Examples of use of functional equations obtained from the elimination theory in nonlinear models

Nathalie Verdière

LMAH, Université of Le Havre
Topical day on Elimination for Functional Equations

Outline

Fault diagnosability

- State of the problem
- Algebraic signature
- Characterization of a single fault/Expected values of ASig
- Conclusion and perspective
(2) Reconstruction of some variables of interest in nonlinear complex networks
- Problem statement
- Assumptions and mathematical model
- Reconstructibility
- Construction of the building blocks for the reconstructibility study
- The C. elegans example
- Conclusion and perspectives

Bibliography

Diagnosis: the process of determining the nature of a disease or disorder and distinguishing it from other possible conditions.

Diagnostic'Auto

The models

$$
\left\{\begin{array}{l}
\dot{x}(t, p, f)=g(x(t, p), u(t), f, p), \tag{1}\\
y(t, p, f)=h(x(t, p), u(t), f, p), \\
x\left(t_{0}, p, f\right)=x_{0}, \\
t_{0} \leq t \leq T .
\end{array}\right.
$$

Definitions

\checkmark A fault is an unpermitted deviation of at least one parameter of the system from the acceptable standard condition.
\checkmark Fault diagnosability establishes which faults can be discriminated using the available sensors in a system.
\checkmark Fault diagnosis consists in fault detection of the malfunction of a system and the fault isolation of the faulty component.
$f=0$ means no fault. In the case of uncontrolled models $u=0$.
N. Verdière, S. Orange, Diagnosability in the case of multi-faults in nonlinear models, Journal of Process Control, Vol 69, pp. 1-7, 2018.

Example: Mass $(m=1)$ attached to an elastic spring (force k), u external force ($\not \equiv 0$), $\bar{d} \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Remarks

x Output y known $\Rightarrow \phi=\left(\phi_{1}, \phi_{2}\right)$ can be estimated.
x Components of $\phi=$ set of polynomial equations whose indeterminates are k, d, f_{1} f_{2}.

Example: Mass $(m=1)$ attached to an elastic spring (force k), u external force ($\not \equiv 0$), $\bar{d} \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature
$\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$, in particular:
$x \operatorname{ASig}\left(f_{\{1\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d\right)$ and $\operatorname{ASig}\left(f_{\{1,2\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$.
\boldsymbol{x} For all $f_{1}, f_{2} \in(0,1), \operatorname{ASig}\left(f_{\{1\}}\right) \cap \operatorname{ASig}\left(f_{\{1,2\}}\right)=$?

$\mathrm{f}_{1}, \mathrm{f}_{2}$ in $(0,1)$

Example: Mass $(m=1)$ attached to an elastic spring (force k), u external force ($\not \equiv 0$), $a \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature
$\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$, in particular:
$x \operatorname{ASig}\left(f_{\{1\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d\right)$ and $\operatorname{ASig}\left(f_{\{1,2\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$.
x For all $f_{1}, f_{2} \in(0,1), \operatorname{ASig}\left(f_{\{1\}}\right) \cap \operatorname{ASig}\left(f_{\{1,2\}}\right)=\emptyset$

Definitions

x Two sets of faults are said algebraic discriminable if there exists an algebraic signature, such that, for all input u, the two signatures have an empty intersection.
x If all the distinct sets of faults are algebraic discriminable, the model is said algebraically diagnosable.

Example: Mass $(m=1)$ attached to an elastic spring (force k), u external force ($\not \equiv 0$), $\bar{d} \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature

$$
\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Remark

The current algebraic signature depends on the unknown faults!
By manipulation: $A \operatorname{Sig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$

Remarks

\checkmark New algebraic signature: each of its component depends only on ϕ_{k} and the parameters of the system;
\checkmark By construction, one of the component of the algebraic signature vanishes when at least one specific (multiple) fault occurs.

Towards algorithms to obtain a calculable algebraic signature and a discriminable table

Towards an algorithm to obtain a calculable algebraic signature ...

$$
P(y, u, p, f)=m_{0}(y, u)+\sum_{k=1}^{q} \gamma_{k}(p, f) m_{k}(y, u)=0 \quad \text { and } \quad\left\{\begin{array}{l}
\gamma_{1}(p, f)=\phi_{1} \\
\vdots \\
\gamma_{q}(p, f)=\phi_{q}
\end{array}\right.
$$

Towards an algorithm to obtain a calculable algebraic signature ...

$$
P(y, u, p, f)=m_{0}(y, u)+\sum_{k=1}^{q} \gamma_{k}(p, f) m_{k}(y, u)=0 \quad \text { and } \quad\left\{\begin{array}{l}
\gamma_{1}(p, f)=\phi_{1} \\
\vdots \\
\gamma_{q}(p, f)=\phi_{q}
\end{array}\right.
$$

Algorithm Algebraic-Signature: Groebner basis computation

Towards an algorithm to obtain a discriminable table ...

$$
\begin{array}{rccc}
\text { ASig : } \quad \mathbb{R}^{e} & \longrightarrow & \left(R\left[\phi_{1}, \ldots, \phi_{q}\right]\right)^{\prime} \\
f & \mapsto & \left(\operatorname{ASig}_{1}(\phi), \ldots, \operatorname{ASig}_{l}(\phi)\right) .
\end{array}
$$

Procedure ExpectedValuesOfASign: determination of a discriminable alg. signature Inputs: Alg. signature, exhaustive summary, single faults list, param. constraints. Outputs: lists composed of expected values of algebraic signatures.

Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, \operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.

$$
\begin{gathered}
C_{p, f}=\{0<k<4,1 \leq d, \\
\left.0 \leq f_{1}<2,0 \leq f_{2}<2\right\}
\end{gathered}
$$

f	ASig $_{1}(f)$	ASig $_{2}(f)$
$f_{\{ \}}$	0	0
$f_{\{1\}}$	1	0
$f_{\{2\}}$	0	1
$f_{\{1,2\}}$	1	1

$$
C_{p, f}=\emptyset
$$

f	ASig $_{1}(f)$	$\operatorname{ASig}_{2}(f)$
$f_{\{ \}}$	0	0
$f_{\{1\}}$	-1	0
$f_{\{2\}}$	0	1
$f_{\{1,2\}}$	-1	1

Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, \operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.

$$
\begin{gathered}
C_{p, f}=\{0<k<4,1 \leq d, \\
\left.0 \leq f_{1}<2,0 \leq f_{2}<2\right\}
\end{gathered}
$$

$$
C_{p, f}=\emptyset
$$

f	ASig $_{1}(f)$	ASig $_{2}(f)$
$f_{\{ \}}$	0	0
$f_{\{1\}}$	1	0
$f_{\{2\}}$	0	1
$f_{\{1,2\}}$	1	1

f	ASig $_{1}(f)$	$\operatorname{ASig}_{2}(f)$
$f_{\{ \}}$	0	0
$f_{\{1\}}$	-1	0
$f_{\{2\}}$	0	1
$f_{\{1,2\}}$	-1	1

Remarks

\checkmark Importance of the constraints
\checkmark From ASig: numerical procedures developed to detect and isolate (multiple) faults acting on the system.

Conclusion and perspective

\checkmark Diagnosability study: from the data collected on the physical system, can the chosen mathematical model permit to discriminate predefined faults that may occur on the system?
\checkmark New example of the interest of functional relations obtained from differential algebra and the semialgebraic approach.
\checkmark Precomputations lead to efficient numerical procedures to detect and isolate (multiple) faults.
\checkmark Reflection to consider the model uncertainties.

An example in neuroscience : A neural network underlying a chemotaxis behavior in C. elegans

\checkmark relatively simple nervous system
\checkmark shares numerous fundamental biological features with humans (similar neurotransmitters, channels, and developmental genes).
S. Orange, N. Verdière, L. Naudin, An a priori study for the reconstruction of some variables of interest in nonlinear complex networks with an application in neuroscience, Chaos, Solitons and Fractals, 2023.

An example in neuroscience : A neural network underlying a chemotaxis behavior in C. elegans

Challenge of Loïs: reconstruct the behavior of the muscle from sensory neurons. Remarks
\checkmark Specific variables associated with each neuron
\checkmark Complicated in practice to measure them all directly
\checkmark Knowledge of sensory neurons sufficient?

An example in neuroscience : A neural network underlying a chemotaxis behavior in C. elegans

\checkmark Global observability (= ability to retrieve the state of the whole system from known inputs and some measured outputs) \Rightarrow state reconstructors (I. Sendiña-Nadal, C. Letellier, Observability analysis and state reconstruction for networks of nonlinear systems, 2022)
\checkmark Functional observability \Rightarrow target state reconstruction in linear dynamical networks (N. Montanari and al., Functional observability and target state estimation in large-scale networks, 2022)

An example in neuroscience : A neural network underlying a chemotaxis behavior in C. elegans

Develop an a priori study and an algorithm to determine minimal sets of nodes needed to be observed in a nonlinear network for the reconstruction of certain variables of interest.

Example of a complex network composed of 4 nodes $(N=4)$

Assumptions

- Internal dynamics of the ith nodes: FitzHugh-Nagumo, Hindmarsh-Rose, Hodgkin-Huxley models....

$$
\begin{cases}\dot{x}_{i, 1} & =f_{i, 1}\left(x_{i}, \Theta_{i}\right)+\sum_{j \in \mathcal{N}_{i}^{-}} c_{j}\left(x_{i, 1}, x_{j, 1}\right)+u_{i} \\ \dot{x}_{i, 2} & =f_{i, 2}\left(x_{i}, \Theta_{i}\right), \\ \vdots & \\ \dot{x}_{i, n} & =f_{i, n}\left(X_{i}, \Theta_{i}\right),\end{cases}
$$

$x_{i, 1}$: variable of interest

Example of a complex network composed of 4 nodes $(N=4)$

A

Assumptions

- Linear and nonlinear couplings (Electrical, chemical, mixed synapses) only involve

$$
\left\{\begin{aligned}
& \dot{x}_{i, 1}=f_{i, 1}\left(X_{i}, \Theta_{i}\right)+\sum_{j \in \mathcal{N}_{i}^{-}} c_{j}\left(x_{i, 1}, x_{j, 1}\right)+u_{i} \\
& \dot{x}_{i, 2}=f_{i, 2}\left(X_{i}, \Theta_{i}\right) \\
& \vdots \\
& \dot{x}_{i, n}=f_{i, n}\left(X_{i}, \Theta_{i}\right)
\end{aligned}\right.
$$

- $f_{i, j}\left(X_{i}, \Theta_{i}\right)$ are linear combinations of the state variables $x_{i, 2}, \ldots, x_{i, n}$
- \mathcal{N}_{i}^{-}the in-neighbors set of the node i
- $c_{j}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is infinitely differentiable
- For all $x_{i, 1} \in \mathbb{R}$, the function $x_{j, 1} \rightarrow c_{j}\left(x_{i, 1}, x_{j, 1}\right)$ is one to one.
$x_{i, 1}$: variable of interes \dagger

Example of a complex network composed of 4 nodes $(N=4)$

A

B
(4)

Assumptions

- Values of some variables of interest and their derivatives are known from measurements at a given time*

Specific relations

$$
P_{i}\left(x_{i, 1}, \Theta_{i}\right)+\sum_{k=0}^{\alpha} h_{i, k}\left(x_{i, 1}, \Theta_{i}\right) u_{i}^{(k)}+\sum_{j \in \mathcal{N}_{i}^{-}} \sum_{k=0}^{\alpha} h_{i, k}\left(x_{i, 1}, \Theta_{i}\right) c_{j}\left(x_{i, 1}, x_{j, 7}\right)^{(k)}=0
$$

(*L. Naudin, N. Corson, M. Aziz-Alaoui, J. L. Jimenez Laredo, T. Démare, On the modeling of the three types of nonspiking neurons of the caenorhabditis elegans, International Journal of Neural Systems 31 (02), 2021).

Reconstructibility

Let \mathcal{N} and \mathcal{T} be two sets of nodes of the network ($\mathcal{T}=$ target sef) (for example $\mathcal{N}=\{1\}$, $\mathcal{T}=\{4\}$).
The solution $\left(x_{i, 1}\right)_{i \in \mathcal{T}}$ is reconstructible from $\left(x_{i, 1}\right)_{i \in \mathcal{N}}$ if there exists a surjective function on the solution set of $\left(x_{i, 1}\right)_{i \in \mathcal{N}}$ in the solution set of $\left(x_{i, 1}\right)_{i \in \mathcal{T}}$.
The set \mathcal{T} is said \mathcal{N}-reconstructible afterwards.

From the local specific relation
$P_{i}\left(x_{i, 1}, \Theta_{i}\right)+\sum_{k=0}^{\alpha} h_{i, k}\left(x_{i, 1}, \Theta_{i}\right) u_{i}^{(k)}+\sum_{j \in \mathcal{N}_{i}^{-}} \sum_{k=0}^{\alpha} h_{i, k}\left(x_{i, 1}, \Theta_{i}\right) c_{j}\left(x_{i, 1}, x_{j, 1}\right)^{(k)}=0$ one gets:
$1^{\text {st }}$ consequence

The \mathcal{N}-reconstructibility of node i is deduced from the one of its in-neighbors (\mathcal{N}_{i}^{-}) and of the value of $x_{i, 1}$ and its derivatives at a given time \tilde{f}.

$2^{\text {nd }}$ consequence
The \mathcal{N}-reconstructibility of node j_{0} is deduced from the \mathcal{N}-reconstructibility of the node i, the \mathcal{N}-recontructibility of the nodes in $\mathcal{N}_{i}^{-} \backslash\left\{j_{0}\right\}$ and the value of $x_{j_{0}, 1}$ and its derivatives at a given time \tilde{f}.

\hookrightarrow Algorithm TargetReconstructibilitySets.

What are the nodes permitting the reconstruction of the node $\mathcal{T}=\{$ Muscle $\}$?
\Rightarrow Algorithm returns the minimal sets (for the inclusion) of nodes to reconstruct the variable of interest of \mathcal{T}.sensory neuronsinterneuronsmotor neuronmuscle

$\mathcal{T}=\{$ Muscle $\}$ is $\{$ ASEL, ASER $\}-$ reconstructible, if we observe one of the following set: $\{R I A R\},\{R M D\},\{A I A L, A I A R\},\{A I A L, A I B L\}$, $\{A I A L, A I Y L\}, \quad\{A I A L, A I Y R\},, \quad\{A I A L, A I Z L\}$, $\{A I A L, A I Z R\}, \quad\{A I A R, A I B L\}, \quad\{A I A R, A I Y L\}$, \{AIAR, AIYR\}, \{AIAR, AIZL\}, \{AIAR, AIZR\}, \{AIBR, AIYL, AIZR\}, \{AIBR, AIYR, AIZR\}, \{AIBR, AIZL, AIZR\}, \{AIYL, AIZR, AVAR\}, \{AIYL, AIZR, RIBR\}, \{AIYR, AIZR, AVAR\}, \{AIYR, AIZR, RIBR\}, \{AIZL, AIZR, AVAR\}, \{AIZL, AIZR, RIBR\}, $\quad\{A I B L, A I B R, A I Z R, A V A R\}$, \{AIBL, AIBR, AIZR, RIBR\},

Summary

\checkmark Target reconstructibility: determining which nodes are needed to infer the state of a target subset
\checkmark Theoretical results based on specific local relations and two reconstructibility properties
\checkmark Algorithm TargetReconstructibilitySets
\checkmark Application of our algorithm for the target reconstructability of a C. elegans muscle involved in a chemotaxis behavior.

Perspectives

\checkmark Develop methods quantifying the quality of these sets of nodes (\Rightarrow choose the best option to reconstruct the target nodes states)
\checkmark Development of a state reconstructor.

- F. Boulier. Study and implementation of some algorithms in differential algebra. PhD thesis, Université des Sciences et Technologie de Lille - Lille I, June 1994.
- F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representation for radicals of finitely generated differential ideals. Technical report, Université Lille I, LIFL, 59655, Villeneuve d'Ascq, 1997.
- C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation, 49:3-26, 2013.
An algorithm to test identifiability of non-linear systems. In Proceedings of 5th IFAC Symposium on Nonlinear Control Systems, volume 7, pages 174-178, St Petersburg, Russia, 2001.
- M.S. El Din. Raglib: A library for real solving polynomial systems of equations and inequalities, 2007.
- J. C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 02, page 75-83, New York, NY, USA, 2002. Association for Computing Machinery
- F. Lemaire, C. Chen., J. H. Davenport, M. Moreno Maza, N. Phisanbut, B. Xia, R. Xiao, Y. Xie, Solving semi-algebraic systems with the RegularChains library in Maple, MACIS 2011.
- S. Orange, N. Verdière, L. Naudin, An a priori study for the reconstruction of some variables of interest in nonlinear complex networks with an application in neuroscience, Chaos, Solitons and Fractals, 2023, 113644.
- N. Verdière, S. Orange, Diagnosability in the case of multi-faults in nonlinear models, Journal of Process Control, Vol 69, pp. 1-7, 2018.

Thank you for your attention!

