Stretched exponentials and beyond

Computer Algebra for Functional Equations in Combinatorics and Physics

Michael Wallner

https://dmg.tuwien.ac.at/mwallner Institute of Discrete Mathematics and Geometry, TU Wien, Austria (Austrian Science Fund (FWF): P 34142)

December 4, 2023

Examples:

Stirling's formula $n! = \mathcal{O}(n^{n})$ $n! = \Theta (n^{n+1/2} e^{-n})$ $n! \sim \sqrt{2\pi n} n^{n} e^{-n}$

Landau notation
Let
$$(a_n)_{n\geq 0}$$
 and $(b_n)_{n\geq 0}$, $b_n > 0$ be two sequences.
• $a_n = \mathcal{O}(b_n)$ if $\limsup_{n\to\infty} \frac{|a_n|}{b_n} < \infty$
• $a_n = \Theta(b_n)$ if $0 < \liminf_{n\to\infty} \frac{|a_n|}{b_n}$ and $\limsup_{n\to\infty} \frac{|a_n|}{b_n} < \infty$
• $a_n \sim b_n$ if $\lim_{n\to\infty} \frac{|a_n|}{b_n} = 1$

Examples:

Stirling's formula $n! = O(n^{n})$ $n! = \Theta(n^{n+1/2}e^{-n})$ $n! \sim \sqrt{2\pi n}n^{n}e^{-n}$ Binomial coeffs • $\binom{2n}{n} = \mathcal{O}(4^n)$ • $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$ • $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$

Landau notation
Let
$$(a_n)_{n \ge 0}$$
 and $(b_n)_{n \ge 0}$, $b_n > 0$ be two sequences.
• $a_n = \mathcal{O}(b_n)$ if $\limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$
• $a_n = \Theta(b_n)$ if $0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n}$ and $\limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$
• $a_n \sim b_n$ if $\lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$

Examples:

Stirling's formula $n! = O(n^{n})$ $n! = \Theta(n^{n+1/2}e^{-n})$ $n! \sim \sqrt{2\pi n}n^{n}e^{-n}$ Binomial coeffs • $\binom{2n}{n} = \mathcal{O}(4^n)$ • $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$ • $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$

Double factorials
•
$$(2n-1)!! = \mathcal{O}(n!2^n)$$

• $(2n-1)!! = \Theta\left(\frac{n!2^n}{\sqrt{n}}\right)$
• $(2n-1)!! \sim \frac{n!2^n}{\sqrt{\pi n}}$

What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

 $C \cdot R^n \cdot n^{\alpha}$,

for constants $C, R, \alpha \in \mathbb{R}$.

What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

$$C\cdot R^n\cdot n^{\alpha},$$

for constants $C, R, \alpha \in \mathbb{R}$.

• Much more seldom we observe (or are able to prove) $C \cdot R^n \cdot \mu^{n^{\sigma}} \cdot n^{\alpha}$, with a *stretched exponential* $\mu^{n^{\sigma}}$ with $\mu > 0$ and $\sigma \in (0, 1)$.

What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

$$C \cdot R^n \cdot n^{\alpha}$$
,

for constants $C, R, \alpha \in \mathbb{R}$.

Some deeper reasons why they are "seldom"

- Generating function cannot be algebraic
- It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only only with an *irregular singularity*, e.g., exp(^z/_{1-z})

Appearances of stretched exponentials

Known exactly:

• Number theory (integer partitions):

$$\sim (4\sqrt{3})^{-1} e^{\pi (2n/3)^{1/2}} n^{-1}$$

- Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]): $\sim C_1 4^n e^{-3\left(\frac{\pi \log 2}{2}\right)^{2/3} n^{1/3}} n^{-5/6}$
- Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]): $\Theta\left(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}}n^{-2/3}\right)$

Appearances of stretched exponentials

Known exactly:

• Number theory (integer partitions):

$$\sim (4\sqrt{3})^{-1} e^{\pi (2n/3)^{1/2}} n^{-1}$$

- Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]): $\sim C_1 4^n e^{-3\left(\frac{\pi \log 2}{2}\right)^{2/3} n^{1/3}} n^{-5/6}$
- Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]): $\Theta\left(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}}n^{-2/3}\right)$

Conjectured:

Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]: $\approx u^n e^{-cn^{1/2}}$

Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:

$$\approx u^n e^{-cn^{3/7}}$$

 \blacksquare and recently more and more appear in group theory, queuing theory, \ldots

Stretched exponentials in DAG counting

Biology: *d*-combining tree-child networks

Definition

A *d*-ary rooted phylogenetic network is a DAG with nodes of the type:

- *unique root*: indegree 0, outdegree 2
- *leaf*: indegree 1, outdegree 0
- *tree node*: indegree 1, outdegree 2
- *reticulation node*: indegree *d*, outdegree 1

Furthermore, the *n* leaves are labeled bijectively by $\{1, \ldots, n\}$.

Tree-child: every non-leaf node has at least one child that is not a reticulation.

Asymptotics of *d*-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023] The number $\operatorname{TC}_n^{(d)}$ of *d*-combining tree-child networks with *n* leaves satisfies $\operatorname{TC}_n^{(d)} = \Theta\left((n!)^d \gamma(d)^n e^{3a_1\beta(d)n^{1/3}}n^{\alpha(d)}\right)$ for $n \to \infty$, with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and $\alpha(d) = -\frac{d(3d-1)}{2(d+1)}, \qquad \beta(d) = \left(\frac{d-1}{d+1}\right)^{2/3}, \qquad \gamma(d) = 4\frac{(d+1)^{d-1}}{(d-1)!}.$

Asymptotics of *d*-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number $\operatorname{TC}_n^{(d)}$ of *d*-combining tree-child networks with *n* leaves satisfies $\operatorname{TC}_n^{(d)} = \Theta\left((n!)^d \gamma(d)^n e^{3a_1\beta(d)n^{1/3}}n^{\alpha(d)}\right) \quad \text{for } n \to \infty,$ with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and $\alpha(d) = -\frac{d(3d-1)}{2(d+1)}, \quad \beta(d) = \left(\frac{d-1}{d+1}\right)^{2/3}, \quad \gamma(d) = 4\frac{(d+1)^{d-1}}{(d-1)!}.$

Questions we will answer next

- How to prove this?
- Why is there a stretched exponential?
- Why does the Airy function appear?
 - \rightarrow Previously, e.g., in random maps [Banderier, Flajolet, Schaeffer,
 - Soria 2001] and Brownian excursion area [Flajolet, Louchard 2001]

1 Combinatorics: reduce the problem

- **1** Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important: Let TC^(d)_{n k} be TC networks with n leaves and k reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$.

- **1** Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important: Let TC^(d)_{n,k} be TC networks with n leaves and k reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$. **Bijection** of $TC_{n,n-1}^{(d)}$ to Young tableaux with walls (or special words)

- **1** Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important: Let TC^(d)_{n,k} be TC networks with n leaves and k reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$. **Bijection** of $TC_{n,n-1}^{(d)}$ to Young tableaux with walls (or special words)

2 Two parameter recurrence relation

$$e_{n,m} = \mu_{n,m} e_{n-1,m+1} + \nu_{n,m} e_{n-1,m-1}$$

 $n\geq 3$ and $m\geq 0$, $e_{n,-1}=e_{2,n}=0$ except for $e_{2,0}=1$,

- **1** Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important: Let TC^(d)_{n,k} be TC networks with n leaves and k reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$. **Bijection** of $TC_{n,n-1}^{(d)}$ to Young tableaux with walls (or special words)

2 Two parameter recurrence relation

$$e_{n,m} = \mu_{n,m} e_{n-1,m+1} + \nu_{n,m} e_{n-1,m-1}$$

 $n\geq 3$ and $m\geq 0$, $e_{n,-1}=e_{2,n}=0$ except for $e_{2,0}=1,$ where

$$\mu_{n,m} = 1 + rac{2(d-1)}{(d+1)n + (d-1)m - 2(d+1)} \qquad ext{and} \qquad
u_{n,m} = \prod_{i=2}^d \left(1 - rac{2(m+i)}{(d+1)(n+m)}
ight).$$

We are interested in $e_{2n,0}$, as $\operatorname{TC}_n^{(d)} = \Theta\left((n!)^d \left(\frac{\gamma(d)}{4}\right)^n n^{1-d} e_{2n,0}\right)$.

More objects with bivariate recurrences giving stretched exponentials

BAADBACFCBEDECDFEF

Constrained words

Computer Science: Compacted trees

Definition

A compacted *k*-ary tree is a DAG with nodes of the type:

- *unique root*: outdegree k
- *unique sink*: outdegree 0
- *internal nodes*: outdegree k

Furthermore,

- (0) the children are ordered and
- (U) all fringe subgraphs are unique.

A relaxed k-ary tree is a compacted k-ary tree without condition (U).

Compacted binary tree

Relaxed binary tree

- Applications:
 - **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
 - Data storage [Meinel, Theobald 1998], [Knuth 1968]
 - Compilers [Aho, Sethi, Ullman 1986]
 - LISP [Goto 1974]
 - etc.

- Applications:
 - **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
 - Data storage [Meinel, Theobald 1998], [Knuth 1968]
 - Compilers [Aho, Sethi, Ullman 1986]
 - LISP [Goto 1974]
 - etc.
- Efficient compaction algorithm: expected time $\mathcal{O}(n)$

- Applications:
 - **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
 - Data storage [Meinel, Theobald 1998], [Knuth 1968]
 - Compilers [Aho, Sethi, Ullman 1986]
 - LISP [Goto 1974]

etc.

- Efficient compaction algorithm: expected time $\mathcal{O}(n)$
- A tree of size *n* has a *expected compacted size*

$$C \frac{n}{\sqrt{\log n}}$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

- Applications:
 - **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
 - Data storage [Meinel, Theobald 1998], [Knuth 1968]
 - Compilers [Aho, Sethi, Ullman 1986]
 - LISP [Goto 1974]

etc.

- Efficient compaction algorithm: expected time $\mathcal{O}(n)$
- A tree of size *n* has a *expected compacted size*

$$C \frac{n}{\sqrt{\log n}}$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question

How many compacted trees of (compacted) size n exist?

Asymptotics of relaxed k-ary trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r_n of relaxed k-ary trees with n internal nodes satisfies

$$r_n = \Theta\left((n!)^{k-1} \gamma(k)^n e^{3a_1\beta(k)n^{1/3}} n^{\alpha(k)}\right),$$

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and

$$\alpha(k) = \frac{7k-8}{6}, \qquad \beta(k) = \left(\frac{k(k-1)}{2}\right)^{1/3}, \qquad \gamma(k) = \frac{k^k}{(k-1)^{k-1}}$$

Asymptotics of relaxed k-ary trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r_n of relaxed k-ary trees with n internal nodes satisfies

$$r_n = \Theta\left((n!)^{k-1} \gamma(k)^n e^{3a_1\beta(k)n^{1/3}} n^{\alpha(k)}\right),$$

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and

$$\alpha(k) = \frac{7k-8}{6}, \qquad \beta(k) = \left(\frac{k(k-1)}{2}\right)^{1/3}, \qquad \gamma(k) = \frac{k^k}{(k-1)^{k-1}}$$

Proof strategy

- Bijective Comb.: Bijection to decorated Dyck paths
- 2 <u>Enumerative Comb.</u>: Two-parameter recurrence
- <u>3</u> <u>Calculus + ODEs:</u> Heuristic analysis of recurrence
- 4 Computer algebra: Inductive proof of asymptotically tight bounds

Asymptotics in the binary case

Asymptotics in the binary case

Conjecture

where

Experimentally we find

$$r_n \sim \gamma_r n! 4^n e^{3a_1 n^{1/3}} n$$
 and $c_n \sim \gamma_c n! 4^n e^{3a_1 n^{1/3}} n^{3/4}$,
 $\gamma_r \approx 166.95208957$ and $\gamma_c \approx 173.12670485$.

1 Spanning tree distinguishes internal edges and pointers

Spanning tree distinguishes internal edges and pointers
 Label nodes and pointers in post-order

Spanning tree distinguishes internal edges and pointers
 Label nodes and pointers in post-order

I Spanning tree distinguishes internal edges and pointers

- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

I Spanning tree distinguishes internal edges and pointers

- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- **I** Spanning tree distinguishes internal edges and pointers
- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

I Spanning tree distinguishes internal edges and pointers

- 2 Label nodes and pointers in **post-order**
- **3** Traverse the spanning tree along the **contour**. When...
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

Decorated paths

- Path starts at (0, -1) and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step
- Each vertical step has weight 1

Decorated paths

- Path starts at (0, -1) and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step
- Each vertical step has weight 1

Decorated paths

- Path starts at (0, -1) and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step
- Each vertical step has weight 1

6 5 4

3 2

1

X

X

4b 6a 6b 7b

Recurrence: Let $a_{n,m}$ be the number of paths ending at (n, m)

$$a_{n,m} = a_{n,m-1} + (m+1)a_{n-1,m},$$
 for $n \ge m$
 $a_{0,0} = 1.$

Number of relaxed trees is $r_n = a_{n,n}$

Recurrence: Let $a_{n,m}$ be the number of paths ending at (n, m)

$$a_{n,m} = a_{n,m-1} + (m+1)a_{n-1,m},$$
 for $n \ge m$
 $a_{0,0} = 1.$

Number of relaxed trees is $r_n = a_{n,n}$

Recurrence: Let $\tilde{a}_{n,m}$ be the number of paths ending at (n,m) with weights divided by column number

$$\tilde{a}_{n,m} = \tilde{a}_{n,m-1} + \frac{m+1}{n} \tilde{a}_{n-1,m}, \quad \text{for } n \ge n$$
$$\tilde{a}_{0,0} = 1.$$

Number of relaxed trees is $r_n = n! \tilde{a}_{n,n}$

Michael Wallner | TU Wien | 04.12.2023

Recurrence: Let $\tilde{a}_{n,m}$ be the number of paths ending at (n,m) with weights divided by column number

$$\tilde{a}_{n,m} = \tilde{a}_{n,m-1} + \frac{m+1}{n} \tilde{a}_{n-1,m}, \quad \text{for } n \ge m$$
$$\tilde{a}_{0,0} = 1.$$

Number of relaxed trees is $r_n = n! \tilde{a}_{n,n}$

Michael Wallner | TU Wien | 04.12.2023

Recurrence: Let $\tilde{a}_{n,m}$ be the number of paths ending at (n,m) with weights divided by column number

$$\tilde{a}_{n,m} = \tilde{a}_{n,m-1} + \frac{m+1}{n} \tilde{a}_{n-1,m}, \qquad \text{for } n \ge m$$
$$\tilde{a}_{0,0} = 1.$$

Number of relaxed trees is $r_n = n! \tilde{a}_{n,n}$

Michael Wallner | TU Wien | 04.12.2023

Recurrence: Let $d_{i,j}$ be the number of decorated paths ending at (i,j) shown on the right

$$d_{i,j} = d_{i-1,j+1} + \left(1 - \frac{2(j-1)}{i+j}\right) d_{i-1,j-1},$$
 for $i > 0, \ j \ge 0$
 $d_{0,0} = 1.$

Number of relaxed trees is $r_n = n! d_{2n,0}$

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Stretched exponentials and beyond | Bijection to decorated paths

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$): Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$.

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$):

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$.

Weighted number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha} - \log(2)n^{\alpha}}$

Maximum occurs when $\alpha = 1/3$ and is equal to $4^n e^{-cn^{1/3}}$

Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$):

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$

Weighted number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha} - \log(2)n^{\alpha}}$

Maximum occurs when $\alpha = 1/3$ and is equal to $4^n e^{-cn^{1/3}}$.

Our case: weights decrease similarly with height so we expect similar behavior

Heuristic analysis of recurrence

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Let's zoom in to the left (small m) where interesting things are happening.

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Let's zoom in to the left (small m) where interesting things are happening.

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

- Let's zoom in to the left (small *m*) where interesting things are happening.
- It seems to be converging to something...

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

- Let's zoom in to the left (small *m*) where interesting things are happening.
- It seems to be converging to something...

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

- Let's zoom in to the left (small m) where interesting things are happening.
- It seems to be converging to something...

Ansatz:
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$$

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(rac{m+1}{g(n)}
ight)$

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$

1 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$.

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$

1 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$.

2 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with *m* arbitrary:

$$h(n) \approx \frac{c}{\sqrt{n}} 4^n, \qquad g(n) = \sqrt{n}, \qquad f(x) = e^{-x^2}.$$

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$

1 Unweighted case
$$\mu_{n,m} = \nu_{n,m} = 1$$
 with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$.

2 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with *m* arbitrary:

$$h(n) \approx \frac{c}{\sqrt{n}} 4^n, \qquad g(n) = \sqrt{n}, \qquad f(x) = e^{-x^2}.$$

3 Relaxed binary trees $\mu_{n,m} = 1$ and $\nu_{n,m} = 1 - \frac{2(m-1)}{n+m}$ with $m \ge 0$: \Rightarrow Based on the relation with pushed Dyck paths, we guess $g(n) = \sqrt[3]{n}$.

What are h(n) and f(x)?

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

• Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
.

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

• Ansatz (a): $d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$.

Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

• Ansatz (a): $d_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)$. Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume $s_n = 2 + cn^{-2/3} + O(n^{-1}) \qquad \Rightarrow \quad h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a): $d_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)$. Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

• Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume $s_n = 2 + cn^{-2/3} + O(n^{-1}) \qquad \Rightarrow \quad h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$ Solution

$$f''(x) = (2x + c)f(x)$$
 \Rightarrow $f(x) = Ai(2^{-2/3}(2x + c))$

where c is a constant and Ai is the Airy function.

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a): $d_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)$. Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

• Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume

$$s_n = 2 + cn^{-2/3} + O(n^{-1})$$
 $\Rightarrow h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$

Solution

$$f''(x) = (2x + c)f(x)$$
 \Rightarrow $f(x) = Ai(2^{-2/3}(2x + c))$

where c is a constant and Ai is the Airy function.

Boundary condition: $d_{n,-1} = 0$ and $d_{n,m} \ge 0$. Then f(0) = 0 implies $c = 2^{2/3}a_1$, where $a_1 \approx -2.338$ satisfies Ai $(a_1) = 0$.
Inductive proof

Proof method

Find explicit sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$X_{n,m} \leq d_{n,m} \leq Y_{n,m},$$

for all m and all n large enough.

Proof method

Find explicit sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$X_{n,m} \leq d_{n,m} \leq Y_{n,m},$$

for all m and all n large enough.

How to find them?

- 1 Use heuristics
- 2 Adapt until $X_{n,m}$ and $Y_{n,m}$ satisfy the recurrence of $d_{n,m}$ with the equalities replaced by inequalities:

$$=$$
 \longrightarrow \leq and \geq

3 Prove $X_{n,m} \leq d_{n,m} \leq Y_{n,m}$ by induction.

Relaxed trees: Proof idea – lower bound

Main idea

Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy $X_{n,m}s_n\leq X_{n-1,m+1}+\left(1-\frac{2(m+1)}{n+m}\right).$

$$X_{n-1,m-1},$$

for all sufficiently large n and all integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

 $X_{n,m}h_n \leq b_0 d_{n,m}$

Relaxed trees: Proof idea – lower bound

Main idea

Suppose
$$(X_{n,m})_{n \ge m \ge 0}$$
 and $(s_n)_{n \ge 1}$ satisfy
$$X_{n,m}s_n \le X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{2}\right)$$

$$x_m s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) X_{n-1,m-1},$$

for all sufficiently large n and all integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

 $X_{n,m}h_n \leq b_0 d_{n,m}$

for some constant b_0 by induction:

(1)

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$

for all sufficiently large n and all integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that $X_{n,m} h_n \leq b_0 d_{n,m}$

$$\begin{array}{ccc} X_{n,m}h_n & \stackrel{(1)}{\leq} & X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}h_{n-1} \\ & \stackrel{(\text{Induction})}{\leq} & b_0d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)b_0d_{n-1,m-1} \\ & \stackrel{\text{Rec. } d_{n,m}}{=} & b_0d_{n,m}. \end{array}$$

Relaxed trees: Proof idea - lower bound

Main idea

Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$

for all sufficiently large n and all integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that $X_{n,m} h_n \leq b_0 d_{n,m}$

$$\begin{array}{rcl} X_{n,m}h_n & \stackrel{(1)}{\leq} & X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}h_{n-1} \\ & \stackrel{(\text{Induction})}{\leq} b_0d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)b_0d_{n-1,m-1} \\ & \stackrel{\text{Rec. } d_{n,m}}{=} b_0d_{n,m}. \end{array}$$

Relaxed trees: Proof idea – lower bound

Main idea

Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$

for all sufficiently large n and all integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that $X_{n,m} h_n \leq b_0 d_{n,m}$

$$\begin{array}{rcl} X_{n,m}h_n & \stackrel{(1)}{\leq} & X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right) X_{n-1,m-1}h_{n-1} \\ & \stackrel{(\text{Induction})}{\leq} b_0 d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) b_0 d_{n-1,m-1} \\ & \stackrel{\text{Rec. } d_{n,m}}{=} b_0 d_{n,m}. \end{array}$$

Lower bound – Expansion

1 Transform to $P_{n,m} \ge 0$ for

$$P_{n,m} := -X_{n,m}s_n + X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}.$$

where $(\sigma_i, \tau_j \in \mathbb{R})$

$$s_n := \sigma_0 + \frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/6}},$$
$$X_{n,m} := \left(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right).$$

Expand Ai(z) in a neighborhood of

$$\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}},$$

using $\operatorname{Ai}''(z) = z\operatorname{Ai}(z)$. Then

$$P_{n,m} = \mathbf{p}_{n,m} \operatorname{Ai}(\alpha) + \mathbf{p}'_{n,m} \operatorname{Ai}'(\alpha),$$

where $p_{n,m}$ and $p'_{n,m}$ are power series in $n^{-1/6}$ whose coefficients are polynomials in m.

Lower bound – Expansion

1 Transform to $P_{n,m} \ge 0$ for

$$P_{n,m} := -X_{n,m}s_n + X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}.$$

where $(\sigma_i, \tau_j \in \mathbb{R})$

$$s_n := \sigma_0 + \frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/6}},$$
$$X_{n,m} := \left(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right).$$

2 Expand Ai(z) in a neighborhood of

$$\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}},$$

using $\operatorname{Ai}''(z) = z\operatorname{Ai}(z)$. Then

$$P_{n,m} = p_{n,m} \operatorname{Ai}(\alpha) + p'_{n,m} \operatorname{Ai}'(\alpha),$$

where $p_{n,m}$ and $p'_{n,m}$ are power series in $n^{-1/6}$ whose coefficients are polynomials in m.

Lower bound - Colorful Polygons

3 Choose σ_i and τ_i to kill lower order terms in

$$P_{n,m} = \sum a_{i,j} m^i n^j$$

- blue terms: $\sigma_0 = 2$
- red terms: $\sigma_1 = 0$
- green terms: $\sigma_2 = 2^{2/3}a_1$

• yellow terms:
$$\sigma_3=8/3$$
 and $au_2=-2/3$

Lower bound - Colorful Polygons

3 Choose σ_i and τ_i to kill lower order terms in

$$P_{n,m} = \sum a_{i,j} m^i n^j$$

- blue terms: $\sigma_0 = 2$
- red terms: $\sigma_1 = 0$
- green terms: $\sigma_2 = 2^{2/3}a_1$

• yellow terms:
$$\sigma_3=8/3$$
 and $au_2=-2/3$

$$P_{n,m} = p_{n,m} \operatorname{Ai}(\alpha) + p'_{n,m} \operatorname{Ai}'(\alpha)$$

Theorem

The number $r_n(c_n)$ of relaxed (compacted) binary trees, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \to \infty$

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x).

Theorem

The number $r_n(c_n)$ of relaxed (compacted) binary trees, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \to \infty$

$$r_{n} = \Theta\left(n! \, 4^{n} e^{3a_{1}n^{1/3}}n\right),$$

$$c_{n} = \Theta\left(n! \, 4^{n} e^{3a_{1}n^{1/3}}n^{3/4}\right),$$

$$b_{n} = \Theta\left(n! \, 8^{n} e^{3a_{1}n^{1/3}}n^{7/8}\right),$$

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2020]

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x).

Theorem

The number $r_n(c_n)$ of relaxed (compacted) binary trees, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \to \infty$

 $r_{n} = \Theta\left(n! 4^{n} e^{3a_{1}n^{1/3}}n\right),$ $c_{n} = \Theta\left(n! 4^{n} e^{3a_{1}n^{1/3}}n^{3/4}\right),$ $b_{n} = \Theta\left(n! 8^{n} e^{3a_{1}n^{1/3}}n^{7/8}\right),$ $y_{n} = \Theta\left(n! 12^{n} e^{a_{1}(3n)^{1/3}}n^{-2/3}\right),$

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2020]

[Banderier, W 2021]

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x).

Theorem

The number $r_n(c_n)$ of relaxed (compacted) binary trees, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls in the bottom row satisfy for $n \to \infty$

 $r_{n} = \Theta\left(n! 4^{n} e^{3a_{1}n^{1/3}}n\right),$ $c_{n} = \Theta\left(n! 4^{n} e^{3a_{1}n^{1/3}}n^{3/4}\right),$ $b_{n} = \Theta\left(n! 8^{n} e^{3a_{1}n^{1/3}}n^{7/8}\right),$ $y_{n} = \Theta\left(n! 12^{n} e^{a_{1}(3n)^{1/3}}n^{-2/3}\right),$

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2020]

[Banderier, W 2021]

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x).

Associated recurrence relations $(n \ge m \ge 0)$:

$$r_n = a_{n,n}$$
,where $a_{n,m} = a_{n,m-1} + (m+1)a_{n-1,m}$ $c_n = c_{n,n}$,where $c_{n,m} = c_{n,m-1} + (m+1)c_{n-1,m} - (m-1)c_{n-2,m-1}$ $b_n = b_{n,n}$,where $b_{n,m} = 2b_{n,m-1} + (m+1)b_{n-1,m} - mb_{n-2,m-1}$ $y_n = y_{n,n}$,where $y_{n,m} = y_{n,m-1} + (2n+m-1)y_{n-1,m}$

Compacted binary trees of bounded right height

Bounded right height

The **right height** of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Bounded right height

The **right height** of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number $r_{k,n}$ ($c_{k,n}$) of relaxed (compacted) trees with right height at most k satisfies for $n \to \infty$

$$r_{k,n} \sim \gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2}},$$

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2},$$

where $\gamma_k, \kappa_k \in \mathbb{R} \setminus \{0\}$ are independent of *n*.

- Problem: super-exponential growth $r_{k,n} = \Theta(n!)$ but unlabeled structures!
- Idea: derive a symbolic method for compacted trees using exponential generating functions

- Problem: super-exponential growth $r_{k,n} = \Theta(n!)$ but unlabeled structures!
- Idea: derive a symbolic method for compacted trees using exponential generating functions

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

- Problem: super-exponential growth $r_{k,n} = \Theta(n!)$ but unlabeled structures!
- Idea: derive a symbolic method for compacted trees using exponential generating functions

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .

- Problem: super-exponential growth $r_{k,n} = \Theta(n!)$ but unlabeled structures!
- Idea: derive a symbolic method for compacted trees using exponential generating functions

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .

Proof:

$$t_k = k![z^k]zT(z) = k \cdot t_{k-1}$$

- Problem: super-exponential growth $r_{k,n} = \Theta(n!)$ but unlabeled structures!
- Idea: derive a symbolic method for compacted trees using exponential generating functions

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

 $T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .

Proof:

$$t_k = k![z^k]zT(z) = \underbrace{k}_{\substack{k \text{ possible} \\ \text{pointers}}} \cdot \underbrace{t_{k-1}}_{\substack{k-1 \text{ internal} \\ \text{nodes}}}$$

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$

Append a (possibly empty) sequence at the root.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$

Append a (possibly empty) sequence at the root.

 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$

Append a (possibly empty) sequence at the root.

$$D: T(z) \mapsto \frac{d}{dz}T(z)$$

Delete top node but preserve its pointers.

$I: T(z) \mapsto \int T(z)$

Add top node without pointers.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$

Append a (possibly empty) sequence at the root.

$$D: T(z) \mapsto \frac{d}{dz}T(z)$$

Delete top node but preserve its pointers.

T

 $I: T(z) \mapsto \int T(z)$

Add top node without pointers.

Τ

 $P: T(z) \mapsto z \frac{d}{dz} T(z)$

Add a new pointer to the top node.

Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

then we get the closed form

$$R_1(z)=\frac{1}{\sqrt{1-2z}},$$

Symbolic construction

$$(1-2z) R'_1(z) - R_1(z) = 0,$$

 $R_1(0) = 1,$

then we get the closed form

$$R_1(z)=\frac{1}{\sqrt{1-2z}},$$

and the coefficients

$$r_{1,n} = \frac{n!}{2^n} {2n \choose n} = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1.$$

[W 2019, "A bijection of plane increasing trees with relaxed binary trees of right height at most one"].

Symbolic construction

$$(1 - 3z + z^2) R_2''(z) + (2z - 3) R_2'(z) = 0,$$

 $R_2(0) = 1, R_2'(0) = 1,$

Symbolic construction

$$egin{aligned} \left(1-3z+z^2
ight)R_2''(z)+\left(2z-3
ight)R_2'(z)=0,\ R_2(0)=1,\ R_2'(0)=1, \end{aligned}$$

then we get the closed form

$$R_2'(z) = \frac{1}{1 - 3z + z^2}$$

Symbolic construction

$$egin{aligned} \left(1-3z+z^2
ight)R_2''(z)+\left(2z-3
ight)R_2'(z)=0,\ R_2(0)=1,\ R_2'(0)=1, \end{aligned}$$

then we get the closed form

$$R_2'(z) = \frac{1}{1 - 3z + z^2},$$

and the coefficients

$$r_{2,n} = \frac{(n-1)!}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{2n} - \left(\frac{1-\sqrt{5}}{2} \right)^{2n} \right).$$

Symbolic construction

$$egin{aligned} & \left(1-4z+3z^2
ight) R_3'''(z)+\left(9z-6
ight) R_3''(z)+2R_3'(z)=0, \ & R_3(0)=1, \ R_3'(0)=1, \ R_3''(0)=rac{3}{2}, \end{aligned}$$

Symbolic construction

$$egin{aligned} & \left(1-4z+3z^2
ight)R_3''(z)+\left(9z-6
ight)R_3''(z)+2R_3'(z)=0, \ & R_3(0)=1, \ R_3'(0)=1, \ R_3''(0)=rac{3}{2}, \end{aligned}$$

then we get the closed form

$$R_3(z) = \left(\frac{3z - 2 + \sqrt{3}\sqrt{1 - 4z + 3z^2}}{\sqrt{3} - 2}\right)^{1/\sqrt{3}},$$

Symbolic construction

$$(1 - 4z + 3z^2) R_3'''(z) + (9z - 6) R_3''(z) + 2R_3'(z) = 0$$

 $R_3(0) = 1, R_3'(0) = 1, R_3''(0) = \frac{3}{2},$

then we get the closed form

$$R_3(z) = \left(\frac{3z - 2 + \sqrt{3}\sqrt{1 - 4z + 3z^2}}{\sqrt{3} - 2}\right)^{1/\sqrt{3}},$$

and the asymptotics of the coefficients

$$r_{3,n} = n! [z^n] R_3(z) = \frac{n!}{\sqrt{6} (2 - \sqrt{3})^{1/\sqrt{3}}} \frac{3^n}{n^{3/2} \sqrt{\pi}} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right).$$

Theorem

Let
$$D = \frac{d}{dz}$$
 and $(L_k)_{k\geq 0}$ be a family of differential operators given by
 $L_0 = (1 - z),$
 $L_1 = (1 - 2z)D - 1,$
 $L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2.$

$$L_k\cdot R_k=0.$$

Theorem

Let
$$D = \frac{d}{dz}$$
 and $(L_k)_{k\geq 0}$ be a family of differential operators given by
 $L_0 = (1 - z),$
 $L_1 = (1 - 2z)D - 1,$
 $L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2.$

$$L_k \cdot R_k = 0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$

Theorem

Let
$$D = \frac{d}{dz}$$
 and $(L_k)_{k\geq 0}$ be a family of differential operators given by
 $L_0 = (1 - z),$
 $L_1 = (1 - 2z)D - 1,$
 $L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2.$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$
$$(z^2 - 3z + 1)\frac{d^2}{dz^2}R_2(z) + (2z - 3)\frac{d}{dz}R_2(z) = 0$$

Theorem

Let
$$D = \frac{d}{dz}$$
 and $(L_k)_{k\geq 0}$ be a family of differential operators given by
 $L_0 = (1 - z),$
 $L_1 = (1 - 2z)D - 1,$
 $L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \qquad k \geq 2.$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$

$$(z^2 - 3z + 1)rac{d^2}{dz^2}R_2(z) + (2z - 3)rac{d}{dz}R_2(z) = 0$$

$$(3z^{2}-4z+1)\frac{d^{3}}{dz^{3}}R_{3}(z)+(9z-6)\frac{d^{2}}{dz^{2}}R_{3}(z)+2\frac{d}{dz}R_{3}(z)=0$$

Proof of asymptotics of compacted trees of bounded right height

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using **Guess'n'Prove techniques**.

2 Use singularity analysis directly on ODE $L_k \cdot R_k = 0$:

Proof of asymptotics of compacted trees of bounded right height

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using **Guess'n'Prove techniques**.

- **2** Use singularity analysis directly on ODE $L_k \cdot R_k = 0$:
 - **1** Exponential growth ρ_k :
 - Roots of $\ell_{k,k}(z)$ are candidates.
 - $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

Proof of asymptotics of compacted trees of bounded right height

1 Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$$

Find recurrences for $\ell_{k,i}(z)$ using **Guess'n'Prove techniques**.

- **2** Use singularity analysis directly on ODE $L_k \cdot R_k = 0$:
 - **1** Exponential growth ρ_k :
 - Roots of $\ell_{k,k}(z)$ are candidates.
 - $\ell_{k,k}(z)$ is a transformed Chebyshev polynomial of the second kind. Hence,

$$\rho_k = \frac{1}{4\cos\left(\frac{\pi}{k+3}\right)^2}.$$

2 Subexponential growth:

- Prove that other coefficients $\ell_{k,i}(z)$ are nice.
- Use the indicial polynomial derived from the $\ell_{k,i}(z)$.
- Find a basis of solutions for differential equation: Only one is singular at ρ_k !

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number of relaxed and compacted binary trees with **right height at most k** satisfy for $n \to \infty$

$$r_{k,n} \sim \gamma_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2}}$$
 and $c_{k,n} \sim \kappa_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2}-\frac{1}{k+3}-\frac{k-1}{4(k+3)\cos\left(\frac{\pi}{k+3}\right)^2}}$.

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021] The number of relaxed and compacted binary trees with **right height at most k** satisfy for $n \to \infty$ $r_{k,n} \sim \gamma_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2}}$ and $c_{k,n} \sim \kappa_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2} - \frac{1}{k+3} - \frac{k-1}{4(k+3)\cos\left(\frac{\pi}{k+3}\right)^2}}$. The number **unbounded** relaxed and compacted binary trees satisfy $r_n = \Theta\left(n! 4^n e^{3a_1n^{1/3}}n\right)$ and $c_n = \Theta\left(n! 4^n e^{3a_1n^{1/3}}n^{3/4}\right)$, where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021] The number of relaxed and compacted binary trees with **right height at most k** satisfy for $n \to \infty$ $r_{k,n} \sim \gamma_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2}}$ and $c_{k,n} \sim \kappa_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2} - \frac{1}{k+3} - \frac{k-1}{4(k+3)\cos\left(\frac{\pi}{k+3}\right)^2}}$. The number **unbounded** relaxed and compacted binary trees satisfy $r_n = \Theta\left(n! 4^n e^{3a_1n^{1/3}}n\right)$ and $c_n = \Theta\left(n! 4^n e^{3a_1n^{1/3}}n^{3/4}\right)$, where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Many future research directions:

- Multiplicative constants
- Universality of $e^{c a_1 n^{1/3}}$
- Further applications: Do you know similar recurrences?

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021] The number of relaxed and compacted binary trees with **right height at most k** satisfy for $n \to \infty$ $r_{k,n} \sim \gamma_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2}}$ and $c_{k,n} \sim \kappa_k n! 4^n \cos\left(\frac{\pi}{k+3}\right)^{2n} n^{-\frac{k}{2} - \frac{1}{k+3} - \frac{k-1}{4(k+3)\cos\left(\frac{\pi}{k+3}\right)^2}}$. The number **unbounded** relaxed and compacted binary trees satisfy $r_n = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n\right)$ and $c_n = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n^{3/4}\right)$, where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Many future research directions:

- Multiplicative constants
- Universality of $e^{c a_1 n^{1/3}}$
- Further applications: Do you know similar recurrences?

Backup

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

 $c_{k,n} \sim \kappa_k n! r_k^n n^{\alpha_k}$ and

 $r_{k,n} \sim \gamma_k n! r_k^n n^{\beta_k}.$

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

 $c_{k,n} \sim \kappa_k n! r_k^n n^{\alpha_k}$

and

 $r_{k,n} \sim \gamma_k n! r_k^n n^{\beta_k}.$

k	r _k	$r_k \approx$	$\kappa_k \approx$	α_k	$\alpha_k \approx$	$\gamma_k \approx$	β_k	$\beta_k \approx$
1	2	2.000	0.708	$-\frac{3}{4}$	-0.750	0.564	$-\frac{1}{2}$	-0.5
2	$4\cos(\frac{\pi}{5})^2$	2.618	0.561	$-\frac{6}{5} - \frac{1}{20\cos(\frac{\pi}{5})^2}$	-1.276	0.447	$-\overline{1}$	-1.0
3	3	3.000	0.605	$-\frac{16}{9}$	-1.778	0.493	$-\frac{3}{2}$	-1.5
4	$4\cos(\frac{\pi}{7})^2$	3.246	0.873	$-\frac{15}{7} - \frac{3}{28\cos(\frac{\pi}{7})^2}$	-2.275	0.726	$-\overline{2}$	-2.0
5	$4\cos(\frac{\pi}{8})^2$	3.414	1.625	$-\frac{21}{8} - \frac{1}{8\cos(\frac{\pi}{9})^2}$	-2.772	1.379	$-\frac{5}{2}$	-2.5
6	$4\cos(\frac{\pi}{9})^2$	3.532	3.782	$-\frac{28}{9} - \frac{5}{36\cos(\frac{\pi}{6})^2}$	-3.268	3.260	-3	-3.0
7	$4\cos(\frac{\pi}{10})^2$	3.618	10.708	$-\frac{18}{5} - \frac{3}{20\cos(\frac{\pi}{10})^2}$	-3.766	9.350	$-\frac{7}{2}$	-3.5

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

Let $R_1(z) = \sum_{\ell > 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

Decomposition of $R_1(z)$ $R_1(z) = \sum_{n \ge 0} R_{1,\ell}(z)$ where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

Let $R_1(z) = \sum_{\ell > 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded right height ≤ 1 .

Decomposition of $R_1(z)$

$$R_1(z) = \sum_{n \ge 0} R_{1,\ell}(z)$$

where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

$$R_{1,0}(z) = R_0(z) = rac{1}{1-z}$$

 $R_{1,1}(z) = ?$

Symbolic specification

1 delete initial sequence

Symbolic specification

- 1 delete initial sequence
- 2 decompose

Symbolic specification

- 1 delete initial sequence
- 2 decompose
- 3 append and add pointer

Symbolic specification

- 1 delete initial sequence
- 2 decompose
- 3 append and add pointer
- 4 add initial sequence

$R_{1,1}(z)$

$$R_{1,1}(z) = \underbrace{S}_{\text{init. seq.}} \circ \underbrace{I}_{\text{node}} \circ \underbrace{S \circ P}_{\text{red pointer and seq.}} \left(\underbrace{zR_{1,0}(z)}_{\text{grey node }+} \right)$$
$$R_{1,1}(z) = \frac{1}{1-z} \int \frac{1}{1-z} z \left(zR_{1,0}(z) \right)' \, dz$$

$$\begin{split} & R_{1,\ell}(z) = \frac{1}{1-z} \int \frac{1}{1-z} z \left(z R_{1,\ell-1}(z) \right)' \, dz, \qquad \qquad \ell \geq 1, \\ & R_{1,0}(z) = R_0(z) = \frac{1}{1-z}. \end{split}$$

$$\begin{split} & R_{1,\ell}(z) = \frac{1}{1-z} \int \frac{1}{1-z} z \left(z R_{1,\ell-1}(z) \right)' \, dz, \qquad \qquad \ell \geq 1, \\ & R_{1,0}(z) = R_0(z) = \frac{1}{1-z}. \end{split}$$

Recall that $R_1(z) = \sum_{\ell \ge 0} R_{1,\ell}(z)$. Summing the previous equation (formally) for $\ell \ge 1$ gives

$$\frac{1-2z}{1-z}R_1'(z)-\frac{1}{1-z}R_1(z)-((1-z)R_{1,0}(z))'=0.$$

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0,$$
 (2)

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Consider an ordinary generating function of the kind

$$\partial^{r} Y(z) + a_{1}(z)\partial^{r-1} Y(z) + \dots + a_{r}(z)Y(z) = 0, \qquad (2)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

$$\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r,$$

and an irregular singularity otherwise.

Consider an ordinary generating function of the kind

$$\partial^{r} Y(z) + a_{1}(z)\partial^{r-1} Y(z) + \dots + a_{r}(z)Y(z) = 0, \qquad (2)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

$$\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r,$$

and an irregular singularity otherwise.

Relaxed trees

$$\ell_{k,k}(z)\partial^k R_k(z) + \ell_{k,k-1}(z)\partial^{k-1}R_k(z) + \ldots + \ell_{k,0}(z)R_k(z) = 0$$

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0,$$
(2)

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

$$\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r,$$

and an irregular singularity otherwise.

Relaxed trees

$$\partial^k R_k(z) + \frac{\ell_{k,k-1}(z)}{\ell_{k,k}(z)} \partial^{k-1} R_k(z) + \ldots + \frac{\ell_{k,0}(z)}{\ell_{k,k}(z)} R_k(z) = 0$$

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

Definition (Indicial polynomial)

Given an equation of the form (2) and a regular singular point ζ , the *indicial polynomial* $I(\alpha)$ at ζ is defined as

$$I(\alpha) = \alpha^{\underline{r}} + \delta_1 \alpha^{\underline{r-1}} + \dots + \delta_r, \qquad \qquad \alpha^{\underline{\ell}} := \alpha(\alpha - 1) \cdots (\alpha - \ell + 1),$$

where $\delta_i := \lim_{z \to \zeta} (z - \zeta)^i a_i(z)$. The *indicial equation at* ζ is the algebraic equation $I(\alpha) = 0$.

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

Definition (Indicial polynomial)

Given an equation of the form (2) and a regular singular point ζ , the *indicial polynomial* $I(\alpha)$ at ζ is defined as

$$I(\alpha) = \alpha^{\underline{r}} + \delta_1 \alpha^{\underline{r-1}} + \dots + \delta_r, \qquad \qquad \alpha^{\underline{\ell}} := \alpha(\alpha - 1) \cdots (\alpha - \ell + 1),$$

where $\delta_i := \lim_{z \to \zeta} (z - \zeta)^i a_i(z)$. The indicial equation at ζ is the algebraic equation $I(\alpha) = 0$.

All the solutions of the differential equations behave for $z \to \zeta$ like

$$(z-\zeta)^{lpha}\log(z-\zeta)^{eta}$$

for some $\alpha \in \mathbb{C}, \beta \in \mathbb{N}$.

 $\blacksquare \ \alpha$ is a root of the indicial polynomial

• β is related to multiple roots of the indicial polynomial and roots at integer distances
Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$.

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta),$$

where H_m is analytic at 0 $(H_m(0) \neq 0)$.

$$m=0,1,\ldots,r-2,$$

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 :

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 :

1 For $\delta_1 \in \{0, 1, \dots, r-1\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)\log(z-\zeta);$$

where H is analytic at 0 with $H(0) \neq 0$.

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 :

1 For $\delta_1 \in \{0, 1, \dots, r-1\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)\log(z-\zeta);$$

2 For $\delta_1 \in \{r, r+1, \ldots\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)+H_0(z-\zeta)\left(\log(z-\zeta)
ight)^k, \quad ext{ with } \quad k\in\{0,1\};$$

where H is analytic at 0 with $H(0) \neq 0$.

Theorem

Consider a differential equation (2) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 :

1 For $\delta_1 \in \{0, 1, \dots, r-1\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)\log(z-\zeta);$$

2 For $\delta_1 \in \{r, r+1, \ldots\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)+H_0(z-\zeta)\left(\log(z-\zeta)\right)^k, \quad \text{with} \quad k\in\{0,1\}$$

3 For $\delta_1 \notin \mathbb{Z}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta);$$

where H is analytic at 0 with $H(0) \neq 0$.

What is the Airy function?

Properties

- Ai(x) = $\frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$
- Largest root $a_1 \approx -2.338$
- $\blacksquare \lim_{x \to \infty} \operatorname{Ai}(x) = 0$
- Also defined by $\operatorname{Ai}''(x) = x\operatorname{Ai}(x)$
- Banderier, Flajolet, Schaeffer, Soria 2001]: Random Maps
- [Flajolet, Louchard 2001]:
 Brownian excursion area

Refined heuristic analysis

1 Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(rac{m+1}{\sqrt[3]{n}}
ight),$$

 $s_n = 2 + cn^{-2/3} + O(n^{-1}).$

yields estimates $c = 2^{2/3}a_1$ such that $h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$ and $f(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

2 Ansatz of order 2:

$$d_{n,m} \approx h(n) \left(f_0 \left(\frac{m+1}{\sqrt[3]{n}} \right) + n^{-1/3} f_1 \left(\frac{m+1}{\sqrt[3]{n}} \right) \right),$$

$$s_n = 2 + c n^{-2/3} + dn^{-1} + O(n^{-4/3}).$$

yields estimates d = 8/3 such that

 $h(n) \sim const \cdot 2^n e^{3a_1(n/2)^{1/3}} n^{4/3}$ and $f_0(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

This way we conjecture the asymptotic form for relaxed binary trees:

$$r_n = n! d_{2n,0} = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n\right).$$

Refined heuristic analysis

1 Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(rac{m+1}{\sqrt[3]{n}}
ight),$$

 $s_n = 2 + cn^{-2/3} + O(n^{-1}).$

yields estimates $c = 2^{2/3}a_1$ such that

$$h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$$
 and $f(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

2 Ansatz of order 2:

$$\begin{split} d_{n,m} &\approx h(n) \left(f_0 \left(\frac{m+1}{\sqrt[3]{n}} \right) + n^{-1/3} f_1 \left(\frac{m+1}{\sqrt[3]{n}} \right) \right), \\ s_n &= 2 + c n^{-2/3} + dn^{-1} + O(n^{-4/3}). \end{split}$$

yields estimates d = 8/3 such that

 $h(n) \sim const \cdot 2^n e^{3a_1(n/2)^{1/3}} n^{4/3}$ and $f_0(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

This way we conjecture the asymptotic form for relaxed binary trees

$$r_n = n! d_{2n,0} = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n\right).$$

Refined heuristic analysis

1 Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(rac{m+1}{\sqrt[3]{n}}
ight),$$

 $s_n = 2 + cn^{-2/3} + O(n^{-1}).$

yields estimates $c = 2^{2/3}a_1$ such that

$$h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$$
 and $f(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

2 Ansatz of order 2:

$$d_{n,m} \approx h(n) \left(f_0\left(\frac{m+1}{\sqrt[3]{n}}\right) + n^{-1/3} f_1\left(\frac{m+1}{\sqrt[3]{n}}\right) \right),$$

$$s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).$$

yields estimates d = 8/3 such that

$$h(n) \sim const \cdot 2^n e^{3a_1(n/2)^{1/3}} n^{4/3}$$
 and $f_0(\kappa) = \operatorname{Ai}(2^{1/3}\kappa + a_1).$

This way we conjecture the asymptotic form for relaxed binary trees:

$$r_n = n! d_{2n,0} = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n\right).$$

Lower bound – Case analysis

3 Treat $p_{n,m}$ and $p'_{n,m}$ separately and prove that all dominating terms in the respective regimes (corners of convex hull) are positive.

non-zero coefficients

Technicalities for compacted trees and minimal DFAs

Lots of technicalities:

- Before induction, we have to remove the negative term from the recurrence, but we have to do so precisely for asymptotics to stay the same.
- We only prove bounds for small *m*; we prove that large *m* terms don't matter
- The lower bound is negative for very large m, so we have to be careful with induction
- We only prove the bounds for sufficiently large *n*, but this only makes a difference to the constant term. Proof involves colorful Newton polygons:

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- **c**_n: number of compacted trees of size n

$$(c_n)_{n\geq 0} = (1, 1, 3, 15, 111, 1119, 14487, \dots)$$

Important: Subtrees are unique!

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- **c**_n: number of compacted trees of size n

$$(c_n)_{n\geq 0} = (1, 1, 3, 15, 111, 1119, 14487, \dots)$$

Important: Subtrees are unique!

Simple bounds
$$n! \le c_n \le \frac{1}{n+1} \binom{2n}{n} n!$$

