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Scattering amplitudes are the fundamental tools
for making contact between quantum field theory
description of nature and experiments

» Comparing particule physics model against datas from accelators
> Post-Minkowskian expansion for Gravitational wave physics

> Various condensed matter and statistical physics systems
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Feynman Integrals: parametric representation

Feynman integral are given by projective space integrals
Ur(x)*"2 2 oo " LD
Fw,Dis,my= [ 2 2T, w=Y vi-—
Ja, Fr(x)® ’1;[1 ! ; ' 2

with the volume form on P71

Q= (~1)xidxd A~ dxi oo A dx”
i=1

Ap={x1>0,....x,>0|[x1,...,x,] € P"71}

Pierre Vanhove (IPhT) 6/12/2023 3/39



Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in P71
Fr(x) = Ur(x) x L(m*; x) — Vr(s, x)

» Homogeneous polynomial of degree [ with v, ., < {0,1}

n
Ur(x) = D uaa [ [ 57
i=1

ay+---+an=L
0<a;<1

> the mass hyperplane
n
L(m? x) = Z m?x;
n=1

» Homogeneous polynomial of degree [ + 1

Vr(x) == Z Sai o fo"
i=1

ap+-+an=L+1
0<a;<1

Pierre Vanhove (IPhT) 6/12/2023 4/39



Feynman Integrals: parametric representation

The integrand is an algebraic differential form in H”~1(P"~1\X) on the
complement of the graph hypersurface

Xr = {Ur(x) x Fr(x) = 0,x € P"1}

>

» Generically the graph hypersurface has non-isolated singularities
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Feynman integral and periods

The domain of integration A, is not an homology cycle because
on,nXr =4{(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}
we have to look at the relative cohomology

He (P 1\ Xr; I\ T, N Xr)

The normal crossings divisor 1, := {xj - - - x, = 0} and X are separated
by performing a series of iterated blowups of the complement of the graph
hypersurface [Bloch, Esnault, Kreimer]
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Differential equation

The Feynman integral are period integrals of the relative cohomology after
performing the appropriate blow-ups

M(s, m?) := H*(Pn- 1\XF ﬂn\ﬂnﬂXr)
Since the integrand varies with the physical variables {5/, m?,...,m}

one needs to study a variation of (mixed) Hodge structure

One can show that the Feynman integral are holonomic D-finite
fUI‘ICtiOI‘IS [Bitoun et al.;Smirnov et al.]

A Feynman integrals satisfies inhomogenous differential equations with
respect to any set of variables z € {S,, m7, ..., m
Zr(2) Ir =

Generically there is an inhomogeneous term .1 # 0 due to the boundary
components 0A ,
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Feynman integral D-module

We want to address the questions
© To what class of functions belong Feynman integrals?

@ What is the geometrical algebraic origin of the motive Mi(s, m?)?

© Derivation of the (D-module of) differential equations ?
Zr(2)Ir =

In this talk we focus in the question @ and present some new methods for
deriving such system of differential equation and its underlying (algebraic)
geometry
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Feynman Integrals differential equations

For a given subset of the physical parameters z := (z1,...,z,) C {s, m*}
we want to derive minimal order differential equations

D n
, . ' Z/{I'(K)w_E vi—1
(s, m2.(,)£) / — HX,-' Qo = S5r(z)
o Fr(x)¥ 13

One way to achieve this is to construct a Grobner basis of operators 7.
that annihilate the integrand of the Feynman integral

D n
Z/lr(l)w_j vi—1
T, | ———— | | X7 Qo] =0
( ]:F(K)w 11 i 0

such that
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Feynman Integrals differential equations

where the finite order differential operator

r d aj n d b;
Qi(§ m Z Z qal,...,a,(§7m275)H <dZ> <dX>
I 1 !

0<a;<of 0=b;<5; i=1 i=
1<I<r 1<'<"

» The orders o;, o,f, O; are positive integers
» Paya (S, m %) polynomials in the kinematic variables

> ') . (s.m?, x) rational functions in the kinematic variable and the

prOJectlve variables x.
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Feynman Integrals differential equations

Integrating over a cycle ~ gives

0= ?{ T,Qr = % (s. m, e)z)ffzr +7§d5r
Y vy vy

For a cycle 9y = () then ¢ dfr = 0 and we get

L(s, m,d,) }[ Qr =0
i

For the Feynman integral /- we have
0:/ T;Qr :Zr(gm ()Z)/r+/ dpr
n An

since DA, # ()
,,Z)r(;m. ()5)/r =

So we need the telescoper and the certificate
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The Rational case

We start with the case of a rational differential form with D € 2N*
Ur(x)°~7 " LD
Q — r*i l/l'_]- Q y — L
r fr(&)“ Iljll X; 0 w ; Vi >

> We as well assume that all the mass parameters are all vanishing
my,---,my,#0
» And that w >0, ie > 7" v > LD/2

So that the integral of ()i on the positive orthan is a convergent integral
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The sunset graph

The two-loop sunset graph in D = 2
p @ p

dX1 dX2 dX3

Io(p?, m?) = —
o ) R3 Fo(x)

The polar hypersurface of the integral is an elliptic curve 7 (x) = 0

Fo(x) = (xx + x16 + xox3)(mix1 + maxo + m3x3) — p°xix0x3
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The sunset graph : Griffiths-Dwork method

One can obtain a differential equation annihilating acting on the integral
using the Griffiths-Dwork method
Let define the integrand in differential form

Q. — x1dxo A dxz — xodxy A\ dxz + x3dx; A dxp B Qo
o }-@(K) - -7'—@(5)
consider
9% 130X Qo 8290 2( )2 Qo
— = : = 2(x1X0X3)" ————
op? ~ TR R (022 T F(x)?

Since we know we have the geometry of an elliptic curve we are looking
for a second order differential operator acting on 7).,

$§>(P2) (Op 2) +QI( » M )882 + qo(p 7—2)
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The sunset graph : Griffiths-Dwork method

Remark that (x;x0x3)? lies in the Jacobian ideal for 7 (x)

3
(X1X2X3)2 = Z Ci(l)(é)ax,-‘/r(%)(ﬁ)

i=1

with C,.(l)(ﬁ) homogeneous of degree 4 in the (x;, x>, x3) variables
Following Griffiths one introduces the differential form

5, - 026 00 %G ) | (1GP ) — %GR ())de

-7:47;(&)2 Fo (5)2
(a GV (x) — %G1V (x))dxg
Fo(x)?
such that
g — 2201 G0 F (% TF4 04 ()%

Fo(x)? Fo(x)?

C -
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The sunset graph : Griffiths-Dwork method

2 2 ety
qi1(p, m*)xixox3 + > iy 0x G (x)
Z(p*)e = H 2200+ d
(P7)Q0e 7 (x) 0o+ dbB
We can again reduce this second order pole using that there exist a
polynomial g1 (p?, m?) such that

3 3
q1(p®, m*)xpoxs + Y Oy, cM(x) = > Do, Fo(x)
i=1 i=1

with C,-(2) of degree 1. One introduces the 1-form [

3 (2)
= xi C 7 (x) dx;

— § Uku
& ‘ fo(&)

i=1
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The sunset graph : Griffiths-Dwork method

such that

gy — T GO0 Fo) | T 0GP ()%

We have achieved that
0?2 0
(8 2) +q1(p , M a a2 +ZOX, C, 7) Mo = d(ﬁl_'_[)}Z)

because the C,-(z)(g) are of degree 1 in (x;, x>, x3) then

q0(p?, m?) = 0, C17)(x) only depends on p?, m?

Pierre Vanhove (IPhT) 6/12/2023
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The sunset graph : Griffiths-Dwork method

We then conclude that the minimal operator acting on the sunset integral
is the Picard-Fuchs operator

L 9? 0 >
'sz ((} 2) + ql(p rn ) ) 2 Jr CIO(P m )
which acts on the integrals as
Z2l5(p%) = 32902/ d(f1+ B2) #0
R w20 © Fox) Juso

We have constructed by the telescoper 7, — (p?) and the certificate
Co =d(B1+ Br)

The differential operator .> is the Picard—Fuchs operator of the elliptic
curve defined by the graph polynomial 7 (xi, x>, x3) = 0
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The sunset graph : Griffiths-Dwork method

If one considers the family of elliptic curve £

=43 —m(t)x —gs(t); Ar) = g(t)® — 27g3(t)?

the periods satisfy the differential system of equations

. dx 36 Toax
d </ ‘% ) _ (125 log A(t) TAD > (l d{,)
a \ [ % &t )(t<)> LdiogA(t)) \ [,

with 6(t) = 3g3(t) Lgo(t) — 2g2(t) L g3(t)
The Picard—Fuchs operator acting on the period integral fA, dx/y is

2 5
Lon = 148A(£)26(¢ )% + 144A(1) ( (¢ )dfji ) A(t)d;(tt)) %

. d?A(t) . dA(t) dé(t) dA(t)
3

+27g(t)0(t)” +12 e o(t) A(t) — < pm ) o(t)—12 p” A(t) prat
This matches the differential operator derived using the Griffiths—Dwork

method

Pierre Vanhove (IPhT)
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Extended Griffiths-Dwork algorithms

In general the graph hypersurface does not have isolated singularities
(which is the generic case) therefore the “naive” implementation of the
Griffiths-Dwork algorithm does not work

One could use the implementation of Doron Zeilberger (1990) creative
telescoping algorithm by F. Chyzak or C. Koutschan but the algorithm
takes a very long time for graph with many edges

D n
UF(K)W_E vi—1
Qr = ——— T Q
= T

We used period by Pierre Lairez of an extended Griffiths-Dwork
algorithm that handles singular hypersurfaces
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https://github.com/lairez/periods

Extended Griffiths-Dwork: syzygies

In this example we saw the pole reduction
Pne 2(><1><2><3)2QO _ > 104G
(0p?)*  Folx)? Fo(x)?

For singular hypersurface Xr C P"~1 the Jacobian reduction may not be
enough to reduce the pole order when k > n

Qo + dp1

Other reduction rules come from the syzygies of the derivatives ‘)?ﬁ i.e.
tuples (B, ..., B,) be homogeneous of degree kdeg Fr —n+1 such

that 3°, B; 9T = 0 such that (& = (1)~ Lty - -+ dx; - - - dxp)

0B,
i Ox; B; I Ox;
Za‘Q—d S| = Za'Q—o
]:r Fr v fr

i

In singular cases, these relations are missed by the Griffiths—Dwork
reduction, we need the extended Griffiths—Dwork reduction implemented
by [Lairez]
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Extended Griffiths-Dwork : syzygies

Given a form () = firkdg deg A= kdeg Fr — n

@ Compute a basis of the space S; of all syzygies of
degree kdeg F — n -+ 1 quotiented by the space of trivial syzygies

OF
D; = —Dj, B_ZDUa ZBax,r_

are irrelevant because already used by the Griffiths—Dwork reduction
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Extended Griffiths-Dwork : syzygies

Given a form () = %dg deg A= kdeg Fr — n
r
@ Compute a normal form R of A modulo the Jacobian ideal plus the
space dV = {Z, (())IXB’ ’ B e V}, that is for some polynomials B;
and C,'

()fr OFr
A R o Cnia
N Z OX, 0 X1 ot OXn

EdV €Jacobian ideal
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Extended Griffiths-Dwork : syzygies

Given a form () = %C/K deg A= kdeg Fr — n
r

© This leads to the following relation

oG
A i o Z B; Z G
Then .
A 1 "D ow
/ (K)k dx = - / Ekfll dx,
5 Fr(x) k=1Jy Fr

The extended Griffiths—Dwork reduction presented above is not always
enough and may need further extensions, i.e. syzygies of syzygies.
There is a hierarchy of extensions which eventually collapse to the
strongest possible reduction.
However, for all the computations presented here, we only needed the first
extension.
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Pole conditions

In the construction we will only consider the case where B(x, t) is
holomorphic on P"~1\ X, that is is 8r does not have poles that are not
present in Q.

Consider the rational function F(xi, x2)

axy + bXQ +c Nl(Xl7 X2) /\/2(X17 X2)

(ozxf + ﬁx22 + yx1x0 4+ 0x1 + nxo + C)z - T Di(x1, x2) 2 Do(x1,X2)

where a, b, c, ., 3,7,0,1),17 are constants and polynomials /V;(x;, x») and
D,’(Xl,Xg) with / =1, 2.

The denominators have poles at x)
a pole of the left-hand-side.

This means one can find a cycle - passing by xJ such that the integral of
|, F(x1.x) is finite and non-vanishing.

(a0 — 2cc)/(2ceb — a7y) which is not
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Minimality of the Picard—Fuchs operator

This dimension dim(Vr) = (—1)" 1y ((C*)"\V(Ur) U V(Fr)) gives an
upper bound on the order of the minimal order differential operator acting
on the Feynman integral. (sitoun et al]

The extended Griffiths—Dwork algorithm leads to a minimal order
differential operator
Qr =dpr

annihilating (in cohomology) the Feynman integral differential form Qf
with the condition that the certificate Jr is an holomorphic form on
P\ Zr. “ is the minimal differential order differential operator
satisfying this condition.

Using the algorithm by [Chyzak, Goyer, Mezzarobbal we test the
irreducibility of the the Picard—Fuchs operator and factorize when it is
reducible.
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Sunset graph Picard—Fuchs operator

o QO n— n—
QO (t, m?) = ot %) e H" 1P 1\ X.)

Fo (6, m* x) = x1- - xn <<Z i) <Z mﬁﬁ) ! t>

The graph hypersurface 7, (t, m*; x) = 0 defines a Calabi-Yau manifold of
dimension n — 1

For generic physical parameters configurations we find a minimal order
Picard—Fuchs operator [Lairez, Vanhovel

[e]

- d\’ N n+1
fthr(t,m2)<dt> op =2 —(,,H>;n22.

r=0
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The three-loop sunset graph

At three-loop we have a K3 surface of
25 19 < Pic < 16 depending on the mass
configuration

mg=m ma=n For generic mass parameters the
“ ¢, Picard-Fuchs operators
Pic=18 Pic=18
m3=m m3="n d
%=y at0 ()
Zs
Pic=17 .
A is order 6 and degree 25
my=nm
‘ 20\ o~ 2
% g6(P") = Go(P”) x
Pic=16

H (p2 — (exm1 + eomo + e3ms + €4m4)2)
e;=+1

d
Zr = (QTP2 +B)o L with §g(p?) degree 17 with apparent

singularities
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The four-loop sunset graph

L
e The geometry is the one of the
/ m==ms Calabi-Yau threefold.
56 % For gzneric2 Zinematlczslvve have
an orde egree
m2:¢~:m5 m TI%ZHT2:I'”3 n rt r gr
| /mr s operator
2 e % _ S~ 1] d\’
R L Z (t,m?) (dt) ,
m4im5\ / r=0
%
ﬁlo The degree of the apparent
my=—=ms singularities is a polynomial of
2 degree 98
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The five-loop and six-loop sunset graph

> The six mass configuration m; £ my # m3 # my # ms # mg
denote [1°]: the Picard-Fuchs operator of order 29 and degree of the
polynomial goo(t) is 521.

> The seven mass configuration

my # my # msz # myg # ms # me # my: the Picard—Fuchs operator
of order 58 with a degree 2273

» Results compatible with a CY n — 1-fold

Results obtained using Pierre Lairez period
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https://github.com/lairez/periods

Tardigrade

The rational differential form in P°

Q(6)
p2 Q(t) = g 5
(Us(x)-Ls(m?, x) — tV(s, x))
p1 P3 Us(x) = (1 + x2)(x3 + x4) + (x1 + x2) (x5 + Xp)

+ (x3 + x4) (x5 + )

V(;K) = zlgi.j,k§6 Cijk)/iyj)/k with linear
changes (xo;1.x0;) — (y2i-1.y2) and [ = 1,2.3
Ciji symmetric traceless i.e. Cj; =0

The algorithm gives an irreducible Picard—Fuchs
operator of order 11 with an head polynomial of
degree up to 215. [Lairez, Vanhove]

P5
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Tardigrade

The rational differential form in P°

Q(ﬁ)
Q(t) = 0 5
P2 (Z/{6(K)v(/6(m2~ 5) - tV(§. K))

The motive associated to this graph

p1 Theorem (Tardigrade motive)

Let X(552).p be the tardigrade hypersurface for

generic mass and momentum parameters and

D > 2. Then there is a quartic K3 surface with

six Ay singularities so that Gr) H*(X(252).p: Q)

is isomorphic to 1*(S;Q)(—1) for a K3 surface
ps S up to mixed Tate factors.

Determined in [Doran, Harder, Pichon-Pharabod,

Vanhove]
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Tardigrade

P2 The rational differential form in P°
(6)
Q(t) = 2 i
PL i (Us(x)Lo(m2, x) — tV(s, x))

The singularities of the graph polynomials are
all of type A1 and one can apply Eric
Pichon-Pharabod program lefschetz-family to
(numerically) determine the transcendental lattice
and confirm that we have a K3 of Picard Rank 11

Ps
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https://gitlab.inria.fr/epichonp/lefschetz-family
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The non-rational case

We now consider the non-rational case D € R

- () (585

> We relax all assumption on the mass parameters who can all vanish
my, -+ ,m, €R

> We have degree 0 rational form

UF(K)L—H

R(K) = J—"F(K)L
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Feynman Integrals: divergences

As a function of the powers of the propagators v and the dimension D the
integral has singularities located on hyperplane defined by
ST aivi + agD = 0 with (ag, a1,...,an) € /s

One can perform a Laurent expansion near say D. = 4 dimensions

Ir(s,m*v,D)= > (D- D) 1(s, m?; v)
r>—2L

(r)

2
where It/(s, m

; V) are convergent integrals.

¥ Eugene R. Speer
Generalized Feynman Amplitudes
Princeton University Press, (1969)
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The sunset graph

The two-loop sunset graph in D =2 — 2¢ with ¢ € R
P @ P

- ()

with
Us(x) = x1x0 + x1x3 + Xox3

The polar hypersurface of the integral is still the elliptic curve 7 (x) =0

Fox) = (xixo + x1x3 4+ x0x3)(m3x1 + maxo + m3x3) — p>x1xax3
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The sunset graph : Griffiths-Dwork method |

We consider differentiation with respect to a single physical parameter
z € {m,s}
We consider the derivative

i aQE _ F(l + a4+ E) (X1X2X3)a Z/{73\ ‘ Q(o)
dz) T T(1+2) FIl \F? "

we reduce the numerator in the Jacobian ideal of /-

M(l1+a+e)

L
== C ‘ [an
20 Cwes) =Ce Ve
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The sunset graph : Griffiths-Dwork method I

Integration by part gives

2 V-G 3\ ¢ Cioy - Viog(U3/F2) (1B \°
(2) -T2 () v T () s,

d\’ V-G (U Clay - Vog(Uo) (U3
L) =@ (o) .43 “0) Qu+dB.
<dz) T (a+20)F2 (f2> o3¢ (a+26)F3 <fg> o+dfs

We ask that
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The sunset graph : Griffiths-Dwork method |11

Solving the system

M(l+a+e)

M(1+ 2€) baxexs)” = Cay - Vo

Gives the pole reduction

d\? . V C(a)+3(C( () M3
(dz) A PRV <f2> o+ A

> This tells us how to modify the Griffiths-Dwork pole reduction and
deduce the ¢ deformed differential equation.

> This allows to treat case that are divergence for ¢ = 0 which was not
possible with the previous algorithm

Work in progress [de la Cruz, Vanhove]
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The sunset integrals : all equal mass case

For the all equal mass case the algorithm gives (up to 20 loops)
For the all equal mass case m; = --- = m;;1 = 1 we find the sunset
Feynman integral satisfies the differential equation

/
() GO,
‘Zﬁ‘ /\z({lv'”:l}atﬂﬁ) (l+1)r(1+/6)
with
z;(\/)-ﬁ _ g(/) / + g() N 6/g§’)=0
where the differential operator is .Z(f )" is of order r.
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Two loop Sunset: different masses |

Zq(?)v‘— _ $1(1)$1(2)Z§fmass+€$4(3) +€2$3(4) _|_€3$2(5) —1—6431(6) +65$()(7)

where i%,&’) are irreducible differential operator of order m and .#7% "%

is the differential operator for the three-mass two-loop sunset integral in
two dimensions.

Its actions on the Feynman integral is given by
LY (m, t;€) = (1, t; €)
with the source term

y(rﬁ - 6) - C23(t./ 6)r(€ + 1)2 C13(t, E)F(G + 1)2 C12(l', E)r(E + 1)2
T (m2m3)2fr(1 -+ 26) (m1m3)2fr(1 + 26) (mlmz)zfr(l + 26)
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Two loop Sunset: different masses |l

The ¢ deformed operator has for highest order term

4
3 2
=t t—
(s [T(t—u?)

$(2),6 _
i=1

4
X <7(2(+5)t2—2(m%+m§+m§)(1+2()t+(7+6()H//,->
i=1

where

pi = {mi + ma+ mz, —my + my + m3, my — my + m3, my + my — m3} are
the thresholds.

> The ¢ deformation is only affecting the apparent singularities

» The non-apparent singularities are still the roots of the discriminant
of the sunset elliptic curve

» The order 4 operator is irreducible
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3% We have put forward a new approach for deriving the differential
equation for Feynman integrals

3% We can derive the differential equations in general dimension by
extending the Griffiths-Dwork reduction

3% We see how the twist c-factor affects only the apparent singularities

& For graphs with many edges the reduction takes a long time we have
been using the FiniteFlow program to speed up the computation
but still improvements are needed

We have a seminar on these mathematical aspects of Feynman integral run
by Francis Brown, Erik Panzer, Federico Zerbini and myself at the address
https://www.ihes.fr/“vanhove/motivefeynman.html
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