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Asymptotic counting

Landau notation

Let (an)n>0 and (bn)n>0, bn > 0 be two sequences.

m a, = O(by) if limsup |Z—”‘ < 00
n—oo
m a,=0(b,) if 0<lim inf% and limsup % < o0
n—oo ™ n—oo "
= a, ~ b, if lim 12l —1
n—oo N
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Landau notation

Let (an)n>0 and (bn)n>0, bn > 0 be two sequences.
m a, = O(by) if limsup % < 00
n—oo
m a,=0(b,) if 0<lim inf% and limsup % < o0
n—oo ™ n—oco
= a, ~ b, i lim 12l =1
n—oo ©n
Examples:

'Stirling's formula
m n! =0O(n")

mn=0 (n”“/2 e ")

m nl ~\2wnn"e""
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Stretched exponentials and beyond

Asymptotic counting

Landau notation
Let (an)n>0 and (bn)n>0, bn > 0 be two sequences.
_ PENE [an]
m a, = O(by) if I|’r1nﬁsot<13p Z—n < 00
m a,=0(b,) if 0<lim inf% and limsup % < o0
n—oo ™ n—oo "
= a, ~ b, if lim 12l —1
n—oo =N
Examples:
Stirling’s formula Binomial coeffs
m nl =0O(n") m (27) =0(@4")
_ n+1/2 ,—n 2 _ "
mnl =0 (n"1/2en) .(:)_e(%)
~ - 2n "
m nl ~2rnn"e"" = (n) ~ \;‘ﬁ
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Stretched exponentials and beyond

Asymptotic counting

Landau notation
Let (an)n>0 and (bn)n>0, bn > 0 be two sequences.
— Tt [2n]
m a, = O(by) if I|’r1nﬁsot<13p Z—n < 00
m a,=0(b,) if 0<Ilim inf% and limsup % < 00
n—oo 1 n—oo "
= 3, ~ b, if lim 12l —1
n—oo =N
Examples:
Stirling’s formula Binomial coeffs Double factorials
m nl =0O(n") m (27) =0(@4") m (2n—1)Il = O(n!2")
. =0 (nm12e) . () —e(%) « n-1=0(22)
m nl ~ 2rnn"e”" - (2:) ~ \;‘7% s (2n—1) ~ \”/'%
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What is a stretched exponential?

General question

How does a sequence (a,)n>0 behave for large n?

m Often we observe

for constants C, R, a € R.
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What is a stretched exponential?

General question

How does a sequence (a,)n>0 behave for large n?

m Often we observe

for constants C, R, a € R.

m Much more seldom we observe (or are able to prove)
C-R"-u" -n%,
with a stretched exponential u™ with p > 0 and & € (0, 1).

Some deeper reasons why they are “seldom”
m Generating function cannot be algebraic

m It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only
only with an irregular singularity, e.g., exp(1%5)
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Appearances of stretched exponentials

Known exactly:
m Number theory (integer partitions):

~ (4V3)7! n1
m Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):
~ C14" n_5/6
m Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):
@(n2”(12e_2)" n_2/3)
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Appearances of stretched exponentials

Known exactly:
m Number theory (integer partitions):

~ (4\/:;)—1 n—l
m Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):
~ 4" n—5/6
m Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):
@(n2”(12e_2)" n_2/3)

Conjectured:
m Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:
~ u"
m Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:
~
m and recently more and more appear in group theory, queuing theory, ...

n
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Stretched exponentials in DAG counting
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Biology: d-combining tree-child networks

Definition

® unique root:
e Jeaf.

e tree node:

e reticulation node:

A d-ary rooted phylogenetic network is a DAG with nodes of the type:

indegree 0, outdegree 2
indegree 1, outdegree 0
indegree 1, outdegree 2
indegree d, outdegree 1

Furthermore, the n leaves are labeled bijectively by {1,..., n}.
Tree-child: every non-leaf node has at least one child that is not a reticulation.
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Asymptotics of d-combining tree-child networks

A stretched exponential 1"~ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]
TCg,d) =0 ((n|)d ,Y(d)n e3a 3(d)n

o) — 9641 ;(d)<

C2(d+1)

The number TCE,d) of d-combining tree-child networks with n leaves satisfies

with a3~ —2.338: largest root of the Airy function Ai(x) and

zn“(d)) for n — oo,
d—1\*? (d)_4(d+1)d—1
d+1 ’ o (d-1)!
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Asymptotics of d-combining tree-child networks

A stretched exponential 1"~ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number TCE,d) of d-combining tree-child networks with n leaves satisfies

TCg,d) ((n')d y(d)™ e (d)r n“(d)) for n — oo,
with a3~ —2.338: largest root of the Airy function Ai(x) and
d(3d — 1) d1>2 ’ (d +1)4-1
d)y= -84 1C) I d)y=a"""2
o= -G = (511) L =

Questions we will answer next
m How to prove this?
m Why is there a stretched exponential?

m Why does the Airy function appear?
— Previously, e.g., in random maps [Banderier, Flajolet, Schaeffer,
Soria 2001] and Brownian excursion area [Flajolet, Louchard 2001]
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How to prove this?

Combinatorics: reduce the problem
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How to prove this?

Combinatorics: reduce the problem

m Asymptotically, only maximally reticulated networks important:
Let TCE,"Q be TC networks with n leaves and k reticulation nodes, then
TCW ~ cyTCH)

n,n—1

where ¢ = v/2 and ¢ = 1 for d > 3.
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How to prove this?

Combinatorics: reduce the problem

m Asymptotically, only maximally reticulated networks important:
Let TCE:?,)( be TC networks with n leaves and k reticulation nodes, then

TCY ~ ;T

n,n—1

where ¢ = v/2 and ¢ = 1 for d > 3.
= Bijection of TCE:,{_l to Young tableaux with walls (or special words)

Two parameter recurrence relation

€n,m = Mn,m €n—1,m+1 + Vn,m €n—1,m—1

n>3and m>0, e,_1 =e ,=0 except for & =1,
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How to prove this?

Combinatorics: reduce the problem

m Asymptotically, only maximally reticulated networks important:
Let TCE,"Q be TC networks with n leaves and k reticulation nodes, then

TCY ~ ;T

n,n—1

where ¢ = v/2 and ¢ = 1 for d > 3.
= Bijection of TCE,‘?,),_l to Young tableaux with walls (or special words)

Two parameter recurrence relation

€n,m = Mn,m €n—1,m+1 + Vn,m €n—1,m—1

n>3and m>0, e,_1 = e ,=0 except for &y =1, where

B 2(d— 1) - J 2(m+l)
pm = G Dt (@ - Dm—2@d+1) ™ V"’”_H<1_(d+1)(n+m)>'

i=

We are interested in e, as TCY =@ ((n!)d (#) nt—d ezn,()).
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

More objects with bivariate recurrences giving stretched exponentials

6110(14(15|17|18
31519 (12]|13]16
21117141]11]8

Young tableaux with walls

Minimal automata

Compressed trees

BAADBACFCBEDECDFEF

Constrained words
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Computer Science: Compacted trees

Definition

A compacted k-ary tree is a DAG with nodes of the type:
e unique root: outdegree k
e unique sink: outdegree 0

e internal nodes: outdegree k
Furthermore,

(0) the children are ordered and
(U) all fringe subgraphs are unique.

A relaxed k-ary tree is a compacted k-ary tree without condition (U).

Compacted binary tree Relaxed binary tree

10 / 35
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Why are they interesting?

m Applications:
m XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]

m Data storage [Meinel, Theobald 1998], [Knuth 1968]
m Compilers [Aho, Sethi, Ullman 1986]

m LISP [Goto 1974]

m etc.
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Why are they interesting?

m Applications:
m XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]

m Data storage [Meinel, Theobald 1998], [Knuth 1968]
m Compilers [Aho, Sethi, Ullman 1986]

m LISP [Goto 1974]

m etc.

m Efficient compaction algorithm: expected time O(n)

m A tree of size n has a expected compacted size
C

n

Viogn’

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question

How many compacted trees of (compacted) size n exist?
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Asymptotics of relaxed k-ary trees

A stretched exponential 1"~ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r, of relaxed k-ary trees with n internal nodes satisfies

with a; ~—2.338: largest root of the Airy function Ai(x) and

1/3
a(k):$’ B(k) = <k(k21)> . (k)

n = e ((n!)kil ’Y(k)n 6331 "(‘k)”l )'noz(k)) )

kk

W'
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Asymptotics of relaxed k-ary trees

A stretched exponential 1"~ appears!

Theorem [Ghosh Dastidar, W 2024+]

The number r, of relaxed k-ary trees with n internal nodes satisfies
n = e ((n!)kil ’Y(k)n 6331 "(‘k)”l )'noz(k)) )
with a; ~—2.338: largest root of the Airy function Ai(x) and

7k—8 v (k(k =1\ _ K

Proof strategy
Bijective Comb.: Bijection to decorated Dyck paths

Enumerative Comb.: Two-parameter recurrence

Calculus + ODEs: Heuristic analysis of recurrence

Computer algebra: Inductive proof of asymptotically tight bounds
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Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n — oo
rh=9© (n! gngdan’”’ ”) and =0 (n! gnedan’”’ n3/4) ;

where a; &~ —2.338 is the largest root of the Airy function Ai(x).
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Stretched exponentials and beyond = Stretched exponentials in DAG counting

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n — oo
rh=9© (n! gngdan’”’ ”) and =0 (n! gnedan’”’ n3/4) ;
where a; &~ —2.338 is the largest root of the Airy function Ai(x).

Conjecture
Experimentally we find
Iy~ 7,n!4"e3‘31"1/3n and Cph ~ %n!4"e3al”l/3n3/4,
where

v ~ 166.95208957 and Ye A 173.12670485.
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Stretched exponentials and beyond | Bijection to decorated paths

Bijection to decorated paths
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Stretched exponentials and beyond  Bijection to decorated paths

Bijection to decorated paths

(7, 7)/ [

W ke Ot & 1

(07 71)

2a 2b 4a 4b 6a 6b Tb

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
m going up: add up step
m passing a pointer: add horizontal step and mark box corresponding to pointer label
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Bijection to decorated paths

(.7,

W ke Ot & 1

(07 71)
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Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
m going up: add up step
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Decorated paths

T (0,0)

(07 _1)

.
Y

2a 2b 4a 4b 6a 6b Tb

m Path starts at (0, —1) and ends at (n, n)
m Path never crosses the diagonal
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Decorated paths

K } (7.7,
K
//‘/ 7’
7
i W y
/ L Xe
E =4 =4
J J T
. X 5
B e W e W e .
0 . 4
2] 2] ] 2] 2]
) ) J ) 3
X X 3
s} 2 2 9 ) ) z
/// /// 2
L e e S S (0,0)
XX X 1
(0.-1)

2a 2b 4a 4b 6a 6b Tb

m Path starts at (0, —1) and ends at (n, n)
m Path never crosses the diagonal
m One box is marked below each horizontal step
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Decorated paths

m+1(n,m) ? )
(nflxm) // 1 78
1 //‘/ 7 ’
(n,m—1) /{: | " 1 L 7
P O O ’
oo ‘ X 16
S -
0 TR ] X 5
A A4 .
oo o 4
33D -
B N R R R X X 3
s 2 2 9 2} 2} Z
Tl T O R T 2
L (0,0)
XX X 1
(0,-1)

2a 2b 4a 4b 6a 6b Tb

Path starts at (0, —1) and ends at (n, n)

Path never crosses the diagonal

One box is marked below each horizontal step
Each vertical step has weight 1
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Recurrence for decorated paths

m+1(n,m) ? )
(nflvm) // 1 R
1 //‘/ 7 ’
(n,m—1) /{: | " 1 L 7
P O O ’
S h ) X |6
Ry B
0 TR ] X 5
T S .
PSS S N R R S 4
Ry SR o .
B R N R (N /R X X 3
s 2 2 9 2} 2} Z
Tl S S R N 2
e R | (0,0)
X | X X 1
(0,-1)

2a 2b 4a 4b 6a 6b b
Recurrence: Let a, , be the number of paths ending at (n, m)
anm = anm—1+ (M+1)an_1,m, forn>m
ap,o = 1.

Number of relaxed trees is r, = ap n
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Recurrence for decorated paths

m+ 1 (n,m) K
(n -1, m) .’
1 =
.
.
(n,m—1) o .
O 15}
p
E =4 =4
o o T
.
.
4 4 A A
b7 £3 3 £3 £3
p
p
p
9 2] 9 2] 2]
) ) J ) 3
s} 9 9 9 ) )
) 22
.
.
.
o—1 1 1 1 1 1 1
A A T T T T T T

Recurrence: Let a, , be the number of paths ending at (n, m)
anm = anm—1+ (M+1)an_1,m, forn>m
ap,o = 1.

Number of relaxed trees is r, = ap n
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Stretched exponentials and beyond  Bijection to decorated paths

Recurrence for decorated paths

i (n,m) ?
(n—1,m) &L .
1 s
AT
.
(n,m—1) .6 6
2 WG 7
.
‘5 5 5
b W [§ 7
K
‘4 4 4
AT 5 [§ 7
.
.
3 3 3 3 3
A3 1 5 [§ 7
2 2 2 2 2 2
A2 3 1 5 6 7
.
.
ol 1 1 1 1 1 1
1T o2 3 1 5 G 7

Recurrence: Let 3, ,, be the number of paths ending at (n, m) with weights divided by column number
. ~ m+1
dn,m = dn,m-1 1 T an—1,m, forn>m
5070 = I,

Number of relaxed trees is r, = n! 3, ,
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Recurrence for decorated paths

i (n,m) ?
(n—1,m) &L .
1 //‘;kﬂ
.
(n,m—1) s 6
, T 7
.
= 5 5
* 6 7
.
‘4 4 4
e 5 6 7
.
i P
1 3 3
t 1 5 G 7
74 2 2 2 2 2
AT 3 1 5 6 7
.
.
P 1 1 1 1 1 1
MR 3 1 5 G 7

Recurrence: Let 3, ,, be the number of paths ending at (n, m) with weights divided by column number
. ~ m+1
dn,m = dn,m-1 1 T an—1,m, forn>m
5070 = I,

Number of relaxed trees is r, = n! 3, ,
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Stretched exponentials and beyond  Bijection to decorated paths

Recurrence for decorated paths

m+1 (TZ,TI’L) "
(n—1,m) o= .
1 //‘;kﬂ
.
(n,m—1) ‘. 6
T Cd
7
.
a 5
* 6 7
K

‘4 4 4 4
, t 5 6 7

.

.

1 3 3 3

t 1 5 G 7
e 2 2 2 2 2
AT 3 1 5 6 7
a1 1 1 1 1 1 1
MR 3 1 5 G 7

Recurrence: Let 3, ,, be the number of paths ending at (n, m) with weights divided by column number

m+1
3n—1,m> forn>m

5n,m - 5n,m—l +

5070 =1

Number of relaxed trees is r, = n! 3, ,
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Stretched exponentials and beyond  Bijection to decorated paths

Recurrence for decorated paths

m+1 (TZ,TI’L) "
(n—1,m) o= .
1 //‘;kﬂ
.
(n,m—1) ‘. 6
T Cd
7
.
a 5
* 6 7
K

‘4 4 4 4
, * 5 6 7

.

.

1 3 3 3

t 1 5 G 7
e 2 2 2 2 2
AT 3 1 5 6 7
a1 1 1 1 1 1 1
MR 3 1 5 G 7

Recurrence: Let d;; be the number of decorated paths ending at (i, j) shown on the right
2(-1) . .
dij=di_1j+1+ (1 - —i+j ) di—1j-1, fori>0, ;>0
d()’o =1.

Number of relaxed trees is r, = nl db, o
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Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2"
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Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2"

«

0

0 2n

Consider paths with max height h = n® (for 0 < a < 1/2):

1—2c

Number of paths ~ 4"e~ " | Weight = 2" = ¢~ 'o8(2)n"
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Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2"

«

0

0 2n

Consider paths with max height h = n® (for 0 < a < 1/2):

1—2c

Number of paths ~ 4"e~ " | Weight = 2" = ¢~ 'o8(2)n"

n_—cin' "2 —log(2)n®™

Weighted number of paths ~ 4"e

. . _ent/3
Maximum occurs when o = 1/3 and is equal to 4"e=<""".
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Intuition stretched exponential: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2"

«

0

0 2n

Consider paths with max height h = n® (for 0 < a < 1/2):

1—2c

Number of paths ~ 4"e~ " | Weight = 2" = ¢~ 'o8(2)n"

n_—cin' "2 —log(2)n®™

Weighted number of paths ~ 4"e

. . _ent/3
Maximum occurs when o = 1/3 and is equal to 4"e=<""".

Our case: weights decrease similarly with height so we expect similar behavior
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Stretched exponentials and beyond = Heuristic analysis of recurrence

Heuristic analysis of recurrence
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Heuristics: What happens for large (fixed) n?

2(m—1
dn,m = dnp—1,m+1 + (1 - ()> dnfl,mfl

n+m
d"!’" .° 20x10282 ¢
b
23 |
1.5x10 dn,m
.
1.5x10282
1.0x10%3 | .
. 1.0x10282 ¢
»
22 | .
5.0x10 s0x1081 [
.
. :
o 3
20 40 60 80 100 200 400 600 800 1000
m+1 m+1

Figure: Plots of dpm against m+ 1. Left: n = 100, Right: n = 1000.
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Heuristics: What happens for large (fixed) n?

2(m—1
dn,m = dnp—1,m+1 + (1 - ()> dnfl,mfl

n+m
dn,m S 2.0x10282 f*
b
23 |
1.5x10 g
.
1.5x10282
1.0x10%3 | .
. 1.0x10282 ¢
»
22 | .
5.0x10 5.0x10281 [
.
. H
o 3
20 40 60 80 100 200 400 600 800 1000
m+1 m+1

Figure: Plots of dpm against m+ 1. Left: n = 100, Right: n = 1000.

m Let's zoom in to the left (small m) where interesting things are happening.
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Heuristics: What happens for large (fixed) n?

2(m—1
dn m = Unp—1,m+1 + (1 - ()> dnfl,mfl

s
n+m
mm ° 20x10282 N0
- © . .
1.5x10 dn,m .
L]
1.5%10%82 | °
L]
1.0x10% A
. 1.0x10282 o
Y L]
5.0x10%2 °
° 5.0x10281 1 .
L4 °
. °
o ® . o . 0 L L L. %0 ¢.0
5 10 15 10 20 30 40
m+1 m+1

Figure: Plots of dpm against m+ 1. Left: n = 100, Right: n = 1000.

m Let's zoom in to the left (small m) where interesting things are happening.

Michael Wallner  TU Wien = 04.12.2023 20 /35



Heuristics: What happens for large (fixed) n?

2(m—1
dn,m = dnp—1,m+1 + (1 - ()> dnfl,mfl

n+m
e°, !
U .
2.x10577 |- . o
L]
o .
dn,m c f(x)
1.x1077 + @ .
L]
L]
L]
Y L]
L]
0 L L L AL 0
10 20 30 40 50 0 1
m+1 2

Figure: Left: Plot of dnm against m+ 1 for n = 2000. Right: Limiting function f(x).

m Let's zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...
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Heuristics: What happens for large (fixed) n?

2(m—1
dn,m = dnp—1,m+1 + (1 - ()> dnfl,mfl

n+m

1
h(n)} oo,
® °
dn,m . f(x)
L]
0 Seeen 0
g(n) 0 1
m+1 2

Figure: Left: Plot of dnm against m+ 1 for n = 2000. Right: Limiting function f(x).

m Let's zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...
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Heuristics: What happens for large (fixed) n?

2(m—1
dn,m = dnp—1,m+1 + (1 - ()> dnfl,mfl

n+m

1
h(n)} oo,
® °
dn,m . f(x)
L]
0 Ceeae 0
g(n) 0 1
m+1 X

Figure: Left: Plot of dnm against m+ 1 for n = 2000. Right: Limiting function f(x).

m Let's zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...

m—l—l)
Ansatz: d, ., ~ h(n)f | ———
=00 (5

Michael Wallner  TU Wien = 04.12.2023 20 /35




Does this ansatz work in the unweighted or unconstrained model?

dn,m = Mnm dnfl,erl + Vn,m dnfl,mfla m>0
1
Ansatz: d, , ~ h(n)f <m+>
g(n)
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = Mnm dnfl,erl + Vn,m dnfl,mfla m>0
1
Ansatz: d, , ~ h(n)f <m+>
g(n)

Unweighted case iy m = Vp,m = 1 with m > 0:
h(n) ~ =4", g(n) = vn, F(x) = xe .

= E e}
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = Mnm dnfl,erl + Vn,m dnfl,mfla m>0
1
Ansatz: d, , ~ h(n)f <m+>
g(n)

Unweighted case iy m = Vp,m = 1 with m > 0:
h(n) ~ =4", g(n) = vn, F(x) = xe .

= E e}

Unweighted case pin m = Vn,m = 1 with m arbitrary:
2

h(n) ~ %4", g(n) = +/n, flx)=e".
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = Mnm dnfl,erl + Vn,m dnfl,mfla m>0
1
Ansatz: d, , ~ h(n)f <m+>
g(n)

Unweighted case iy m = Vp,m = 1 with m > 0:
h(n) ~ =4", g(n) = vn, F(x) = xe .

= E e}

Unweighted case pin m = Vn,m = 1 with m arbitrary:
2

h(n) ~ %4", g(n) = +/n, flx)=e".

Relaxed binary trees jipm =1 and vy, =1— % with m > 0:
= Based on the relation with pushed Dyck paths, we guess g(n) = /n.

What are h(n) and f(x)?
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m = dn—17m+1 + (1 - (I‘I+IT))> dn—l,m—l

m+1
m Ansatz (a): d,, ~ h(n)f (W) .
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m = dn—17m+1 + (1 - (I‘I+IT))> dn—l,m—l

1
= Ansatz (a): d, . ~ h(n)f (%) .
Substitute into recurrence and set m = x/n — 1:
h(n) ~2 f(x) — 2xf(x)

Fn—1) Gy o)
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m = dn—17m+1 + (1 - (I‘I+IT))> dn—l,m—l

m+1
m Ansatz (a): d,, ~ h(n)f (W) .

Substitute into recurrence and set m = x/n — 1:

h(n) F'(x) = 2xf(x) a3 -1
h(n—1)~2+ ) n +O(n™%)
m Ansatz (b): Set s, := h(hn(i)l) and assume
sn=2+cn 234 0(n?) = h(n) ~2"e*"”
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m = dn—17m+1 + (1 - (I‘I+IT))> dn—l,m—l

m+1
m Ansatz (a): d,, ~ h(n)f (W) .

Substitute into recurrence and set m = x/n — 1:

h(n) o (X)) =2xF(x) o/ -1
h(n—1)~2+ ) n +O(n™%)
m Ansatz (b): Set s, := h(hn(i)l) and assume
sn=2+cn 234 0(n?) = h(n) ~2"e*"”
Solution
f'(x) = (2x + ¢)f(x) = f(x) = Ai(2723(2x + ¢))

where ¢ is a constant and Ai is the Airy function.
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m = dn—17m+1 + (1 - (I‘I+IT))> dn—l,m—l

m+1
m Ansatz (a): d,, ~ h(n)f (W) .

Substitute into recurrence and set m = x/n — 1:

h(n) o, 7)) =2xF(x) a3 -1
h(n—1)~2+ ) n +O(n™%)
m Ansatz (b): Set s, := h(hn(i)l) and assume
sn=2+cn 234 0(n?) = h(n) ~2"e*"”
Solution
f(x) = (2x + ¢)f(x) = f(x) = Ai(2723(2x + ¢))

where ¢ is a constant and Ai is the Airy function.

m Boundary condition: d, _; =0 and d, , > 0.
Then £(0) = 0 implies ¢ = 2%/3a;, where a; ~ —2.338 satisfies Ai(a;) = 0.
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Stretched exponentials and beyond | Inductive proof

Inductive proof
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Proof method

Find explicit sequences X, , and Y, , with the same asymptotic form, such that
Xn,m S dn,m S Yn,ma

for all m and all n large enough.
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Proof method

Find explicit sequences X, , and Y, , with the same asymptotic form, such that
Xn,m S dn,m S Yn,ma

for all m and all n large enough.

How to find them?
Use heuristics

Adapt until X, » and Y, , satisfy the recurrence of d, ,, with the equalities replaced by
inequalities:
= — < and >
Prove X, m < dn.m < Ya m by induction.
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Relaxed trees: Proof idea — lower bound

Main idea

Suppose (Xp,m)n>m>0 and (sp)n>1 satisfy

2(m+1
Xn,msn S Xn—l,m+1 + (1 - ( )) Xn—l,m—la (1)
n+m

for all sufficiently large n and all integers m € [0, n].
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Relaxed trees: Proof idea — lower bound

Main idea

Suppose (Xp,m)n>m>0 and (sp)n>1 satisfy

2(m+1
Xn,msn S Xn—l,m+1 + (1 - ( )) Xn—l,m—la (1)
n+m

for all sufficiently large n and all integers m € [0, n].

Define (hn)a>0 by ho =1 and h, = s,h,_1; then prove that
Xn,mhn S bOdn,m
for some constant by by induction:
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Relaxed trees: Proof idea — lower bound

Main idea

Suppose (Xp,m)n>m>0 and (sp)n>1 satisfy

2(m+1
Xn,msn S Xn—l,m+1 + (1 - ( )) Xn—l,m—la (1)
n+m

for all sufficiently large n and all integers m € [0, n].

Define (hn)a>0 by ho =1 and h, = s,h,_1; then prove that
Xn,mhn S bOdn,m
for some constant by by induction:

®

2 1
Xn,mhn S Xn—l,m+1hn—1 —+ (1 — M

Xn—1.m—1hn_
ntm ) 1,m—1Nn—1
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Relaxed trees: Proof idea — lower bound

Main idea

Suppose (Xp,m)n>m>0 and (sp)n>1 satisfy

2(m+1
Xn,msn S Xn—l,m+1 + (1 - ( )) Xn—l,m—la (1)
n+m

for all sufficiently large n and all integers m € [0, n].

Define (hn)a>0 by ho =1 and h, = s,h,_1; then prove that
Xn,mhn S bOdn,m
for some constant by by induction:

®

2 1
Xn,mhn S Xn—l,m+1hn—1 —+ (1 — M

Xn—1.m—1hn_
ntm ) 1,m—1Nn—1

(Induction) 2(m+1
< bodn—1,mt1 + (1 - %) bodn—1,m—1
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Relaxed trees: Proof idea — lower bound

Main idea

Suppose (Xp,m)n>m>0 and (sp)n>1 satisfy

2(m+1
Xn,msn S Xn—l,m+1 + (1 - ( )) Xn—l,m—la (1)
n+m

for all sufficiently large n and all integers m € [0, n].

Define (hn)a>0 by ho =1 and h, = s,h,_1; then prove that
Xn,mhn S bOdn,m
for some constant by by induction:

(1) 2 1
Xn mhn S Xn—l m+1hn—1 I (1 - M) Xn—l m—lhn—l
’ ’ n+m ’

(Induction) 2(m+1

< bodn—1,mt1 + (1 - Q) bodn—1,m—1

n+m
Rec. dn,m
T b d e
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Lower bound — Expansion

Transform to P, ,» > 0 for

2 1
Pn,m = _Xn,msn + Xn—l,m+1 + <1 - M) Xn—l,m—l-
n+m

where (o7, 77 € R)

Sn =00+ —= —
z Ot ayg o3 T T

2 21/3 1
X = <1 + M) A <31 " ('ln/;))
n n
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Lower bound — Expansion

Transform to P, ,» > 0 for

2 1
Pn,m = _Xn,msn + anl,m+1 + <1 - WH) anl,mfl-
n+m

where (o7, 77 € R)

o1 02 03 04
Sn 0o + 1/3+W+7+W7
2 21/3 1
Xpm = (1 . sz+ﬁm> A <a1 " (T/f))
n n
Expand Ai(z) in a neighborhood of

21/3m

R Ve

using Ai”(z) = zAi(z). Then
Pnm= Pn.mAi() + p;,mAi'(a),

where pp, , and pf,’m are power series in n~ /% whose coefficients are polynomials in m.
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Lower bound — Colorful Polygons

Choose o} and 7; to kill lower order terms in

Pmm: E a,-,jm’n’

i J— e
: Slope: 18

: 2
— Slope: -—
: ope: 3

P Slope: -1

m blue terms: gg = 2

m red terms: 01 =0

m green terms: gy = 22/3 4

= o3 =8/3 and », = —-2/3
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Lower bound — Colorful Polygons

Choose o} and 7; to kill lower order terms in

_ § : | _ . / -/
Pn,m - a’yjm n 'Dn,m - p,,’mAI(Ct) + pn.,mAI (O[)
0 - T T T 1 !
1 2 3 4 5 5
i
— Slope: 71778 ] —— Slope: —17—8
i ¢ |—— Slope: ,% J — Slope: '%
Y- Slope: -1 -+ Slope: -1
_44 D
&

Case analysis on non-zero coefficients!

m blue terms: gg = 2 = Pym >0 for me [0, n2/3—5)

m red terms: 01 =0
m green terms: oy = 2%/3a3;
™ o3 =8/3 and 1, = —2/3
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Results and further perturbations

VTheorem

The number r, (c,) of relaxed (compacted) binary trees, b, of minimal DFAs recognizing a finite
binary language, and y, of 3 x n Young tableaux with walls in the bottom row satisfy for n — oo

=0 (n! gnedan :n) , [Elvey Price, Fang, W 2021]

=0 (n! gnedan’ ;’n3/4) ) [Elvey Price, Fang, W 2021]

with a; ~—2.338: largest root of the Airy function Ai(x).
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Results and further perturbations

VTheorem

The number r, (c,) of relaxed (compacted) binary trees, b, of minimal DFAs recognizing a finite
binary language, and y, of 3 x n Young tableaux with walls in the bottom row satisfy for n — oo

=0 (n! gnedan :n) , [Elvey Price, Fang, W 2021]
=0 (n! gnedan ;’n3/4) , [Elvey Price, Fang, W 2021]
b, =© (n! gneda Jn7/8) , [Elvey Price, Fang, W 2020]

with a; ~—2.338: largest root of the Airy function Ai(x).
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Results and further perturbations

VTheorem

The number r, (c,) of relaxed (compacted) binary trees, b, of minimal DFAs recognizing a finite
binary language, and y, of 3 x n Young tableaux with walls in the bottom row satisfy for n — oo

m=0 (n! gnedan’ :n) , [Elvey Price, Fang, W 2021]
=0 (n! gredan ;’n3/4) , [Elvey Price, Fang, W 2021]
b,=0© (n! 8”(:‘33‘”l Jn7/8> , [Elvey Price, Fang, W 2020]
yn=0 (n! 127ea(3n)" ';n72/3> , [Banderier, W 2021]

with a; ~—2.338: largest root of the Airy function Ai(x).
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Results and further perturbations

Theorem

The number r, (c,) of relaxed (compacted) binary trees, b, of minimal DFAs recognizing a finite
binary language, and y, of 3 x n Young tableaux with walls in the bottom row satisfy for n — oo

m=0 (n! gnedan ‘n) , [Elvey Price, Fang, W 2021]
=0 (n! 4reian ;’n3/4) , [Elvey Price, Fang, W 2021]
b,=0© (n! gnedan Jn7/8> , [Elvey Price, Fang, W 2020]
yn=0 (n! 127ea(3n)" ';n72/3> , [Banderier, W 2021]

with a; ~—2.338: largest root of the Airy function Ai(x).

Associated recurrence relations (n > m > 0):

T = Eaga where anm = anm-1+(Mm+1)a_1.m

G = Gagy where Com = Cnm—1+ (M~+1)Ch_1,m— (M—1)Ch2,m-1
[0 = logp where bp.m =2bnm—1+ (Mm—+1)bp_1,m — Mbp_2 m—1

Yn = Yn,n, where Yn,m = Ynm—1+ (2n+m— 1)Yn71,m
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Stretched exponentials and beyond ~ Compacted binary trees of bounded right height

Compacted binary trees of bounded right height

Michael Wallner  TU Wien = 04.12.2023



Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to
a leaf (not going through pointers).
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to
a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number ry , (ck,n) of relaxed (compacted) trees with right height at most k satisfies for n — oo

1|4 =\ -4
fen ~ yen!| 4cos | —— n-z,
k, Yk k+3

o\ "

™ k 1 1 1 x )2

C ~ K n! 4COS - n_f_kA3_(Z_k+3)Cos(k+3) ,
o 7 Tk < (k+3>>

where 7k, Kk € R\ {0} are independent of n.
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Main idea: Exponential generating functions

m Problem: super-exponential growth ry , = ©(n!) but unlabeled structures!

m Idea: derive a symbolic method for compacted trees using exponential generating functions
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Main idea: Exponential generating functions

m Problem: super-exponential growth ry , = ©(n!) but unlabeled structures!

m Idea: derive a symbolic method for compacted trees using exponential generating functions

Let T(z) =3_,5 t,,zn—n! be an EGF of the class 7.
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Main idea: Exponential generating functions

m Problem: super-exponential growth ry , = ©(n!) but unlabeled structures!

m Idea: derive a symbolic method for compacted trees using exponential generating functions

Let T(z) =3_,5 t,,zn—n! be an EGF of the class 7.

T(z) — zT(2)

Append a new node with a pointer to the class 7.
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Main idea: Exponential generating functions

m Problem: super-exponential growth ry , = ©(n!) but unlabeled structures!

m Idea: derive a symbolic method for compacted trees using exponential generating functions

Let T(z) =3_,5 t,,zn—n! be an EGF of the class 7.

T(z) — zT(2)

Append a new node with a pointer to the class 7.

Proof:
ty = kl[zXzT(z) = Kk -ty O
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Main idea: Exponential generating functions

m Problem: super-exponential growth ry , = ©(n!) but unlabeled structures!

m Idea: derive a symbolic method for compacted trees using exponential generating functions

Let T(z) =3_,5 t,,zn—n! be an EGF of the class 7.

T(z) — zT(2)

Append a new node with a pointer to the class 7.

Proof:
ty = kl[zzT(2) = _k - ti_ -
(=K = k- by
k possible 1 internal
pointers nodes
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Further constructions

S:T(z)— iT(z)

Append a (possibly empty) sequence S= I> U I>—9 U U ...
at the root.
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Further constructions

. 1
Append a (possibly empty) sequence S = I> U I>—9 U I>—9—9 U ..
at the root.

d

D:T(z)— £T(z2)
Delete top node but preserve its pointers.
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Further constructions

S T(2) = L T(2)

Append a (possibly empty) sequence S = I> U I>—9 U I>—9—9 U -
at the root.
Y d

D:T(z)— £T(z2)

Delete top node but preserve its pointers.

I:T(z)— [T(z)

Add top node without pointers. > S
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Further constructions

S T(2) = L T(2)

Append a (possibly empty) sequence S = |> U |>—9 U I>—9—9 U ...
at the root.
Y d
D:T(z)— £T(z2)
Delete top node but preserve its pointers.
I:T(z)— [T(z)
-
Add top node without pointers. >_‘
b d
P:T(z)— 2z T(z2)
-
Add a new pointer to the top node.
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 1: Ry(z)
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 1: Ry(z)

Symbolic construction

(1-22) Ri(2) — Ri(2) =0,
Ri(0) =1,
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 1: Ry(z)

Symbolic construction

(1-22) Ri(2) — Ri(2) =0,
Ri(0) =1,

then we get the closed form
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 1: Ry(z)

Symbolic construction

(1-22) Ri(2) — Ri(2) =0,
Ri(0) =1,

then we get the closed form
1

e = i

and the coefficients

rl,n=2—;<2n"> —(@n—-1)-(2n—3)---3-1.

[W 2019, “A bijection of plane increasing trees with relaxed binary trees of right height at most one”].
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 2: Ry(z2)

s s s LRI T s s M
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 2: Ry(2)

s s s LRI T s s M

Symbolic construction

(1-3z+42°) RY(2) + (2z — 3) Ry(2) = 0,
Ro(0) =1, Ry(0) =1

Michael Wallner  TU Wien = 04.12.2023 31/35



Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 2: Ry(2)

s s s LRI T s s M

Symbolic construction

(1-3z+42°) RY(2) + (2z — 3) Ry(2) = 0,
Ro(0) =1, Ry(0) =1

then we get the closed form
1

Ro2) = 1—-3z+ 2%
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 2: Ry(2)

s s s LRI T s s M

Symbolic construction

(1-3z+42°) RY(2) + (2z — 3) Ry(2) = 0,
Ro(0) =1, Ry(0) =1

then we get the closed form
1

1—-3z+ 2%

e (1B 1o\
= 2 2
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Ry(2) =

and the coefficients




Stretched exponentials and beyond = Compacted binary trees of bounded right height
Bounded right height < 3: R;(z)
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 3: R;(z)

2 3@?% i?iw o g@ﬁ% W

Symbolic construction

(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,

R3(0) =1, Ré(O) =1, Rflil(o) =

N W

)
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 3: R;(z)

2 3@?@@% i?iw o g@*f% W

Symbolic construction

(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,

R3(0) =1, Ré(o) =1, RI/’;/(O) =

N W

)

then we get the closed form

1//3
32— 2++3V1 -4z + 322 /
R3(Z) = s

V3-2
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Stretched exponentials and beyond = Compacted binary trees of bounded right height

Bounded right height < 3: R;(z)

2 3@?@@% i?iw o g@*f% W

Symbolic construction

(1 —4z + 322) Ry (z) + (92 — 6) RY(z) + 2R}(z) = 0,

R3(0) =1, Ré(o) =1, RI/’;/(O) =

N W

)

then we get the closed form

1/V/3
32— 2++3V1 -4z + 322 /
R3(Z) = s

V3-2

and the asymptotics of the coefficients

ran = nl[2"]Rs(2) = T _ni/g)l/ﬁ n3/32"ﬁ (1 +0 (i)) .
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Differential operators

Theorem
Let D = % and (Li)k>o be a family of differential operators given by
Lo=(1-2),
Li=(1-2z)D-1,
Ly=Lxk1-D—Ly_o-D? 2z, k> 2.
Then the exponential generating function Ry(z) for relaxed trees with right height < k satisfies
Ly - R =0.
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Then the exponential generating function Ry(z) for relaxed trees with right height < k satisfies
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(1- 22)%1?1(2) —Ri(z)=0
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Differential operators

Theorem
Let D = % and (Li)k>o be a family of differential operators given by
Lo=(1-2),
Li=(1-2z)D-1,
Ly=Lxk1-D—Ly_o-D? 2z, k> 2.
Then the exponential generating function Ry(z) for relaxed trees with right height < k satisfies
Ly - R =0.

(1- 22)%1?1(2) —Ri(z)=0

& d

(z2 —3z+ 1)d22 Rx(z) + (2z — 3)ER2(Z) =0
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Differential operators

Theorem
Let D = % and (Li)k>o be a family of differential operators given by
Lo=(1-2),
Li=(1-2z)D-1,
Ly=Lxk1-D—Ly_o-D? 2z, k> 2.
Then the exponential generating function Ry(z) for relaxed trees with right height < k satisfies
Ly - R =0.

(1- 22)%1?1(2) —Ri(z)=0

d? d

2

(Z —3Z+1)@R2(Z)+(2Z—3)ER2(Z):0

(322 — 4 +1)d—3R( ) + (9 —6)d—2R( )+ 2L Ry(z) = 0
z z dz3 3\ z dz2 3\ dz 3\
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Proof of asymptotics of compacted trees of bounded right height

e o LS ONC L S : SCCaCaN
g@@é}m fwﬁw gﬁﬁ g@*}@@@@% :W

Let ¢k ; € C[z] be such that
L, = fk7k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ ék,O(Z)-
Find recurrences for ¢ ;(z) using Guess’'n’Prove techniques.

Use singularity analysis directly on ODE Ly - R, = 0:
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Proof of asymptotics of compacted trees of bounded right height

e o LS ONC L S : SCCaCaN
g@@%}m fwﬁw gﬁﬁ g@*}@@@@% :W

Let ¢k ; € C[z] be such that
L, = €k7k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ €k70(2).
Find recurrences for ¢ ;(z) using Guess’'n’Prove techniques.

Use singularity analysis directly on ODE Ly - R, = 0:
Exponential growth py:

m Roots of ¢, x(z) are candidates.
m {; (z) is a transformed Chebyshev polynomial of the second kind. Hence,

1

4 cos (ki_w)z

Pk =
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Proof of asymptotics of compacted trees of bounded right height

- TR oo e e
59 . g gg 59 B g gg 59 . g gg 59 . g gg
Let ¢k ; € C[z] be such that

L, = €k7k(Z)Dk + £k7k_1(Z)Dk_1 + ...+ €k70(2).
Find recurrences for ¢ ;(z) using Guess’'n’Prove techniques.

Use singularity analysis directly on ODE Ly - R, = 0:
Exponential growth py:

m Roots of ¢, x(z) are candidates.
m {; (z) is a transformed Chebyshev polynomial of the second kind. Hence,

1

4 cos (kL_H)Z

Pk =

Subexponential growth:

m Prove that other coefficients £, ;(z) are nice.
m Use the indicial polynomial derived from the ¢, ;(z).
m Find a basis of solutions for differential equation: Only one is singular at p!
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Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number of relaxed and compacted binary trees with right height at most k satisfy for n — oo

T 2n - 2n 1 k—1
rk,n ~ yknt 4" cos (k+3) n- and Chon ~ Kyn! 4" cos (M) "

—
-
4(k+3) cos(m) .

Nlx
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Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees with right height at most k satisfy for n — oo

T 2n . T 2n ﬁ
Men~ymd"cos | —— | n 2 and  cxnp~ kknld"cos | —— | n ez )|
k,n ™~ Tk (k+3> k,n k k13
The number unbounded relaxed and compacted binary trees satisfy
r,=0 (n! gnean gn) and ¢, =0 (n! gngdan Sn3/4) ,

where a; & —2.338 is the largest root of the Airy function Ai(x).
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Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees with right height at most k satisfy for n — oo

T 2n . T 2n ﬁ
Men~ymd"cos | —— | n 2 and  cxnp~ kknld"cos | —— | n ez )|
k,n ™~ Tk (k+3> k,n k k13
The number unbounded relaxed and compacted binary trees satisfy
r,=0© (n! gnean én) and ¢, =0 (n! gngdan %n3/4) ,

where a; & —2.338 is the largest root of the Airy function Ai(x).

Many future research directions:
m Multiplicative constants
m Universality of e n'/?
m Further applications: Do you know similar recurrences?
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Conclusion

Theorem [Genitrini, Gittenberger, Kauers, W 2020], [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees with right height at most k satisfy for n — oo

2n on
m _k T
Ie,n ~ fw(n! 4" cos (M) n_2 and Chon ~ Kgn! 4" cos (M) n

The number unbounded relaxed and compacted binary trees satisfy
r,=0© (n! gndan Sn) and ¢, =0 (n! gngdan sn3/4) ,

where a; & —2.338 is the largest root of the Airy function Ai(x).

k—1

2
bl
4(k+3) cos( i 3) .

Many future research directions:
m Multiplicative constants
m Universality of e n'/?
m Further applications: Do you know similar recurrences?
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Stretched exponentials and beyond = Backup

Backup
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Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ci,n ~ Kinlrg n® and k,n ~ ykn!r,fnﬁ“.

Michael Wallner  TU Wien 04.12.2023 35 /35



Stretched exponentials and beyond = Backup

Comparing compacted and relaxed trees

Asymptotics of compacted and relaxed trees

Ch,n ~ Kinlry n® and Tk,n ™~ ykn!r,fnﬁ“.
LAl n | n= ] s= | . [ o~ [~ T B | Be~ |
1 2 2.000 || 0.708 -3 —0.750 || 0.564 | —1 | —0.5

2 6 1
2 4COS(§) 2.618 0.561 -5 = m —1.276 0.447 -1 —1.0
3 3 3.000 || 0.605 - -1.778 || 0493 | -3 | -15
2 15 S
2 21 1 5)
6 || 4cos(§)® | 3532 || 3782 | —F — 5 fy | 3268 || 3.260 | -3 | -3.0
9
2 18 3 7
7 || 4cos({p)? | 3618 || 10708 | —F — 5 deyy | —3766 || 9350 | —F | —35
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Stretched exponentials and beyond = Backup

Construction of Ri(z)

Let Ri(z) =3 /50 f1,nf,—: be the EGF of relaxed binary trees with bounded right height < 1.
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Stretched exponentials and beyond = Backup

Construction of Ri(z)

Let Ri(z) =3 /50 rly,,j—? be the EGF of relaxed binary trees with bounded right height < 1.

Decomposition of R;(z)

Rl(Z) = Z Rl’g(z)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees, i.e. ¢ left-edges from
level O to level 1.

Michael Wallner  TU Wien = 04.12.2023 35 /35



Stretched exponentials and beyond = Backup

Construction of Ri(z)

Let Ri(z) =3 /50 rly,,j—? be the EGF of relaxed binary trees with bounded right height < 1.

Decomposition of R;(z)

Rl(Z) = Z Rl’g(z)

n>0
where Ry ¢(z) is the EGF for relaxed binary trees with exactly ¢ left-subtrees, i.e. ¢ left-edges from
level O to level 1.
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Stretched exponentials and beyond = Backup

Construction of Ry 1(

g i
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Stretched exponentials and beyond = Backup

Construction of Ry 1(

it

Symbolic specification

1 delete initial sequence D@—
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Stretched exponentials and beyond = Backup

Construction of Ry 1(

ey e

Symbolic specification

1 delete initial sequence
2 decompose
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Stretched exponentials and beyond = Backup

Construction of Ry 1(

it

Symbolic specification

1 delete initial sequence
2 decompose
3 append and add pointer
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Stretched exponentials and beyond = Backup

Construction of Ry 1(

it

Symbolic specification

1 delete initial sequence

2 decompose O+ 0090~ - 008000

3 append and add pointer
4 add initial sequence

Ri1(2)
Ria(z) = \Sffo\lzo \5 O/-/P ( LRI’O,_/(Z) )
init. IvI 0 red pointer grey node +
seq. node and seq. last seq.
1

z (ZRLo(Z))/ dz

R171(Z) =

1-z 1-—
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Stretched exponentials and beyond = Backup

Construction of Ry ¢(2)

W SEgees Srieey soge ov
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Stretched exponentials and beyond = Backup

Construction of Ry ¢(2)

P =

Same structure as for Ry 1(z)

1 1
Ri(z) = 1—2/1—

Rl,O(Z) = Ro(Z) =

Observation
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Stretched exponentials and beyond = Backup

Construction of Ry ¢(2)

P =

Same structure as for Ry 1(z)

1 1
Ri(z) = 1—2/1—

R170(Z) = Ro(Z) =

Observation

Recall that Ri(z) = >",~o R1,¢(z). Summing the previous equation (formally) for £ > 1 gives

1-22 1 ,
ﬁRﬁ(Z) - ERI(Z) —((1=2)Rio(2)) =0
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Stretched exponentials and beyond = Backup

A special class of ODEs

Consider an ordinary generating function of the kind
Y (2) + a1(2)0 Y (2) +---+ a(2)Y(2) = 0, (2)

where the a; = a;(z) are meromorphic in a simply connected domain Q. Let w¢(f) be the order of the
pole of f at (.
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A special class of ODEs

Consider an ordinary generating function of the kind

Y (2) + a1(2)0 Y (2) +---+ a(2)Y(2) = 0, (2)
where the a; = aj(z) are meromorphic in a simply connected domain Q. Let w¢(f) be the order of the
pole of f at (.

Definition (Regular singularity)
The differential equation (2) is said to have a singularity at ¢ if at least one of the w¢(f) is positive.
The point ( is said to be a regular singularity if
we(ar) <1, wel(a) <2, ceey wel(ar) <,
and an irregular singularity otherwise.
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A special class of ODEs

Consider an ordinary generating function of the kind
Y (2) + a1(2)0 Y (2) +---+ a(2)Y(2) = 0, (2)

where the a; = aj(z) are meromorphic in a simply connected domain Q. Let w¢(f) be the order of the
pole of f at (.

Definition (Regular singularity)

The differential equation (2) is said to have a singularity at ¢ if at least one of the w¢(f) is positive.
The point ( is said to be a regular singularity if

we(ar) <1, wel(a) <2, RN wel(ar) <,
and an irregular singularity otherwise.

Relaxed trees

€k7k(z)8kRk(z) + €k7k_1(z)3k71Rk(z) + ...+ fk,o(Z)Rk(Z) =0
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A special class of ODEs

Consider an ordinary generating function of the kind

'Y (2) + a1(2)0" 'Y (2) + -+ a(2)Y(2) =0, 2)
where the a; = a;(z) are meromorphic in a simply connected domain Q. Let w¢(f) be the order of the
pole of f at (.

Definition (Regular singularity)
The differential equation (2) is said to have a singularity at ¢ if at least one of the w¢(f) is positive.
The point ( is said to be a regular singularity if

WC(B]_) S 17 wC(QQ) S 2a DR} wC(ar) S r,

and an irregular singularity otherwise.

Relaxed trees

L k—1(2)

k—1 _
ey O R Re(z) =0

O*Ri(2) + Ten(2) ()
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The indicial polynomial

Structure of the ODE:
Y (2) + a(2)0" ' Y(2) + -+ a(2)Y(2) = 0.
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Stretched exponentials and beyond = Backup

The indicial polynomial

Structure of the ODE:
Y (2) + a(2)0" ' Y(2) + -+ a(2)Y(2) = 0.

Definition (Indicial polynomial)
Given an equation of the form (2) and a regular singular point (, the indicial polynomial I(«) at ( is

defined as

() = af + §10=L 4 - + 6, ot i=ala—1)--(a—€+1),
where §; := lim,_,¢(z — ¢)"a;(z). The indicial equation at ( is the algebraic equation /() = 0.
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Stretched exponentials and beyond = Backup

The indicial polynomial

Structure of the ODE:
Y (2) + a(2)0" ' Y(2) + -+ a(2)Y(2) = 0.

Definition (Indicial polynomial)
Given an equation of the form (2) and a regular singular point (, the indicial polynomial I(«) at ( is

defined as

(@) = af +§1a=L - + 6, ot i=a(a—1)---(a—L+1),
where §; := lim,_,¢(z — ¢)"a;(z). The indicial equation at ( is the algebraic equation /() = 0.

All the solutions of the differential equations behave for z — ( like
(z = () log(z — ¢)°
for some a € C, 5 € N.

m « is a root of the indicial polynomial
m [ is related to multiple roots of the indicial polynomial and roots at integer distances
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A basis for our class of ODEs

VTheorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and §; > 0.
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A basis for our class of ODEs

VTheorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and 6y > 0. Then, the vector space of analytic solutions defined in a slit neighborhood of
¢ admits a basis of r — 1 analytic solutions

(z = ¢)"Hm(z = (), m=0,1,...,r—2,
where Hp, is analytic at 0 (Hn(0) #0).
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A basis for our class of ODEs

VTheorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and 6y > 0. Then, the vector space of analytic solutions defined in a slit neighborhood of
¢ admits a basis of r — 1 analytic solutions

(z = ¢)"Hm(z = ¢), m=0,1,...,r—2,
where Hy, is analytic at 0 (H,(0) # 0). The r-th basis function depends on 01:
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Stretched exponentials and beyond = Backup

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and 6y > 0. Then, the vector space of analytic solutions defined in a slit neighborhood of
¢ admits a basis of r — 1 analytic solutions

(z—=¢)"Hm(z - ¢), m=0,1,...,r—2,
where Hy, is analytic at 0 (H,(0) # 0). The r-th basis function depends on 01:
For 61 € {0,1,...,r — 1} it is of the form
(z = Q)" H(z — () log(z - ¢);

where H is analytic at 0 with H(0) # 0.

Michael Wallner  TU Wien = 04.12.2023 35 /35



Stretched exponentials and beyond = Backup

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and 6y > 0. Then, the vector space of analytic solutions defined in a slit neighborhood of
¢ admits a basis of r — 1 analytic solutions

(z—=¢)"Hm(z - ¢), m=0,1,...,r—2,
where Hy, is analytic at 0 (H,(0) # 0). The r-th basis function depends on 01:
For 61 € {0,1,...,r — 1} it is of the form
(z = Q)7 H(z = () log(z = O);
Foré1 € {r,r+1,...} it is of the form
(2= Q)M H(z = ) + Ho(z — O) (log(z = ()", with k€ {0,1};

where H is analytic at 0 with H(0) # 0.

Michael Wallner  TU Wien = 04.12.2023 35 /35



Stretched exponentials and beyond = Backup

A basis for our class of ODEs

Theorem

Consider a differential equation (2) and a regular singular point { such that w¢(ai) < 1 for all
i=1,...,r, and 6y > 0. Then, the vector space of analytic solutions defined in a slit neighborhood of
¢ admits a basis of r — 1 analytic solutions

(z = ¢)"Hm(z = ¢), m=0,1,....,r—2,

where Hy, is analytic at 0 (H,(0) # 0). The r-th basis function depends on 01:

For 61 € {0,1,...,r — 1} it is of the form

(z = Q)" H(z = () log(z = Q);
Foré1 € {r,r+1,...} it is of the form
(2= Q)M H(z = ) + Ho(z — O) (log(z = ()", with k€ {0,1};
For 61 € Z it is of the form
(z Q)" H(z — Q)

where H is analytic at 0 with H(0) # 0.
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Stretched exponentials and beyond = Backup

What is the Airy function?

Properties
m Ai(x) =1 [F cos (%3 -I—Xt) dt
m Largest root a; ~ —2.338
B limy 00 Ai(x) =0
m Also defined by Ai”(x) = xAi(x)

m [Banderier, Flajolet, Schaeffer,
Soria 2001]: Random Maps

m [Flajolet, Louchard 2001]:
Brownian excursion area
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Refined heuristic analysis

Ansatz of order 1:

m+1
dn,m ~ h(n)f (W) 9

sp=2+cn" 23+ 0(n7h).
yields estimates ¢ = 22/3a; such that
h(n) ~ one3a(n/2)? and f(k) = Ai(2Y3k + a).
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Refined heuristic analysis

Ansatz of order 1:

m+1
d,,’mNh(n)f< 7 ),

sp=2+cn" 23+ 0(n7h).
yields estimates ¢ = 22/3a; such that

h(n) ~ one3a(n/2)? and f(k) = Ai(2Y3k + a).

dnm ~ h(n) (fo <m},,1> i <m%1>) ’

sn=2+4cn"%3 4+ dnt + O(n~*3).
yields estimates d = 8/3 such that
h(n) ~ const - 2n3a1(n/2)'/? y4/3 and fo(k) = Ai(2Y3k + ay).

Ansatz of order 2:
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Refined heuristic analysis

Ansatz of order 1:

m+1
d,,’mNh(n)f< 7 ),

sp=2+cn" 23+ 0(n7h).
yields estimates ¢ = 22/3a; such that

h(n) ~ one3a(n/2)? and f(k) = Ai(2Y3k + a).

dnm ~ h(n) (fo <m},,1> i <m%1>) ’

sn=2+4cn"%3 4+ dnt + O(n~*3).
yields estimates d = 8/3 such that
h(n) ~ const - 2n3a1(n/2)'/? y4/3 and fo(k) = Ai(2Y3k + ay).

Ansatz of order 2:

This way we conjecture the asymptotic form for relaxed binary trees:

1/3
rn = nldypo =© (n!4”e331" n) .
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Stretched exponentials and beyond = Backup

Lower bound — Case analysis

Treat p,,m and pﬁ,,m separately and prove that all dominating terms in the respective regimes
(corners of convex hull) are positive.

. o i / _ ~/ i
Pn,m = § al,jmnj pn,m* E ai,jmnj
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Technicalities for compacted trees and minimal DFAs

Lots of technicalities:
m Before induction, we have to remove the negative term from the recurrence, but we have to do so
precisely for asymptotics to stay the same.
m We only prove bounds for small m; we prove that large m terms don't matter
m The lower bound is negative for very large m, so we have to be careful with induction
m We only prove the bounds for sufficiently large n, but this only makes a difference to the constant
term. Proof involves colorful Newton polygons:

A s
‘ Slope: 18 ) Slope: 18
i) : |— Slope: ,% 1 —— Slope: ,%
P Slope: -1 | K X oK =N\~ Slope: -1
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Compacted (unlabeled binary) trees

m Size: number of internal nodes
m c,: number of compacted trees of size n
(¢n)n>0 = (1,1,3,15,111,1119, 14487, ...)

m Important: Subtrees are unique!

s Faw
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Compacted (unlabeled binary) trees

m Size: number of internal nodes

, Simple bounds
m c,: number of compacted trees of size n

(co)nso = (1,1,3,15,111,1119, 14487, ... m<e <2 2"\
n)n>0 — y Ly 9y 49y ) ) PRI -_n_n+1 n .

3 £

m Important: Subtrees are unique!
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