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Fault diagnosability State of the problem

Diagnosis: the process of determining the nature of a disease or disorder and distinguish-
ing it from other possible conditions.




Fault diagnosability State of the problem

The models )
x(t,p, f) = g(x(t, p), u(t), f, p),
y(t,p, ) = h(x(t, p), u(t), f, p),
m
X(f07p7 f) = X0,
fh<t<T.
Definitions

v A fault is an unpermitted deviation of at least one parameter of the system from
the acceptable standard condition.

v Fault diagnosability establishes which faults can be discriminated using the
available sensors in a system.

v Fault diagnosis consists in fault detection of the malfunction of a system and the
fault isolation of the faulty component.

f = 0 means no fault. In the case of uncontrolled models u = 0.

N. Verdiere, S. Orange, Diagnosability in the case of multi-faults in nonlinear models, Journal of Process Control, Vol 69,
pp. 1-7,2018.




Fault diagnosability Algebraic signature

Example: Mass (m = 1) aftached to an elastic spring (force k), u external force (& 0),
d>1

k(= 12y —(d+R)u=0  é(f) = (k(f =12 -d~1)

Remarks

X Output y known = ¢ = (¢, ¢o) can be estimated.

X Components of ¢ = set of polynomial equations whose indeterminates are k, d., f;
f.




Fault diagnosability Algebraic signature

Example: Mass (m = 1) aftached to an elastic spring (force k), u external force (& 0),
d>1

k(= 12y —(d+R)u=0  é(f) = (k(f =12 -d~1)

Algebraic signature
ASg(f) = (k(fi = 1)?,~d = ;). in parficular:

X ASig(fry) = (k(fi = 1)%,=d) and ASig(f{1 21) = (k(fi = 1)?,=d — ).
X Forallfy, f, € (07 1),ASIg(fﬂ}) ﬁASIg(fUQ}) =7

ASig(fa2)

f1,fin (0,1)



Fault diagnosability Algebraic signature

Example: Mass (m = 1) aftached to an elastic spring (force k), u external force (& 0),
d>1

k(= 12y —(d+R)u=0  é(f) = (k(f =12 -d~1)

Algebraic signature
ASg(f) = (k(fi = 1)?,~d = ;). in parficular:

X ASig(fry) = (k(fi = 1)%,=d) and ASig(f{1 21) = (k(fi = 1)?,=d — ).
X Forallfy, f, € (O7 1),ASIg(fﬂ}) ﬁASIg(fUQ}) =0

Definitions

X Two sefs of faults are said algebraic discriminable if there exists an algebraic
signature, such that, for all input u, the two signatures have an empty intersection.

X If all the distinct sets of faults are algebraic discriminable, the model is said
algebraically diagnosable.




Fault diagnosability Algebraic signature

Example: Mass (m = 1) aftached to an elastic spring (force k), u external force (& 0),
d>1

k(= 12y —(d+R)u=0  é(f) = (k(f =12 -d~1)

Algebraic signature

ASig(f) = (k(ﬁ — 12, —d— fg).

Remark

The current algebraic signature depends on the unknown faults!
By manipulation: ’ ASIg(f) = (61 — Kk, o + d)

Remarks

v" New algebraic signature: each of its component depends only on ¢, and the
parameters of the system;

v By construction, one of the component of the algebraic signature vanishes when
at least one specific (multiple) fault occurs.

v

Towards algorithms to obtain a calculable algebraic signature and a discriminable table



Fault diagnosability Algebraic signature

Towards an algorithm to obtain a calculable algebraic signature ...
a M(p,f) =1,
P(y,u,p,f) = mo(y,u) + > _ %P, )mi(y,u)=0 and :

k=1 'Yq(pv f) = ¢Q7



Fault diagnosability Algebraic signature

Towards an algorithm to obtain a calculable algebraic signature ...

q n(p,f) = ¢1,
P(y7 u, p, f) = mO(y U)+Z’Yk(p7 f)mk(y7 U):o and

k=1 'Yq(pv f) = ¢C77

Algorithm Algebraic-Signature: Groebner basis computation

Exhaustive summary
dr=m(p, f), -+ dg=4(p, f)

Grobner basis computations

e A N

— Elim. ideal: Fault f, | - Elim. ideal: Fault fi,..., f.| — Elim. ideal:
Alg. relations linking only Alg. relations linking only Alg. relations linking only
®1,...,¢q and pi, ..., pn. P1,...,¢q and p1,...,pp. @1,...,0q and p1, ..., pn.

\( Grébner basis computation /

~a N ¥

‘ Algebraic Signature ‘

ASig(p1, ..., pn,




Fault diagnosability Characterization of a single fault/Expected values of ASig

Towards an algorithm to obtain a discriminable table ...
ASig: R® — . (R[¢1,...,¢q])’
f = (ASigi(9), ..., ASigi(¢)) -
Procedure ExpectedValuesOfASign: determination of a discriminable alg. signature

Inputs: Alg. signature, exhaustive summary, single faults list, param. constraints.
Outputs: lists composed of expected values of algebraic signatures.

dr=np,f), - 6g =P, f) o1 = 1) - g =%/ f)

Param. constraints (+ initial conditions)| Real sol. Param. constraints (+ initial conditions)
1) =06 € M), £ £ 00 ¢ ), |\ =0l €N £ £0G ¢ N),

ASigr #0 ASig =0

S
No real sol. No real sol. ‘ Real sol ‘
= ASigy always vanishes = ASigy never vanishes cal so /

Asigr(fyf)

I 0/1/1




Fault diagnosability Characterization of a single fault/Expected values of ASig

Example: X 4 k(f; — 1)2x — (d 4 fh)u = 0, ASig(f) = (¢1 — Kk, ¢o + d).

Cp’f:{0<k<4,1§d, Cp’fiw
0<fH<2,0<h<2}
f ASigy () | ASigo(f) f ASigr (f) | ASigo(f)
f 0 0 f 0 0
{3 {t
f12) 0 | foy 0 1
f1.2} ! 1 1.2y -1 1




Fault diagnosability Characterization of a single fault/Expected values of ASig

Example: X 4 k(f; — 1)2x — (d 4 fh)u = 0, ASig(f) = (¢1 — Kk, ¢o + d).

Cp’f:{0<k<4,1§d, Cp’fiw
0<fH<2,0<h<2}
f ASigy () | ASigo(f) f ASigr (f) | ASigo(f)
f 0 0 f 0 0
{3 {t
f12) 0 | foy 0 1
f1.2} ! 1 1.2y -1 1

Remarks

v Importance of the constraints

v From ASig: numerical procedures developed to detect and isolate (multiple) faults
acting on the system.




Fault diagnosability Conclusion and perspective

Conclusion and perspective

v

Diagnosability study: from the data collected on the physical system, can the
chosen mathematical model permit to discriminate predefined faults that may
occur on the system?

New example of the interest of functional relations obtained from differential
algebra and the semialgebraic approach.

Precomputations lead to efficient numerical procedures to detect and isolate
(multiple) faults.

Reflection to consider the model uncertainties.




Reconstruction of some variables of interest Problem statement

An example in neuroscience : A neural network underlying a chemotaxis behavior in C.
elegans

I I

© sensory neurons

@ iemeuons

@ motor neuron @

© muscie

non-linear coupling
> (chemical synapse)

C. elegans: W (e S mapse) Q
v relatively simple nervous system
v shares numerous fundamental biological features with humans (similar
neurotransmitters, channels, and developmental genes).
S. Orange, N. Verdiere, L. Naudin, An a priori study for the reconstruction of some variables of interest in nonlinear
complex networks with an application in neuroscience, Chaos, Solitons and Fractals, 2023.



Reconstruction of some variables of interest Problem statement

An example in neuroscience : A neural network underlying a chemotaxis behavior in C.
elegans

I I

© sensory neurons

@ iemeuons

@ motor neuron
© muscie
non-linear coupling
> (chemical synapse)
o linear coupling 3
° YW (electrical synapse)

2 Challenge of Lois: reconstruct the behavior of the muscle from sensory neurons.
Remarks

v Specific variables associated with each neuron

v Complicated in practice to measure them all directly

v Knowledge of sensory neurons sufficient?



Reconstruction of some variables of interest Problem statement

An example in neuroscience : A neural network underlying a chemotaxis behavior in C.
elegans

I I

© sensory neurons

@ iemeuons

@ motor neuron @

© muscie

non-linear coupling
> (chemical synapse)

Currently: i linear coupling @

(electrical synapse)
v Global observability (= ability to retrieve the state of the whole system from known
inputs and some measured outputs) = state reconstructors (. Sendifa-Nadal, C. Letellier,
Observability analysis and state reconstruction for networks of nonlinear systems, 2022)

v Functional observability = target state reconstruction in linear dynamical networks
(N. Montanari and al., Functional observability and target state estimation in large-scale networks, 2022)



Reconstruction of some variables of interest Problem statement

An example in neuroscience : A neural network underlying a chemotaxis behavior in C.
elegans

I I

© sensory neurons
@ intemeurons
@ motor neuron
© muscie

non-linear coupling
> (chemical synapse)

linear coupling Muscle)
YW (electrical synapse) _
-

=

3
e 4 Develop an a priori study and an algorithm to determine minimal sets of nodes
needed to be observed in a nonlinear network for the reconstruction of certain variables
of interest,



Reconstruction of some variables of interest Assumptions and mathematical model

Example of a complex network composed of 4 nodes (N = 4)
A B

Uy X

_, 1 %
. ! I
'~ I
~ \ Ty

Assumptions

@ Internal dynamics of the ith nodes: FitzHugh-Nagumo, Hindmarsh-Rose,
Hodgkin-Huxley models....

Ko =00+ > Gl ) U
JENT
X2 = 12X, 6y, @ 1 ;(X;, ©;) are linear combinations of
the stafe variables X; o, ..., X n
)-(i,n = f,n(Xivei)7

X; 1+ variable of interest




Reconstruction of some variables of interest Assumptions and mathematical model

Example of a complex network composed of 4 nodes (N = 4)
A B

Uy X

_, 1 %
. ! I
'~ I
~ \ Ty

Assumptions
@ Linear and nonlinear couplings (Electrical, chemical, mixed synapses) only involve
Xin
. _ @ 1 (X, ©,) are linear combinations of
X = fi1(X, ©; Ci(Xi1, X u; L\ i ”
i 1%, ©1) + ; 101 %) + U the state variables X2, ..., Xin
JEN, _ . . ,
X2 = f2(X,0), @ N the in-neighbors set of the node i
¢ R? — R is infinitely differentiable
Xin = fin(X,©)), @ Forallx;; € R, the function

X1 — Cj(Xi,1,%,1) is one fo one.
X 1+ variable of interest




Reconstruction of some variables of interest Assumptions and mathematical model

Example of a complex network composed of 4 nodes (N = 4)
A B

A 1 %
@ !
~ \ Ty

Assumptions

@ Values of some variables of interest and their derivatives are known from
measurements at a given time*

Specific relations

« k «@
Pi(xi1,©1) +Zhi,k(x/‘.hef)u,( )+ ST S T hikCar )06 =0
k=0 jen, k=0

o

(*L. Naudin, N. Corson, M. Aziz-Alaoui, J. L. Jimenez Laredo, T. Démare, On the modeling of the three types of non-
spiking neurons of the caenorhabditis elegans, International Journal of Neural Systems 31 (02), 2021).



Reconstruction of some variables of interest Reconstructibility

o

Reconstructibility

Let N and T be two sets of nodes of the network ( T = farget sef) (for example ' = {1},
T = {4}).

The solution (x; 1);e7 is reconstructible from (x; ;);en if there exists a surjective function on

the solution set of (x; 1);e A in the solution set of (X; 1)je 7.
The set T is said N -reconstructible afterwards.




Reconstruction of some variables of interest Building blocks for the reconstructibility

From the |OCC|| specific relation
(Xl1ae)+zhlk(xl17 (k + Z Zhlk(Xl17 c](thX;J) =0
k=0 jeN; k=0
one gefs:

15" consequence

The N -reconstructibility of node i is deduced from the one
of its in-neighbors (N, 7) and of the value of x; ; and its

derivatives at a given time 7.

2nd consequence .
The N-reconstructibility of node jy is deduced from the N
N-reconstructibility of the node i, the N-recontructibility of [
the nodes in N;™ \ {)o} and the value of x, ; and its ‘

derivatives at a given time 7. -

— Algorithm TargetReconstructibilitySets.



Reconstruction of some variables of interest The C. elegans example

What are the nodes permitting the reconstruction of the node 7 = {Muscle} ?

= Algorithm returns the minimal sets (for the inclusion) of nodes to reconstruct
the variable of interest of T

L I

T = {Muscle} is {ASEL, ASER}-
reconstructible, if we ob-
serve one of the following set:
{RIAR}, {RMD}, {AIAL, AIAR}, {AIAL, AIBL},
{AIAL, AIYLY,  {AIAL, AIYR,}, {AIAL, AIZL},
{AIAL, AIZR},  {AIAR, AIBL},  {AIAR, AIYL},
{AIAR, AIYRY,  {AIAR, AlZLY,  {AIAR, AIZR},
{AIBR, AlYL, AlZR}, {AIBR, AIYR, AlZR},

© sensoryneurons

(.) emesrens {AIBR, AlZL, AIZR}, {AIVL, AIZR, AVAR},

motor neuron

@ msce @ {AIVL, AIZR, RIBR}, {AIVR, AIZR, AVAR},
{AIVR, AIZR, RIBR}, {AIZL, AIZR, AVAR},
{AIZL, AIZR, RIBR},  {AIBL, AIBR, AIZR, AVAR},

—  [Chemieal symapse)

S 3 {AIBL, AIBR, AIZR, RIBRY},
YW (electrical synapse)

{AIBL, AlZR, AVAR, RIBR}



Reconstruction of some variables of interest Conclusion and perspectives

Summary

v Target reconstructibility: determining which nodes are needed to infer the state of
a target subset

v Theoretical results based on specific local relations and two reconstructibility
properties

v Algorithm TargetReconstructibilitySets

v Application of our algorithm for the target reconstructability of a C. elegans
muscle involved in a chemotaxis behavior.

Perspectives

v Develop methods quantifying the quality of these sets of nodes (=-choose the best
option fo reconstruct the target nodes states)

v Development of a state reconstructor.
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