

$$
\begin{array}{rlr}
\tilde{a}_{n, m} & =\tilde{a}_{n, m-1}+\frac{m+1}{n} \tilde{a}_{n-1, m}, & \text { for } n \geq m \\
\tilde{a}_{0,0} & =1 . &
\end{array}
$$

Number of relaxed trees is $r_{n}=n!\tilde{a}_{n, n}$

Recurrence for decorated paths

Recurrence: Let $\tilde{a}_{n, m}$ be the number of paths ending at (n, m) with weights divided by column number

$$
\begin{aligned}
\tilde{a}_{n, m} & =\tilde{a}_{n, m-1}+\frac{m+1}{n} \tilde{a}_{n-1, m}, \\
\tilde{a}_{0,0} & =1 .
\end{aligned}
$$

$$
\text { for } n \geq m
$$

Number of relaxed trees is $r_{n}=n!\tilde{a}_{n, n}$

Recurrence for decorated paths

Recurrence: Let $d_{i, j}$ be the number of decorated paths ending at (i, j) shown on the right

$$
\begin{array}{rlr}
d_{i, j} & =d_{i-1, j+1}+\left(1-\frac{2(j-1)}{i+j}\right) d_{i-1, j-1}, & \text { for } i>0, j \geq 0 \\
d_{0,0} & =1 . &
\end{array}
$$

Number of relaxed trees is $r_{n}=n!d_{2 n, 0}$

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height $h=n^{\alpha}$ (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}$, Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height $h=n^{\alpha}$ (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}$,
Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.
Weighted number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}-\log (2) n^{\alpha}$
Maximum occurs when $\alpha=1 / 3$ and is equal to $4^{n} e^{-c n^{1 / 3}}$.

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length $2 n$ where paths of height h get weight 2^{-h}

Consider paths with max height $h=n^{\alpha}$ (for $0<\alpha \leq 1 / 2$):
Number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}}$,
Weight $=2^{-n^{\alpha}}=e^{-\log (2) n^{\alpha}}$.
Weighted number of paths $\approx 4^{n} e^{-c_{1} n^{1-2 \alpha}-\log (2) n^{\alpha}}$
Maximum occurs when $\alpha=1 / 3$ and is equal to $4^{n} e^{-c n^{1 / 3}}$.
Our case: weights decrease similarly with height so we expect similar behavior

Heuristic analysis of recurrence

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Plots of $d_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

Heuristics: What happens for large (fixed) n ?

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Plots of $d_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

- Let's zoom in to the left (small m) where interesting things are happening.

Heuristics: What happens for large (fixed) n ?

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Plots of $d_{n, m}$ against $m+1$. Left: $n=100$, Right: $n=1000$.

- Let's zoom in to the left (small m) where interesting things are happening.

Heuristics: What happens for large (fixed) n ?

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Left: Plot of $d_{n, m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.
- It seems to be converging to something...

Heuristics: What happens for large (fixed) n ?

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Left: Plot of $d_{n, m}$ against $m+1$ for $n=$ 2000. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.
- It seems to be converging to something...

Heuristics: What happens for large (fixed) n ?

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m-1)}{n+m}\right) d_{n-1, m-1}
$$

Figure: Left: Plot of $d_{n, m}$ against $m+1$ for $n=$ 2000. Right: Limiting function $f(x)$.

- Let's zoom in to the left (small m) where interesting things are happening.

■ It seems to be converging to something...

$$
\text { Ansatz: } \quad d_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)
$$

Does this ansatz work in the unweighted or unconstrained model?

$$
\begin{gathered}
d_{n, m}=\mu_{n, m} d_{n-1, m+1}+\nu_{n, m} d_{n-1, m-1}, \quad m \geq 0 \\
\text { Ansatz: } \quad d_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)
\end{gathered}
$$

$$
\begin{gathered}
d_{n, m}=\mu_{n, m} d_{n-1, m+1}+\nu_{n, m} d_{n-1, m-1}, \quad m \geq 0 \\
\text { Ansatz: } \quad d_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)
\end{gathered}
$$

1 Unweighted case $\mu_{n, m}=\nu_{n, m}=1$ with $m \geq 0$:

$$
h(n) \approx \frac{c}{n} 4^{n}, \quad g(n)=\sqrt{n}, \quad f(x)=x e^{-x^{2}}
$$

Does this ansatz work in the unweighted or unconstrained model?

$$
\begin{gathered}
d_{n, m}=\mu_{n, m} d_{n-1, m+1}+\nu_{n, m} d_{n-1, m-1}, \quad m \geq 0 \\
\text { Ansatz: } \quad d_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)
\end{gathered}
$$

1 Unweighted case $\mu_{n, m}=\nu_{n, m}=1$ with $m \geq 0$:

$$
h(n) \approx \frac{c}{n} 4^{n}, \quad g(n)=\sqrt{n}, \quad f(x)=x e^{-x^{2}}
$$

2 Unweighted case $\mu_{n, m}=\nu_{n, m}=1$ with m arbitrary:

$$
h(n) \approx \frac{c}{\sqrt{n}} 4^{n}, \quad g(n)=\sqrt{n}, \quad f(x)=e^{-x^{2}}
$$

Does this ansatz work in the unweighted or unconstrained model?

$$
\begin{gathered}
d_{n, m}=\mu_{n, m} d_{n-1, m+1}+\nu_{n, m} d_{n-1, m-1}, \quad m \geq 0 \\
\text { Ansatz: } \quad d_{n, m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)
\end{gathered}
$$

1 Unweighted case $\mu_{n, m}=\nu_{n, m}=1$ with $m \geq 0$:

$$
h(n) \approx \frac{c}{n} 4^{n}, \quad g(n)=\sqrt{n}, \quad f(x)=x e^{-x^{2}}
$$

2 Unweighted case $\mu_{n, m}=\nu_{n, m}=1$ with m arbitrary:

$$
h(n) \approx \frac{c}{\sqrt{n}} 4^{n}, \quad g(n)=\sqrt{n}, \quad f(x)=e^{-x^{2}}
$$

3. Relaxed binary trees $\mu_{n, m}=1$ and $\nu_{n, m}=1-\frac{2(m-1)}{n+m}$ with $m \geq 0$:
\Rightarrow Based on the relation with pushed Dyck paths, we guess $g(n)=\sqrt[3]{n}$.
What are $h(n)$ and $f(x)$?

Heuristic analysis of weighted paths of relaxed binary trees

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) d_{n-1, m-1}
$$

- Ansatz (a): $d_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Heuristic analysis of weighted paths of relaxed binary trees

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) d_{n-1, m-1}
$$

- Ansatz (a): $d_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Substitute into recurrence and set $m=x \sqrt[3]{n}-1$:

$$
\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(x)-2 x f(x)}{f(x)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

Heuristic analysis of weighted paths of relaxed binary trees

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) d_{n-1, m-1}
$$

- Ansatz (a): $d_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Substitute into recurrence and set $m=x \sqrt[3]{n}-1$:

$$
\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(x)-2 x f(x)}{f(x)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Ansatz (b): Set $s_{n}:=\frac{h(n)}{h(n-1)}$ and assume

$$
s_{n}=2+c n^{-2 / 3}+O\left(n^{-1}\right) \quad \Rightarrow \quad h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}}
$$

Heuristic analysis of weighted paths of relaxed binary trees

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) d_{n-1, m-1}
$$

- Ansatz (a): $d_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Substitute into recurrence and set $m=x \sqrt[3]{n}-1$:

$$
\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(x)-2 x f(x)}{f(x)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Ansatz (b): Set $s_{n}:=\frac{h(n)}{h(n-1)}$ and assume

$$
s_{n}=2+c n^{-2 / 3}+O\left(n^{-1}\right) \quad \Rightarrow \quad h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}}
$$

Solution

$$
f^{\prime \prime}(x)=(2 x+c) f(x) \quad \Rightarrow \quad f(x)=\operatorname{Ai}\left(2^{-2 / 3}(2 x+c)\right)
$$

where c is a constant and $A i$ is the Airy function.

Heuristic analysis of weighted paths of relaxed binary trees

$$
d_{n, m}=d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) d_{n-1, m-1}
$$

- Ansatz (a): $d_{n, m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Substitute into recurrence and set $m=x \sqrt[3]{n}-1$:

$$
\frac{h(n)}{h(n-1)} \approx 2+\frac{f^{\prime \prime}(x)-2 x f(x)}{f(x)} n^{-2 / 3}+O\left(n^{-1}\right)
$$

- Ansatz (b): Set $s_{n}:=\frac{h(n)}{h(n-1)}$ and assume

$$
s_{n}=2+c n^{-2 / 3}+O\left(n^{-1}\right) \quad \Rightarrow \quad h(n) \approx 2^{n} e^{\frac{3 c}{2} n^{1 / 3}}
$$

Solution

$$
f^{\prime \prime}(x)=(2 x+c) f(x) \quad \Rightarrow \quad f(x)=\operatorname{Ai}\left(2^{-2 / 3}(2 x+c)\right)
$$

where c is a constant and $A i$ is the Airy function.

- Boundary condition: $d_{n,-1}=0$ and $d_{n, m} \geq 0$.

Then $f(0)=0$ implies $c=2^{2 / 3} a_{1}$, where $a_{1} \approx-2.338$ satisfies $\operatorname{Ai}\left(a_{1}\right)=0$.

Inductive proof

Proof method

Find explicit sequences $X_{n, m}$ and $Y_{n, m}$ with the same asymptotic form, such that

$$
X_{n, m} \leq d_{n, m} \leq Y_{n, m}
$$

for all m and all n large enough.

Proof method

Find explicit sequences $X_{n, m}$ and $Y_{n, m}$ with the same asymptotic form, such that

$$
X_{n, m} \leq d_{n, m} \leq Y_{n, m},
$$

for all m and all n large enough.

How to find them?

1 Use heuristics
2 Adapt until $X_{n, m}$ and $Y_{n, m}$ satisfy the recurrence of $d_{n, m}$ with the equalities replaced by inequalities:

$$
=\quad \longrightarrow \quad \leq \text { and } \geq
$$

(3) Prove $X_{n, m} \leq d_{n, m} \leq Y_{n, m}$ by induction.

Main idea
Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n>0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that
for some constant b_{0} by induction

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
x_{n, m} h_{n} \stackrel{(1)}{\leq} \quad X_{n-1, m+1} h_{n-1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} h_{n-1}
$$

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
\begin{gathered}
X_{n, m} h_{n} \quad \stackrel{(1)}{\leq} \quad X_{n-1, m+1} h_{n-1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} h_{n-1} \\
\stackrel{\text { (Induction) }}{\leq} b_{0} d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) b_{0} d_{n-1, m-1}
\end{gathered}
$$

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $\left(X_{n, m}\right)_{n \geq m \geq 0}$ and $\left(s_{n}\right)_{n \geq 1}$ satisfy

$$
\begin{equation*}
X_{n, m} s_{n} \leq X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} \tag{1}
\end{equation*}
$$

for all sufficiently large n and all integers $m \in[0, n]$.

Define $\left(h_{n}\right)_{n \geq 0}$ by $h_{0}=1$ and $h_{n}=s_{n} h_{n-1}$; then prove that

$$
X_{n, m} h_{n} \leq b_{0} d_{n, m}
$$

for some constant b_{0} by induction:

$$
\begin{gathered}
X_{n, m} h_{n} \quad \stackrel{(1)}{\leq} \quad X_{n-1, m+1} h_{n-1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1} h_{n-1} \\
\stackrel{\text { (Induction) }}{\leq} b_{0} d_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) b_{0} d_{n-1, m-1}
\end{gathered}
$$

$\stackrel{\text { Rec. } d_{n, m}}{=} b_{0} d_{n, m}$.

Lower bound - Expansion

1 Transform to $P_{n, m} \geq 0$ for

$$
P_{n, m}:=-X_{n, m} s_{n}+X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1}
$$

where $\left(\sigma_{i}, \tau_{j} \in \mathbb{R}\right)$

$$
\begin{aligned}
s_{n} & :=\sigma_{0}+\frac{\sigma_{1}}{n^{1 / 3}}+\frac{\sigma_{2}}{n^{2 / 3}}+\frac{\sigma_{3}}{n}+\frac{\sigma_{4}}{n^{7 / 6}} \\
X_{n, m} & :=\left(1+\frac{\tau_{2} m^{2}+\tau_{1} m}{n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right)
\end{aligned}
$$

2 Expand $\mathrm{Ai}(z)$ in a neighborhood of

using $A i^{\prime \prime}(z)=z A i(z)$. Then
where $p_{n, m}$ and $p_{n, m}^{\prime}$ are power series in $n^{-1 / 6}$ whose coefficients are polynomials in m.

Lower bound - Expansion

1 Transform to $P_{n, m} \geq 0$ for

$$
P_{n, m}:=-X_{n, m} s_{n}+X_{n-1, m+1}+\left(1-\frac{2(m+1)}{n+m}\right) X_{n-1, m-1}
$$

where $\left(\sigma_{i}, \tau_{j} \in \mathbb{R}\right)$

$$
\begin{aligned}
s_{n} & :=\sigma_{0}+\frac{\sigma_{1}}{n^{1 / 3}}+\frac{\sigma_{2}}{n^{2 / 3}}+\frac{\sigma_{3}}{n}+\frac{\sigma_{4}}{n^{7 / 6}} \\
X_{n, m} & :=\left(1+\frac{\tau_{2} m^{2}+\tau_{1} m}{n}\right) \mathrm{Ai}\left(a_{1}+\frac{2^{1 / 3}(m+1)}{n^{1 / 3}}\right)
\end{aligned}
$$

2 Expand $\mathrm{Ai}(z)$ in a neighborhood of

$$
\alpha=a_{1}+\frac{2^{1 / 3} m}{n^{1 / 3}}
$$

using $\mathrm{Ai}^{\prime \prime}(z)=z \operatorname{Ai}(z)$. Then

$$
P_{n, m}=p_{n, m} \mathrm{Ai}(\alpha)+p_{n, m}^{\prime} \mathrm{Ai}^{\prime}(\alpha)
$$

where $p_{n, m}$ and $p_{n, m}^{\prime}$ are power series in $n^{-1 / 6}$ whose coefficients are polynomials in m.

Lower bound - Colorful Polygons

${ }^{3}$ Choose σ_{i} and τ_{i} to kill lower order terms in

$$
P_{n, m}=\sum a_{i, j} m^{i} n^{j}
$$

- blue terms: $\sigma_{0}=2$
- red terms: $\sigma_{1}=0$
- green terms: $\sigma_{2}=2^{2 / 3} a_{1}$
- yellow terms: $\sigma_{3}=8 / 3$ and $\tau_{2}=-2 / 3$

Lower bound - Colorful Polygons

${ }^{3}$ Choose σ_{i} and τ_{i} to kill lower order terms in

$$
P_{n, m}=\sum a_{i, j} m^{i} n^{j}
$$

$$
P_{n, m}=p_{n, m} \mathrm{Ai}(\alpha)+p_{n, m}^{\prime} \mathrm{Ai}^{\prime}(\alpha)
$$

- blue terms: $\sigma_{0}=2$
- red terms: $\sigma_{1}=0$
- green terms: $\sigma_{2}=2^{2 / 3} a_{1}$
- yellow terms: $\sigma_{3}=8 / 3$ and $\tau_{2}=-2 / 3$

Stretched exponentials and beyond Inductive proof

Results and further perturbations

Theorem

The number $r_{n}\left(c_{n}\right)$ of relaxed (compacted) binary trees, b_{n} of minimal DFAs recognizing a finite binary language, and y_{n} of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
& r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \\
& c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
\end{aligned}
$$

[Elvey Price, Fang, W 2021]
[Elvey Price, Fang, W 2021]
with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$.

Stretched exponentials and beyond Inductive proof

Results and further perturbations

Theorem

The number $r_{n}\left(c_{n}\right)$ of relaxed (compacted) binary trees, b_{n} of minimal DFAs recognizing a finite binary language, and y_{n} of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
& r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \\
& c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right) \\
& b_{n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right)
\end{aligned}
$$

[Elvey Price, Fang, W 2021]
[Elvey Price, Fang, W 2021]
[Elvey Price, Fang, W 2020]
with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$.

Stretched exponentials and beyond Inductive proof

Results and further perturbations

Theorem

The number $r_{n}\left(c_{n}\right)$ of relaxed (compacted) binary trees, b_{n} of minimal DFAs recognizing a finite binary language, and y_{n} of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
& r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \\
& c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right) \\
& b_{n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right) \\
& y_{n}=\Theta\left(n!12^{n} e^{a_{1}(3 n)^{1 / 3}} n^{-2 / 3}\right)
\end{aligned}
$$

[Elvey Price, Fang, W 2021]
[Elvey Price, Fang, W 2021]
[Elvey Price, Fang, W 2020]
[Banderier, W 2021]
with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$.

Results and further perturbations

Theorem

The number $r_{n}\left(c_{n}\right)$ of relaxed (compacted) binary trees, b_{n} of minimal DFAs recognizing a finite binary language, and y_{n} of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \rightarrow \infty$

$$
\begin{aligned}
& r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \\
& c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right) \\
& b_{n}=\Theta\left(n!8^{n} e^{3 a_{1} n^{1 / 3}} n^{7 / 8}\right) \\
& y_{n}=\Theta\left(n!12^{n} e^{a_{1}(3 n)^{1 / 3}} n^{-2 / 3}\right)
\end{aligned}
$$

with $a_{1} \approx-2.338$: largest root of the Airy function $\operatorname{Ai}(x)$.

Associated recurrence relations $(n \geq m \geq 0)$:

$$
\begin{array}{lll}
r_{n}=a_{n, n}, & \text { where } & a_{n, m}=a_{n, m-1}+(m+1) a_{n-1, m} \\
c_{n}=c_{n, n}, & \text { where } & c_{n, m}=c_{n, m-1}+(m+1) c_{n-1, m}-(m-1) c_{n-2, m-1} \\
b_{n}=b_{n, n}, & \text { where } & b_{n, m}=2 b_{n, m-1}+(m+1) b_{n-1, m}-m b_{n-2, m-1} \\
y_{n}=y_{n, n}, & \text { where } & y_{n, m}=y_{n, m-1}+(2 n+m-1) y_{n-1, m}
\end{array}
$$

Compacted binary trees of bounded right height

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number $r_{k, n}\left(c_{k, n}\right)$ of relaxed (compacted) trees with right height at most k satisfies for $n \rightarrow \infty$

$$
\begin{aligned}
r_{k, n} & \sim \gamma_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)^{2}\right)^{n} n^{-\frac{k}{2}} \\
c_{k, n} & \sim \kappa_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)^{2}\right)^{n} n^{-\frac{k}{2}-\frac{1}{k+3}-\left(\frac{1}{4}-\frac{1}{k+3}\right) \cos \left(\frac{\pi}{k+3}\right)^{-2}}
\end{aligned}
$$

where $\gamma_{k}, \kappa_{k} \in \mathbb{R} \backslash\{0\}$ are independent of n.

Main idea: Exponential generating functions

- Problem: super-exponential growth $r_{k, n}=\Theta(n!)$ but unlabeled structures!

■ Idea: derive a symbolic method for compacted trees using exponential generating functions

Main idea: Exponential generating functions

- Problem: super-exponential growth $r_{k, n}=\Theta(n!)$ but unlabeled structures!

■ Idea: derive a symbolic method for compacted trees using exponential generating functions
Let $T(z)=\sum_{n \geq 0} t_{n} \frac{z^{n}}{n!}$ be an EGF of the class \mathcal{T}.

Main idea: Exponential generating functions

- Problem: super-exponential growth $r_{k, n}=\Theta(n!)$ but unlabeled structures!

■ Idea: derive a symbolic method for compacted trees using exponential generating functions
Let $T(z)=\sum_{n \geq 0} t_{n} \frac{z^{n}}{n!}$ be an EGF of the class \mathcal{T}.

$$
T(z) \mapsto z T(z)
$$

Append a new node with a pointer to the class \mathcal{T}.

Main idea: Exponential generating functions

- Problem: super-exponential growth $r_{k, n}=\Theta(n!)$ but unlabeled structures!

■ Idea: derive a symbolic method for compacted trees using exponential generating functions
Let $T(z)=\sum_{n \geq 0} t_{n} \frac{z^{n}}{n!}$ be an EGF of the class \mathcal{T}.

$$
T(z) \mapsto z T(z)
$$

Append a new node with a pointer to the class \mathcal{T}.

Proof:

$$
t_{k}=k!\left[z^{k}\right] z T(z)=\quad k \quad \cdot \quad t_{k-1}
$$

Main idea: Exponential generating functions

- Problem: super-exponential growth $r_{k, n}=\Theta(n!)$ but unlabeled structures!

■ Idea: derive a symbolic method for compacted trees using exponential generating functions
Let $T(z)=\sum_{n \geq 0} t_{n} \frac{z^{n}}{n!}$ be an EGF of the class \mathcal{T}.

$$
T(z) \mapsto z T(z)
$$

Append a new node with a pointer to the class \mathcal{T}.

Proof:

$$
t_{k}=k!\left[z^{k}\right] z T(z)=\underbrace{k}_{\substack{k \text { possible } \\
\text { pointers }}} \cdot \underbrace{t_{k-1}}_{\begin{array}{c}
k-1 \text { internal } \\
\text { nodes }
\end{array}}
$$

Further constructions

$$
S: T(z) \mapsto \frac{1}{1-z} T(z)
$$

Append a (possibly empty) sequence at the root.

Further constructions

$$
S: T(z) \mapsto \frac{1}{1-z} T(z)
$$

Append a (possibly empty) sequence at the root.

$$
\mathcal{S}=\mathcal{T}>\cup \mathcal{T}>-\mathcal{S} \cup
$$

$$
D: T(z) \mapsto \frac{d}{d z} T(z)
$$

Delete top node but preserve its pointers.

Further constructions

$S: T(z) \mapsto \frac{1}{1-z} T(z)$
Append a (possibly empty) sequence at the root.
$\mathcal{S}=\mathcal{T}>\cup \mathcal{T}>-\mathcal{T} \cup$
$D: T(z) \mapsto \frac{d}{d z} T(z)$
Delete top node but preserve its pointers.

$$
I: T(z) \mapsto \int T(z)
$$

Add top node without pointers.

Further constructions

$S: T(z) \mapsto \frac{1}{1-z} T(z)$
Append a (possibly empty) sequence at the root.
$\mathcal{S}=$
$D: T(z) \mapsto \frac{d}{d z} T(z)$
Delete top node but preserve its pointers.

$$
I: T(z) \mapsto \int T(z)
$$

Add top node without pointers.

$$
P: T(z) \mapsto z \frac{d}{d z} T(z)
$$

Add a new pointer to the top node.

Bounded right height $\leq 1: R_{1}(z)$

Bounded right height $\leq 1: R_{1}(z)$

Symbolic construction

$$
\begin{gathered}
(1-2 z) R_{1}^{\prime}(z)-R_{1}(z)=0, \\
R_{1}(0)=1,
\end{gathered}
$$

Bounded right height $\leq 1: R_{1}(z)$

Symbolic construction

$$
\begin{gathered}
(1-2 z) R_{1}^{\prime}(z)-R_{1}(z)=0, \\
R_{1}(0)=1,
\end{gathered}
$$

then we get the closed form

$$
R_{1}(z)=\frac{1}{\sqrt{1-2 z}}
$$

Bounded right height $\leq 1: R_{1}(z)$

Symbolic construction

$$
\begin{gathered}
(1-2 z) R_{1}^{\prime}(z)-R_{1}(z)=0, \\
R_{1}(0)=1,
\end{gathered}
$$

then we get the closed form

$$
R_{1}(z)=\frac{1}{\sqrt{1-2 z}}
$$

and the coefficients

$$
r_{1, n}=\frac{n!}{2^{n}}\binom{2 n}{n}=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

[W 2019, "A bijection of plane increasing trees with relaxed binary trees of right height at most one"].

Stretched exponentials and beyond Compacted binary trees of bounded right height
Bounded right height $\leq 2: R_{2}(z)$

Bounded right height $\leq 2: R_{2}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-3 z+z^{2}\right) R_{2}^{\prime \prime}(z)+(2 z-3) R_{2}^{\prime}(z)=0 \\
R_{2}(0)=1, R_{2}^{\prime}(0)=1
\end{gathered}
$$

Bounded right height $\leq 2: R_{2}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-3 z+z^{2}\right) R_{2}^{\prime \prime}(z)+(2 z-3) R_{2}^{\prime}(z)=0 \\
R_{2}(0)=1, R_{2}^{\prime}(0)=1
\end{gathered}
$$

then we get the closed form

$$
R_{2}^{\prime}(z)=\frac{1}{1-3 z+z^{2}},
$$

Bounded right height $\leq 2: R_{2}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-3 z+z^{2}\right) R_{2}^{\prime \prime}(z)+(2 z-3) R_{2}^{\prime}(z)=0 \\
R_{2}(0)=1, R_{2}^{\prime}(0)=1
\end{gathered}
$$

then we get the closed form

$$
R_{2}^{\prime}(z)=\frac{1}{1-3 z+z^{2}},
$$

and the coefficients

$$
r_{2, n}=\frac{(n-1)!}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{2 n}\right)
$$

Stretched exponentials and beyond Compacted binary trees of bounded right height

Bounded right height $\leq 3: R_{3}(z)$

Bounded right height $\leq 3: R_{3}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-4 z+3 z^{2}\right) R_{3}^{\prime \prime \prime}(z)+(9 z-6) R_{3}^{\prime \prime}(z)+2 R_{3}^{\prime}(z)=0 \\
R_{3}(0)=1, R_{3}^{\prime}(0)=1, R_{3}^{\prime \prime}(0)=\frac{3}{2}
\end{gathered}
$$

Bounded right height $\leq 3: R_{3}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-4 z+3 z^{2}\right) R_{3}^{\prime \prime \prime}(z)+(9 z-6) R_{3}^{\prime \prime}(z)+2 R_{3}^{\prime}(z)=0 \\
R_{3}(0)=1, R_{3}^{\prime}(0)=1, R_{3}^{\prime \prime}(0)=\frac{3}{2}
\end{gathered}
$$

then we get the closed form

$$
R_{3}(z)=\left(\frac{3 z-2+\sqrt{3} \sqrt{1-4 z+3 z^{2}}}{\sqrt{3}-2}\right)^{1 / \sqrt{3}}
$$

Bounded right height $\leq 3: R_{3}(z)$

Symbolic construction

$$
\begin{gathered}
\left(1-4 z+3 z^{2}\right) R_{3}^{\prime \prime \prime}(z)+(9 z-6) R_{3}^{\prime \prime}(z)+2 R_{3}^{\prime}(z)=0 \\
R_{3}(0)=1, R_{3}^{\prime}(0)=1, R_{3}^{\prime \prime}(0)=\frac{3}{2}
\end{gathered}
$$

then we get the closed form

$$
R_{3}(z)=\left(\frac{3 z-2+\sqrt{3} \sqrt{1-4 z+3 z^{2}}}{\sqrt{3}-2}\right)^{1 / \sqrt{3}}
$$

and the asymptotics of the coefficients

$$
r_{3, n}=n!\left[z^{n}\right] R_{3}(z)=\frac{n!}{\sqrt{6}(2-\sqrt{3})^{1 / \sqrt{3}}} \frac{3^{n}}{n^{3 / 2} \sqrt{\pi}}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right)
$$

Differential operators

Theorem

Let $D=\frac{d}{d z}$ and $\left(L_{k}\right)_{k \geq 0}$ be a family of differential operators given by

$$
\begin{aligned}
& L_{0}=(1-z), \\
& L_{1}=(1-2 z) D-1, \\
& L_{k}=L_{k-1} \cdot D-L_{k-2} \cdot D^{2} \cdot z, \quad k \geq 2 .
\end{aligned}
$$

Then the exponential generating function $R_{k}(z)$ for relaxed trees with right height $\leq k$ satisfies

$$
L_{k} \cdot R_{k}=0
$$

Differential operators

Theorem

Let $D=\frac{d}{d z}$ and $\left(L_{k}\right)_{k \geq 0}$ be a family of differential operators given by

$$
\begin{aligned}
& L_{0}=(1-z), \\
& L_{1}=(1-2 z) D-1, \\
& L_{k}=L_{k-1} \cdot D-L_{k-2} \cdot D^{2} \cdot z, \quad k \geq 2 .
\end{aligned}
$$

Then the exponential generating function $R_{k}(z)$ for relaxed trees with right height $\leq k$ satisfies

$$
L_{k} \cdot R_{k}=0
$$

$$
(1-2 z) \frac{d}{d z} R_{1}(z)-R_{1}(z)=0
$$

Differential operators

Theorem

Let $D=\frac{d}{d z}$ and $\left(L_{k}\right)_{k \geq 0}$ be a family of differential operators given by

$$
\begin{aligned}
& L_{0}=(1-z), \\
& L_{1}=(1-2 z) D-1, \\
& L_{k}=L_{k-1} \cdot D-L_{k-2} \cdot D^{2} \cdot z, \quad k \geq 2 .
\end{aligned}
$$

Then the exponential generating function $R_{k}(z)$ for relaxed trees with right height $\leq k$ satisfies

$$
L_{k} \cdot R_{k}=0
$$

$$
\begin{gathered}
(1-2 z) \frac{d}{d z} R_{1}(z)-R_{1}(z)=0 \\
\left(z^{2}-3 z+1\right) \frac{d^{2}}{d z^{2}} R_{2}(z)+(2 z-3) \frac{d}{d z} R_{2}(z)=0
\end{gathered}
$$

Differential operators

Theorem

Let $D=\frac{d}{d z}$ and $\left(L_{k}\right)_{k \geq 0}$ be a family of differential operators given by

$$
\begin{aligned}
& L_{0}=(1-z) \\
& L_{1}=(1-2 z) D-1 \\
& L_{k}=L_{k-1} \cdot D-L_{k-2} \cdot D^{2} \cdot z, \quad k \geq 2
\end{aligned}
$$

Then the exponential generating function $R_{k}(z)$ for relaxed trees with right height $\leq k$ satisfies

$$
L_{k} \cdot R_{k}=0
$$

$$
\begin{gathered}
(1-2 z) \frac{d}{d z} R_{1}(z)-R_{1}(z)=0 \\
\left(z^{2}-3 z+1\right) \frac{d^{2}}{d z^{2}} R_{2}(z)+(2 z-3) \frac{d}{d z} R_{2}(z)=0 \\
\left(3 z^{2}-4 z+1\right) \frac{d^{3}}{d z^{3}} R_{3}(z)+(9 z-6) \frac{d^{2}}{d z^{2}} R_{3}(z)+2 \frac{d}{d z} R_{3}(z)=0
\end{gathered}
$$

Proof of asymptotics of compacted trees of bounded right height

11 Let $\ell_{k, i} \in \mathbb{C}[z]$ be such that

$$
L_{k}=\ell_{k, k}(z) D^{k}+\ell_{k, k-1}(z) D^{k-1}+\ldots+\ell_{k, 0}(z)
$$

Find recurrences for $\ell_{k, i}(z)$ using Guess'n'Prove techniques.
2 Use singularity analysis directly on ODE $L_{k} \cdot R_{k}=0$:

Proof of asymptotics of compacted trees of bounded right height

11 Let $\ell_{k, i} \in \mathbb{C}[z]$ be such that

$$
L_{k}=\ell_{k, k}(z) D^{k}+\ell_{k, k-1}(z) D^{k-1}+\ldots+\ell_{k, 0}(z)
$$

Find recurrences for $\ell_{k, i}(z)$ using Guess'n'Prove techniques.
2 Use singularity analysis directly on ODE $L_{k} \cdot R_{k}=0$:
1 Exponential growth ρ_{k} :
■ Roots of $\ell_{k, k}(z)$ are candidates.
■ $\ell_{k, k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$
\rho_{k}=\frac{1}{4 \cos \left(\frac{\pi}{k+3}\right)^{2}} .
$$

Proof of asymptotics of compacted trees of bounded right height

1 Let $\ell_{k, i} \in \mathbb{C}[z]$ be such that

$$
L_{k}=\ell_{k, k}(z) D^{k}+\ell_{k, k-1}(z) D^{k-1}+\ldots+\ell_{k, 0}(z)
$$

Find recurrences for $\ell_{k, i}(z)$ using Guess'n'Prove techniques.
$\boxed{2}$ Use singularity analysis directly on ODE $L_{k} \cdot R_{k}=0$:
1 Exponential growth ρ_{k} :
■ Roots of $\ell_{k, k}(z)$ are candidates.
■ $\ell_{k, k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$
\rho_{k}=\frac{1}{4 \cos \left(\frac{\pi}{k+3}\right)^{2}}
$$

2 Subexponential growth:

- Prove that other coefficients $\ell_{k, i}(z)$ are nice.
- Use the indicial polynomial derived from the $\ell_{k, i}(z)$.
- Find a basis of solutions for differential equation: Only one is singular at ρ_{k} !

Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number of relaxed and compacted binary trees with right height at most \mathbf{k} satisfy for $n \rightarrow \infty$

$$
r_{k, n} \sim \gamma_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}} \quad \text { and } \quad c_{k, n} \sim \kappa_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}-\frac{1}{k+3}-\frac{k-1}{4(k+3) \cos \left(\frac{\pi}{k+3}\right)^{2}}}
$$

Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]
The number of relaxed and compacted binary trees with right height at most \mathbf{k} satisfy for $n \rightarrow \infty$

$$
r_{k, n} \sim \gamma_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}} \quad \text { and } \quad c_{k, n} \sim \kappa_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}-\frac{1}{k+3}-\frac{k-1}{4(k+3) \cos \left(\frac{\pi}{k+3}\right)^{2}}}
$$

The number unbounded relaxed and compacted binary trees satisfy

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \quad \text { and } \quad c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\operatorname{Ai}(x)$.

Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]
The number of relaxed and compacted binary trees with right height at most \mathbf{k} satisfy for $n \rightarrow \infty$

$$
r_{k, n} \sim \gamma_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}} \quad \text { and } \quad c_{k, n} \sim \kappa_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}-\frac{1}{k+3}-\frac{k-1}{4(k+3) \cos \left(\frac{\pi}{k+3}\right)^{2}}}
$$

The number unbounded relaxed and compacted binary trees satisfy

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \quad \text { and } \quad c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\operatorname{Ai}(x)$.

Many future research directions:

- Multiplicative constants
- Universality of $e^{c a_{1} n^{1 / 3}}$

■ Further applications: Do you know similar recurrences?

Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]
The number of relaxed and compacted binary trees with right height at most \mathbf{k} satisfy for $n \rightarrow \infty$

$$
r_{k, n} \sim \gamma_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}} \quad \text { and } \quad c_{k, n} \sim \kappa_{k} n!4^{n} \cos \left(\frac{\pi}{k+3}\right)^{2 n} n^{-\frac{k}{2}-\frac{1}{k+3}-\frac{k-1}{4(k+3) \cos \left(\frac{\pi}{k+3}\right)^{2}}} .
$$

The number unbounded relaxed and compacted binary trees satisfy

$$
r_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) \quad \text { and } \quad c_{n}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n^{3 / 4}\right)
$$

where $a_{1} \approx-2.338$ is the largest root of the Airy function $\operatorname{Ai}(x)$.

Many future research directions:

- Multiplicative constants
- Universality of $e^{c a_{1} n^{1 / 3}}$
- Further applications: Do you know similar recurrences?

Backup

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

$$
c_{k, n} \sim \kappa_{k} n!r_{k}^{n} n^{\alpha_{k}} \quad \text { and } \quad r_{k, n} \sim \gamma_{k} n!r_{k}^{n} n^{\beta_{k}}
$$

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

$$
c_{k, n} \sim \kappa_{k} n!r_{k}^{n} n^{\alpha_{k}} \quad \text { and } \quad r_{k, n} \sim \gamma_{k} n!r_{k}^{n} n^{\beta_{k}} .
$$

k	r_{k}	$r_{k} \approx$	$\kappa_{k} \approx$	α_{k}	$\alpha_{k} \approx$	$\gamma_{k} \approx$	β_{k}	$\beta_{k} \approx$
1	2	2.000	0.708	$-\frac{3}{4}$	-0.750	0.564	$-\frac{1}{2}$	-0.5
2	$4 \cos \left(\frac{\pi}{5}\right)^{2}$	2.618	0.561	$-\frac{6}{5}-\frac{1}{20 \cos \left(\frac{\pi}{5}\right)^{2}}$	-1.276	0.447	-1	-1.0
3	3	3.000	0.605	$-\frac{16}{9}$	-1.778	0.493	$-\frac{3}{2}$	-1.5
4	$4 \cos \left(\frac{\pi}{7}\right)^{2}$	3.246	0.873	$-\frac{15}{7}-\frac{3}{28 \cos \left(\frac{\pi}{7}\right)^{2}}$	-2.275	0.726	-2	-2.0
5	$4 \cos \left(\frac{\pi}{8}\right)^{2}$	3.414	1.625	$-\frac{21}{8}-\frac{1}{8 \cos \left(\frac{\pi}{8}\right)^{2}}$	-2.772	1.379	$-\frac{5}{2}$	-2.5
6	$4 \cos \left(\frac{\pi}{9}\right)^{2}$	3.532	3.782	$-\frac{28}{9}-\frac{5}{36 \cos \left(\frac{\pi}{9}\right)^{2}}$	-3.268	3.260	-3	-3.0
7	$4 \cos \left(\frac{\pi}{10}\right)^{2}$	3.618	10.708	$-\frac{18}{5}-\frac{3}{20 \cos \left(\frac{\pi}{10}\right)^{2}}$	-3.766	9.350	$-\frac{7}{2}$	-3.5

Construction of $R_{1}(z)$

Let $R_{1}(z)=\sum_{\ell \geq 0} r_{1, n} \frac{z^{n}}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1.

Construction of $R_{1}(z)$

Let $R_{1}(z)=\sum_{\ell \geq 0} r_{1, n} \frac{z^{n}}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1.

Decomposition of $R_{1}(z)$

$$
R_{1}(z)=\sum_{n \geq 0} R_{1, \ell}(z)
$$

where $R_{1, \ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

Construction of $R_{1}(z)$

Let $R_{1}(z)=\sum_{\ell \geq 0} r_{1, n} \frac{z^{n}}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1.

Decomposition of $R_{1}(z)$

$$
R_{1}(z)=\sum_{n \geq 0} R_{1, \ell}(z)
$$

where $R_{1, \ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

$$
\begin{aligned}
& R_{1,0}(z)=R_{0}(z)=\frac{1}{1-z} \\
& R_{1,1}(z)=?
\end{aligned}
$$

Stretched exponentials and beyond Backup

Construction of $R_{1,1}(z)$

Construction of $R_{1,1}(z)$

Symbolic specification
1 delete initial sequence

Construction of $R_{1,1}(z)$

Symbolic specification

1 delete initial sequence
2 decompose

Construction of $R_{1,1}(z)$

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer

Construction of $R_{1,1}(z)$

Symbolic specification

1 delete initial sequence
2 decompose

3 append and add pointer
4 add initial sequence

```
\(R_{1,1}(z)\)
```

$$
\begin{aligned}
& R_{1,1}(z)=\underbrace{S}_{\begin{array}{c}
\text { init. } \\
\text { seq. }
\end{array}} \circ \underbrace{I}_{\begin{array}{c}
\text { Ivl } 0 \\
\text { node }
\end{array}} \circ \underbrace{S \circ P}_{\begin{array}{c}
\text { red pointer } \\
\text { and seq. }
\end{array}}(\underbrace{z R_{1,0}(z)}_{\begin{array}{c}
\text { grey node } \\
\text { last seq. }
\end{array}}) \\
& R_{1,1}(z)=\frac{1}{1-z \int \frac{1}{1-z} z\left(z R_{1,0}(z)\right)^{\prime} d z}
\end{aligned}
$$

Construction of $R_{1, \ell}(z)$

Construction of $R_{1, \ell}(z)$

Observation

Same structure as for $R_{1,1}(z)$

$$
\begin{array}{ll}
R_{1, \ell}(z)=\frac{1}{1-z} \int \frac{1}{1-z} z\left(z R_{1, \ell-1}(z)\right)^{\prime} d z, & \ell \geq 1, \\
R_{1,0}(z)=R_{0}(z)=\frac{1}{1-z} . &
\end{array}
$$

Construction of $R_{1, \ell}(z)$

Observation

Same structure as for $R_{1,1}(z)$

$$
\begin{array}{ll}
R_{1, \ell}(z)=\frac{1}{1-z} \int \frac{1}{1-z} z\left(z R_{1, \ell-1}(z)\right)^{\prime} d z, & \ell \geq 1, \\
R_{1,0}(z)=R_{0}(z)=\frac{1}{1-z} . &
\end{array}
$$

Recall that $R_{1}(z)=\sum_{\ell \geq 0} R_{1, \ell}(z)$. Summing the previous equation (formally) for $\ell \geq 1$ gives

$$
\frac{1-2 z}{1-z} R_{1}^{\prime}(z)-\frac{1}{1-z} R_{1}(z)-\left((1-z) R_{1,0}(z)\right)^{\prime}=0 .
$$

A special class of ODEs

Consider an ordinary generating function of the kind

$$
\begin{equation*}
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0, \tag{2}
\end{equation*}
$$

where the $a_{i} \equiv a_{i}(z)$ are meromorphic in a simply connected domain Ω. Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ.

A special class of ODEs

Consider an ordinary generating function of the kind

$$
\begin{equation*}
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0 \tag{2}
\end{equation*}
$$

where the $a_{i} \equiv a_{i}(z)$ are meromorphic in a simply connected domain Ω. Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ.

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a regular singularity if

$$
\omega_{\zeta}\left(a_{1}\right) \leq 1, \quad \omega_{\zeta}\left(a_{2}\right) \leq 2, \quad \ldots, \quad \omega_{\zeta}\left(a_{r}\right) \leq r
$$

and an irregular singularity otherwise.

A special class of ODEs

Consider an ordinary generating function of the kind

$$
\begin{equation*}
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0 \tag{2}
\end{equation*}
$$

where the $a_{i} \equiv a_{i}(z)$ are meromorphic in a simply connected domain Ω. Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ.

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a regular singularity if

$$
\omega_{\zeta}\left(a_{1}\right) \leq 1, \quad \omega_{\zeta}\left(a_{2}\right) \leq 2, \quad \ldots, \quad \omega_{\zeta}\left(a_{r}\right) \leq r
$$

and an irregular singularity otherwise.

Relaxed trees

$$
\ell_{k, k}(z) \partial^{k} R_{k}(z)+\ell_{k, k-1}(z) \partial^{k-1} R_{k}(z)+\ldots+\ell_{k, 0}(z) R_{k}(z)=0
$$

A special class of ODEs

Consider an ordinary generating function of the kind

$$
\begin{equation*}
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0 \tag{2}
\end{equation*}
$$

where the $a_{i} \equiv a_{i}(z)$ are meromorphic in a simply connected domain Ω. Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ.

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a regular singularity if

$$
\omega_{\zeta}\left(a_{1}\right) \leq 1, \quad \omega_{\zeta}\left(a_{2}\right) \leq 2, \quad \ldots, \quad \omega_{\zeta}\left(a_{r}\right) \leq r
$$

and an irregular singularity otherwise.

Relaxed trees

$$
\partial^{k} R_{k}(z)+\frac{\ell_{k, k-1}(z)}{\ell_{k, k}(z)} \partial^{k-1} R_{k}(z)+\ldots+\frac{\ell_{k, 0}(z)}{\ell_{k, k}(z)} R_{k}(z)=0
$$

The indicial polynomial

Structure of the ODE:

$$
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0
$$

The indicial polynomial

Structure of the ODE:

$$
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0
$$

Definition (Indicial polynomial)

Given an equation of the form (2) and a regular singular point ζ, the indicial polynomial $I(\alpha)$ at ζ is defined as

$$
I(\alpha)=\alpha^{\underline{r}}+\delta_{1} \alpha^{\underline{r-1}}+\cdots+\delta_{r}, \quad \alpha^{\underline{\ell}}:=\alpha(\alpha-1) \cdots(\alpha-\ell+1)
$$

where $\delta_{i}:=\lim _{z \rightarrow \zeta}(z-\zeta)^{i} a_{i}(z)$. The indicial equation at ζ is the algebraic equation $I(\alpha)=0$.

The indicial polynomial

Structure of the ODE:

$$
\partial^{r} Y(z)+a_{1}(z) \partial^{r-1} Y(z)+\cdots+a_{r}(z) Y(z)=0 .
$$

Definition (Indicial polynomial)

Given an equation of the form (2) and a regular singular point ζ, the indicial polynomial $I(\alpha)$ at ζ is defined as

$$
I(\alpha)=\alpha^{\underline{r}}+\delta_{1} \alpha^{\underline{r-1}}+\cdots+\delta_{r}, \quad \alpha^{\underline{\ell}}:=\alpha(\alpha-1) \cdots(\alpha-\ell+1)
$$

where $\delta_{i}:=\lim _{z \rightarrow \zeta}(z-\zeta)^{i} a_{i}(z)$. The indicial equation at ζ is the algebraic equation $I(\alpha)=0$.

All the solutions of the differential equations behave for $z \rightarrow \zeta$ like

$$
(z-\zeta)^{\alpha} \log (z-\zeta)^{\beta}
$$

for some $\alpha \in \mathbb{C}, \beta \in \mathbb{N}$.

- α is a root of the indicial polynomial
- β is related to multiple roots of the indicial polynomial and roots at integer distances

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$.

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of $r-1$ analytic solutions

$$
(z-\zeta)^{m} H_{m}(z-\zeta), \quad m=0,1, \ldots, r-2
$$

where H_{m} is analytic at $0\left(H_{m}(0) \neq 0\right)$.

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of $r-1$ analytic solutions

$$
(z-\zeta)^{m} H_{m}(z-\zeta), \quad m=0,1, \ldots, r-2
$$

where H_{m} is analytic at $0\left(H_{m}(0) \neq 0\right)$. The r-th basis function depends on δ_{1} :

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of $r-1$ analytic solutions

$$
(z-\zeta)^{m} H_{m}(z-\zeta), \quad m=0,1, \ldots, r-2
$$

where H_{m} is analytic at $0\left(H_{m}(0) \neq 0\right)$. The r-th basis function depends on δ_{1} :
1 For $\delta_{1} \in\{0,1, \ldots, r-1\}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta) \log (z-\zeta) ;
$$

where H is analytic at 0 with $H(0) \neq 0$.

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of $r-1$ analytic solutions

$$
(z-\zeta)^{m} H_{m}(z-\zeta), \quad m=0,1, \ldots, r-2
$$

where H_{m} is analytic at $0\left(H_{m}(0) \neq 0\right)$. The r-th basis function depends on δ_{1} :
1 For $\delta_{1} \in\{0,1, \ldots, r-1\}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta) \log (z-\zeta) ;
$$

2. For $\delta_{1} \in\{r, r+1, \ldots\}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta)+H_{0}(z-\zeta)(\log (z-\zeta))^{k}, \quad \text { with } \quad k \in\{0,1\} ;
$$

where H is analytic at 0 with $H(0) \neq 0$.

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\boldsymbol{\omega}_{\zeta}\left(\mathbf{a}_{\boldsymbol{i}}\right) \leq \mathbf{1}$ for all $i=1, \ldots, r$, and $\delta_{1} \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of $r-1$ analytic solutions

$$
(z-\zeta)^{m} H_{m}(z-\zeta), \quad m=0,1, \ldots, r-2
$$

where H_{m} is analytic at $0\left(H_{m}(0) \neq 0\right)$. The r-th basis function depends on δ_{1} :
1 For $\delta_{1} \in\{0,1, \ldots, r-1\}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta) \log (z-\zeta) ;
$$

12 For $\delta_{1} \in\{r, r+1, \ldots\}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta)+H_{0}(z-\zeta)(\log (z-\zeta))^{k}, \quad \text { with } \quad k \in\{0,1\} ;
$$

3 For $\delta_{1} \notin \mathbb{Z}$ it is of the form

$$
(z-\zeta)^{r-1-\delta_{1}} H(z-\zeta)
$$

where H is analytic at 0 with $H(0) \neq 0$.

What is the Airy function?

Properties

- $\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t$
- Largest root $a_{1} \approx-2.338$
- $\lim _{x \rightarrow \infty} \operatorname{Ai}(x)=0$
- Also defined by $\mathrm{Ai}^{\prime \prime}(x)=x \operatorname{Ai}(x)$
- [Banderier, Flajolet, Schaeffer, Soria 2001]: Random Maps
■ [Flajolet, Louchard 2001]:
Brownian excursion area

Stretched exponentials and beyond Backup

Refined heuristic analysis

11 Ansatz of order 1:

$$
\begin{aligned}
d_{n, m} & \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right) \\
s_{n} & =2+c n^{-2 / 3}+O\left(n^{-1}\right)
\end{aligned}
$$

yields estimates $c=2^{2 / 3} a_{1}$ such that

$$
h(n) \approx 2^{n} e^{3 a_{1}(n / 2)^{1 / 3}} \quad \text { and } \quad f(\kappa)=\operatorname{Ai}\left(2^{1 / 3} \kappa+a_{1}\right)
$$

2 Ansatz of order 2:

yields estimates $d=8 / 3$ such that

This way we conjecture the asymptotic form for relaxed binary trees:

Refined heuristic analysis

11 Ansatz of order 1:

$$
\begin{aligned}
d_{n, m} & \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right), \\
s_{n} & =2+c n^{-2 / 3}+O\left(n^{-1}\right) .
\end{aligned}
$$

yields estimates $c=2^{2 / 3} a_{1}$ such that

$$
h(n) \approx 2^{n} e^{3 a_{1}(n / 2)^{1 / 3}} \quad \text { and } \quad f(\kappa)=\operatorname{Ai}\left(2^{1 / 3} \kappa+a_{1}\right)
$$

. Ansatz of order 2:

$$
\begin{aligned}
d_{n, m} & \approx h(n)\left(f_{0}\left(\frac{m+1}{\sqrt[3]{n}}\right)+n^{-1 / 3} f_{1}\left(\frac{m+1}{\sqrt[3]{n}}\right)\right) \\
s_{n} & =2+c n^{-2 / 3}+d n^{-1}+O\left(n^{-4 / 3}\right)
\end{aligned}
$$

yields estimates $d=8 / 3$ such that

$$
h(n) \sim \text { const } \cdot 2^{n} e^{3 a_{1}(n / 2)^{1 / 3}} n^{4 / 3} \quad \text { and } \quad f_{0}(\kappa)=\operatorname{Ai}\left(2^{1 / 3} \kappa+a_{1}\right)
$$

This way we conjecture the asymptotic form for relaxed binary trees:

Refined heuristic analysis

11 Ansatz of order 1:

$$
\begin{aligned}
d_{n, m} & \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right) \\
s_{n} & =2+c n^{-2 / 3}+O\left(n^{-1}\right)
\end{aligned}
$$

yields estimates $c=2^{2 / 3} a_{1}$ such that

$$
h(n) \approx 2^{n} e^{3 a_{1}(n / 2)^{1 / 3}} \quad \text { and } \quad f(\kappa)=\operatorname{Ai}\left(2^{1 / 3} \kappa+a_{1}\right)
$$

Ansatz of order 2:

$$
\begin{aligned}
d_{n, m} & \approx h(n)\left(f_{0}\left(\frac{m+1}{\sqrt[3]{n}}\right)+n^{-1 / 3} f_{1}\left(\frac{m+1}{\sqrt[3]{n}}\right)\right) \\
s_{n} & =2+c n^{-2 / 3}+d n^{-1}+O\left(n^{-4 / 3}\right)
\end{aligned}
$$

yields estimates $d=8 / 3$ such that

$$
h(n) \sim \text { const } \cdot 2^{n} e^{3 a_{1}(n / 2)^{1 / 3}} n^{4 / 3} \quad \text { and } \quad f_{0}(\kappa)=\operatorname{Ai}\left(2^{1 / 3} \kappa+a_{1}\right)
$$

This way we conjecture the asymptotic form for relaxed binary trees:

$$
r_{n}=n!d_{2 n, 0}=\Theta\left(n!4^{n} e^{3 a_{1} n^{1 / 3}} n\right) .
$$

Lower bound - Case analysis

13 Treat $p_{n, m}$ and $p_{n, m}^{\prime}$ separately and prove that all dominating terms in the respective regimes (corners of convex hull) are positive.

$$
p_{n, m}=\sum \tilde{a}_{i, j} m^{i} n^{j}
$$

$$
p_{n, m}^{\prime}=\sum \tilde{a}_{i, j}^{\prime} m^{i} n^{j}
$$

non-zero coefficients

Technicalities for compacted trees and minimal DFAs

Lots of technicalities:

- Before induction, we have to remove the negative term from the recurrence, but we have to do so precisely for asymptotics to stay the same.
- We only prove bounds for small m; we prove that large m terms don't matter
- The lower bound is negative for very large m, so we have to be careful with induction
- We only prove the bounds for sufficiently large n, but this only makes a difference to the constant term. Proof involves colorful Newton polygons:

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- $\boldsymbol{c}_{\boldsymbol{n}}$: number of compacted trees of size n

$$
\left(c_{n}\right)_{n \geq 0}=(1,1,3,15,111,1119,14487, \ldots)
$$

- Important: Subtrees are unique!

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- $\boldsymbol{c}_{\boldsymbol{n}}$: number of compacted trees of size n

$$
\left(c_{n}\right)_{n \geq 0}=(1,1,3,15,111,1119,14487, \ldots)
$$

- Important: Subtrees are unique!

Simple bounds

$$
n!\leq c_{n} \leq \frac{1}{n+1}\binom{2 n}{n} n!
$$

