Efficient algorithms for differential equation satisfied by Feynman integrals

Pierre Vanhove

$$
\begin{aligned}
& \text { IPhT } \\
& \text { Saclay }
\end{aligned}
$$

Computer Algebra for Functional Equations in Combinatorics and Physics
IHP, Paris, France based on 2209.10962 and 2306.05263
with Charles Doran, Andrew Harder, Pierre Lairez, Eric Pichon-Pharabod and work to appear with Leonardo de la Cruz

> Scattering amplitudes are the fundamental tools for making contact between quantum field theory description of nature and experiments

- Comparing particule physics model against datas from accelators
- Post-Minkowskian expansion for Gravitational wave physics
- Various condensed matter and statistical physics systems

Feynman Integrals: parametric representation

Feynman integral are given by projective space integrals

$$
\Gamma_{\Gamma}(\underline{\nu}, D ; \underline{s}, \underline{m})=\int_{\Delta_{n}} \frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0} \quad \omega=\sum_{i=1}^{n} \nu_{i}-\frac{L D}{2}
$$

with the volume form on \mathbb{P}^{n-1}

$$
\Omega_{0}=\sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \cdots \widehat{d x^{i}} \cdots \wedge d x^{n}
$$

The domain of integration is the positive quadrant

$$
\Delta_{n}:=\left\{x_{1} \geq 0, \ldots, x_{n} \geq 0 \mid\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{P}^{n-1}\right\}
$$

Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree $L+1$ in \mathbb{P}^{n-1}

$$
\mathcal{F}_{\Gamma}(\underline{x})=\mathcal{U}_{\Gamma}(\underline{x}) \times \mathcal{L}\left(\underline{m}^{2} ; \underline{x}\right)-\mathcal{V}_{\Gamma}(\underline{s}, \underline{x})
$$

- Homogeneous polynomial of degree L with $u_{a_{1}, \ldots, a_{n}} \in\{0,1\}$

$$
\mathcal{U}_{\Gamma}(\underline{x}):=\sum_{\substack{a_{1}+\ldots+a_{n}=L \\ 0 \leq a_{i} \leq 1}} u_{a_{1}, \ldots, a_{n}} \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

- the mass hyperplane

$$
\mathcal{L}\left(\underline{m}^{2} ; \underline{x}\right):=\sum_{n=1}^{n} m_{i}^{2} x_{i}
$$

- Homogeneous polynomial of degree $L+1$

$$
\mathcal{V}_{\Gamma}(\underline{x}):=\sum_{\substack{a_{1}+\ldots+a_{n}=L+1 \\ 0 \leq a_{i} \leq 1}} S_{a_{i}, \cdots, a_{n}} \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

Feynman Integrals: parametric representation

The integrand is an algebraic differential form in $H^{n-1}\left(\mathbb{P}^{n-1} \backslash \mathbb{X}_{\Gamma}\right)$ on the complement of the graph hypersurface

$$
\mathbb{X}_{\Gamma}:=\left\{\mathcal{U}_{\Gamma}(\underline{x}) \times \mathcal{F}_{\Gamma}(\underline{x})=0, \underline{x} \in \mathbb{P}^{n-1}\right\}
$$

- All the singularities of the Feynman integrals are located on the graph hypersurface
- Generically the graph hypersurface has non-isolated singularities

Feynman integral and periods

The domain of integration Δ_{n} is not an homology cycle because

$$
\partial \Delta_{n} \cap \mathbb{X}_{\Gamma}=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\}
$$

we have to look at the relative cohomology

$$
H^{\bullet}\left(\mathbb{P}^{n-1} \backslash X_{\Gamma} ; Д_{n} \backslash Д_{n} \cap \mathbb{X}_{\Gamma}\right)
$$

The normal crossings divisor $\Pi_{n}:=\left\{x_{1} \cdots x_{n}=0\right\}$ and \mathbb{X}_{Γ} are separated by performing a series of iterated blowups of the complement of the graph hypersurface [Bloch, Esnault, Kreimer]

Differential equation

The Feynman integral are period integrals of the relative cohomology after performing the appropriate blow-ups

$$
\mathfrak{M}\left(\underline{s}, \underline{m}^{2}\right):=H^{\bullet}\left(\widetilde{\mathbb{P}^{n-1}} \backslash \widetilde{X_{F}} ; \widetilde{\Pi_{n}} \backslash \widetilde{\Pi_{n}} \cap \widetilde{X_{\Gamma}}\right)
$$

Since the integrand varies with the physical variables $\left\{S_{a^{i}}, m_{1}^{2}, \ldots, m_{n}^{2}\right\}$ one needs to study a variation of (mixed) Hodge structure
One can show that the Feynman integral are holonomic D-finite functions [Bitoun et al:;Smirnov et al.]
A Feynman integrals satisfies inhomogenous differential equations with respect to any set of variables $\underline{z} \in\left\{S_{\underline{a}}, m_{1}^{2}, \ldots, m_{n}^{2}\right\}$

$$
\mathscr{L}_{\Gamma}(\underline{z}) I_{\Gamma}=\mathscr{S}_{\Gamma}
$$

Generically there is an inhomogeneous term $\mathscr{S}_{\Gamma} \neq 0$ due to the boundary components $\partial \Delta_{n}$

Feynman integral D-module

We want to address the questions
(1) To what class of functions belong Feynman integrals?
(2) What is the geometrical algebraic origin of the motive $\mathfrak{M}\left(\underline{s}, \underline{m}^{2}\right)$?
(3) Derivation of the (D-module of) differential equations? $\mathscr{L}_{\Gamma}(\underline{z}) I_{\Gamma}=\mathscr{S}_{\Gamma}$

In this talk we focus in the question and present some new methods for deriving such system of differential equation and its underlying (algebraic) geometry

Feynman Integrals differential equations

For a given subset of the physical parameters $\underline{z}:=\left(z_{1}, \ldots, z_{r}\right) \subset\left\{\underline{s}, \underline{m}^{2}\right\}$ we want to derive minimal order differential equations

$$
\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}^{2}, \partial_{\underline{z}}\right) \int_{\sigma} \frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0}=\mathscr{S}_{\sigma, \Gamma}(\underline{z})
$$

One way to achieve this is to construct a Gröbner basis of operators $T_{\underline{z}}$ that annihilate the integrand of the Feynman integral

$$
T_{\underline{z}}\left(\frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0}\right)=0
$$

such that

$$
T_{\underline{z}}=\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}^{2}, \underline{\partial}_{\underline{z}}\right)+\sum_{i=1}^{n} \partial_{x_{i}} Q_{i}\left(\underline{s}, \underline{m}^{2}, \underline{\partial}_{\underline{z}} ; \underline{x}, \underline{\partial}_{\underline{x}}\right)
$$

Feynman Integrals differential equations

where the finite order differential operator

$$
\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}^{2}, \underline{\partial}_{\underline{z}}\right)=\sum_{\substack{0 \leq a_{i} \leq o_{i} \\ 1 \leq i \leq r}} p_{a_{1}, \ldots, a_{r}}\left(\underline{s}, \underline{m}^{2}\right) \prod_{i=1}^{r}\left(\frac{d}{d z_{i}}\right)^{a_{i}}
$$

$$
Q_{i}\left(\underline{s}, \underline{m}^{2}, \underline{\partial}_{\underline{z}}\right)=\sum_{\substack{0 \leq a_{i} \leq o_{i}^{\prime} \\ 1 \leq i \leq r}} \sum_{\substack{0 \leq b_{i} \leq \tilde{o}_{i} \\ 1 \leq i \leq n}} q_{a_{1}, \ldots, a_{r}}^{(i)}\left(\underline{s}, \underline{m}^{2}, \underline{x}\right) \prod_{i=1}^{r}\left(\frac{d}{d z_{i}}\right)^{a_{i}} \prod_{i=1}^{n}\left(\frac{d}{d x_{i}}\right)^{b_{i}}
$$

- The orders o_{i}, o_{i}^{\prime}, \tilde{o}_{i} are positive integers
- $p_{a_{1}, \ldots, a_{r}}\left(\underline{S}, \underline{m}^{2}\right)$ polynomials in the kinematic variables
- $q_{a_{1}, \ldots, a_{r}}^{(i)}\left(\underline{s}, \underline{m}^{2}, \underline{x}\right)$ rational functions in the kinematic variable and the projective variables \underline{x}.

Feynman Integrals differential equations

Integrating over a cycle γ gives

$$
0=\oint_{\gamma} T_{\underline{z}} \Omega_{\Gamma}=\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) \oint_{\gamma} \Omega_{\Gamma}+\oint_{\gamma} d \beta_{\Gamma}
$$

For a cycle $\partial \gamma=\emptyset$ then $\oint_{\gamma} d \beta_{\Gamma}=0$ and we get

$$
\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) \oint_{\gamma} \Omega_{\Gamma}=0
$$

For the Feynman integral I_{Γ} we have

$$
0=\int_{\Delta_{n}} T_{\underline{z}} \Omega_{\Gamma}=\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) I_{\Gamma}+\int_{\Delta_{n}} d \beta_{\Gamma}
$$

since $\partial \Delta_{n} \neq \emptyset$

$$
\mathscr{L}_{\Gamma}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) I_{\Gamma}=\mathscr{S}_{\Gamma}
$$

So we need the telescoper and the certificate

The Rational case

We start with the case of a rational differential form with $D \in 2 \mathbb{N}^{*}$

$$
\Omega_{\Gamma}=\frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0} \quad \omega=\sum_{i=1}^{n} \nu_{i}-\frac{L D}{2}
$$

- We as well assume that all the mass parameters are all vanishing $m_{1}, \cdots, m_{n} \neq 0$
- And that $\omega>0$, i.e. $\sum_{i=1}^{n} \nu_{i}>L D / 2$

So that the integral of Ω_{Γ} on the positive orthan is a convergent integral

The sunset graph

The two-loop sunset graph in $D=2$

$$
I_{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\int_{\mathbb{R}_{+}^{3}} \frac{d x_{1} d x_{2} d x_{3}}{\mathcal{F}_{\ominus}(\underline{x})}
$$

The polar hypersurface of the integral is an elliptic curve $\mathcal{F}_{\ominus}(\underline{x})=0$

$$
\mathcal{F}_{\ominus}(\underline{x})=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}\right)-p^{2} x_{1} x_{2} x_{3}
$$

The sunset graph : Griffiths-Dwork method

One can obtain a differential equation annihilating acting on the integral using the Griffiths-Dwork method
Let define the integrand in differential form

$$
\Omega_{\ominus}=\frac{x_{1} d x_{2} \wedge d x_{3}-x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}}{\mathcal{F}_{\ominus}(\underline{x})}=\frac{\Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})}
$$

consider

$$
\frac{\partial \Omega_{\ominus}}{\partial p^{2}}=x_{1} x_{2} x_{3} \frac{\Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})^{2}} ; \quad \frac{\partial^{2} \Omega_{\ominus}}{\left(\partial p^{2}\right)^{2}}=2\left(x_{1} x_{2} x_{3}\right)^{2} \frac{\Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})^{3}}
$$

Since we know we have the geometry of an elliptic curve we are looking for a second order differential operator acting on η_{\ominus}

$$
\mathscr{L}_{\ominus}\left(p^{2}\right)=\frac{\partial^{2}}{\left(\partial p^{2}\right)^{2}}+q_{1}\left(p^{2}, \underline{m}^{2}\right) \frac{\partial}{\partial p^{2}}+q_{0}\left(p^{2}, \underline{m}^{2}\right)
$$

The sunset graph : Griffiths-Dwork method

Remark that $\left(x_{1} x_{2} x_{3}\right)^{2}$ lies in the Jacobian ideal for $\mathcal{F}_{\ominus}(\underline{x})$

$$
\left(x_{1} x_{2} x_{3}\right)^{2}=\sum_{i=1}^{3} C_{i}^{(1)}(\underline{x}) \partial_{x_{i}} \mathcal{F}_{\ominus}(\underline{x})
$$

with $C_{i}^{(1)}(\underline{x})$ homogeneous of degree 4 in the $\left(x_{1}, x_{2}, x_{3}\right)$ variables Following Griffiths one introduces the differential form

$$
\begin{aligned}
& \beta_{1}=\frac{\left(x_{2} C_{3}^{(1)}(\underline{x})-x_{3} C_{2}^{(1)}(\underline{x})\right) d x_{1}}{\mathcal{F}_{\Theta}(\underline{x})^{2}}+\frac{\left(x_{1} C_{3}^{(1)}(\underline{x})-x_{3} C_{1}^{(1)}(\underline{x})\right) d x_{2}}{\mathcal{F}_{\ominus}(\underline{x})^{2}} \\
&+\frac{\left(x_{1} C_{2}^{(1)}(\underline{x})-x_{2} C_{1}^{(1)}(\underline{x})\right) d x_{3}}{\mathcal{F}_{\ominus}(\underline{x})^{2}}
\end{aligned}
$$

such that

$$
d \beta_{1}=2 \frac{\sum_{i=1}^{3} C_{i}^{(1)}(\underline{x}) \partial_{x_{i}} \mathcal{F}_{\ominus}(\underline{x}) \Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})^{3}}-\frac{\sum_{i=1}^{3} \partial_{x_{i}} C_{i}^{(1)}(\underline{x}) \Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})^{2}}
$$

The sunset graph : Griffiths-Dwork method

$$
\mathscr{L}_{\ominus}\left(p^{2}\right) \Omega_{\ominus}=\frac{q_{1}\left(p^{2}, \underline{m}^{2}\right) x_{1} x_{2} x_{3}+\sum_{i=1}^{3} \partial_{x_{i}} C_{i}^{(1)}(\underline{x})}{\mathcal{F}_{\ominus}(\underline{x})^{2}} \Omega_{0}+d \beta_{1}
$$

We can again reduce this second order pole using that there exist a polynomial $q_{1}\left(p^{2}, \underline{m}^{2}\right)$ such that

$$
q_{1}\left(p^{2}, \underline{m}^{2}\right) x_{1} x_{2} x_{3}+\sum_{i=1}^{3} \partial_{x_{i}} C_{i}^{(1)}(\underline{x})=\sum_{i=1}^{3} c_{i}^{(2)} \partial_{x_{i}} \mathcal{F}_{\Theta}(\underline{x})
$$

with $C_{i}^{(2)}$ of degree 1 . One introduces the 1-form β_{2}

$$
\beta_{2}=\sum_{i=1}^{3} \epsilon^{i j k} \frac{x_{j} C_{k}^{(2)}(\underline{x}) d x_{i}}{\mathcal{F}_{\ominus}(\underline{x})}
$$

The sunset graph : Griffiths-Dwork method

such that

$$
d \beta_{2}=\frac{\sum_{i=1}^{3} C_{i}^{(2)}(\underline{x}) \partial_{x_{i}} \mathcal{F}_{\ominus}(\underline{x})}{\mathcal{F}_{\ominus}(\underline{x})^{2}}-\frac{\sum_{i=1}^{3} \partial_{x_{i}} C_{i}^{(2)}(\underline{x}) \Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})}
$$

We have achieved that

$$
\left(\frac{\partial^{2}}{\left(\partial p^{2}\right)^{2}}+q_{1}\left(p^{2}, \underline{m}^{2}\right) \frac{\partial}{\partial p^{2}}+\sum_{i=1}^{3} \partial_{x_{i}} C_{i}^{(2)}(\underline{x})\right) \eta_{\ominus}=d\left(\beta_{1}+\beta_{2}\right)
$$

because the $C_{i}^{(2)}(\underline{x})$ are of degree 1 in $\left(x_{1}, x_{2}, x_{3}\right)$ then $q_{0}\left(p^{2}, \underline{m}^{2}\right)=\partial_{x_{i}} C_{i}^{(2)}(\underline{x})$ only depends on p^{2}, \underline{m}^{2}

The sunset graph : Griffiths-Dwork method

We then conclude that the minimal operator acting on the sunset integral is the Picard-Fuchs operator

$$
\mathscr{L}_{p^{2}}=\frac{\partial^{2}}{\left(\partial p^{2}\right)^{2}}+q_{1}\left(p^{2}, \underline{m}^{2}\right) \frac{\partial}{\partial p^{2}}+q_{0}\left(p^{2}, \underline{m}^{2}\right)
$$

which acts on the integrals as

$$
\mathscr{L}_{p^{2}} I_{\ominus}\left(p^{2}\right)=\int_{x_{i} \geq 0} \mathscr{L}_{p^{2}} \frac{\Omega_{0}}{\mathcal{F}_{\ominus}(\underline{x})}=\int_{x_{i} \geq 0} d\left(\beta_{1}+\beta_{2}\right) \neq 0
$$

We have constructed by the telescoper $T_{p^{2}}=\mathscr{L}_{\Theta}\left(p^{2}\right)$ and the certificate $C_{\ominus}=d\left(\beta_{1}+\beta_{2}\right)$
The differential operator $\mathscr{L}_{p^{2}}$ is the Picard-Fuchs operator of the elliptic curve defined by the graph polynomial $\mathcal{F}_{\ominus}\left(x_{1}, x_{2}, x_{3}\right)=0$

The sunset graph : Griffiths-Dwork method

If one considers the family of elliptic curve E

$$
y^{2}=4 x^{3}-g_{2}(t) x-g_{3}(t) ; \quad \Delta(t)=g_{2}(t)^{3}-27 g_{3}(t)^{2}
$$

the periods satisfy the differential system of equations

$$
\frac{d}{d t}\binom{\int_{\gamma} \frac{d x}{y}}{\int_{\gamma} \frac{x d x}{y}}=\left(\begin{array}{cc}
-\frac{1}{11} \frac{d}{d t} \log \Delta(t) & \frac{3 \delta(t)}{2 \Delta(t)} \\
-\frac{g_{2}(t) \delta(t)}{8 \Delta(t)} & \frac{1}{12} \frac{d}{d t} \log \Delta(t)
\end{array}\right)\binom{\int_{\gamma} \frac{d x}{y}}{\int_{\gamma} \frac{x d x}{y}}
$$

with $\delta(t)=3 g_{3}(t) \frac{d}{d t} g_{2}(t)-2 g_{2}(t) \frac{d}{d t} g_{3}(t)$
The Picard-Fuchs operator acting on the period integral $\int_{\gamma} d x / y$ is

$$
\begin{gathered}
\mathscr{L}_{\mathrm{ell}}=144 \Delta(t)^{2} \delta(t) \frac{d^{2}}{d t^{2}}+144 \Delta(t)\left(\delta(t) \frac{d \Delta(t)}{d t}-\Delta(t) \frac{d \delta(t)}{d t}\right) \frac{d}{d t} \\
+27 g_{2}(t) \delta(t)^{3}+12 \frac{d^{2} \Delta(t)}{d t^{2}} \delta(t) \Delta(t)-\left(\frac{d \Delta(t)}{d t}\right)^{2} \delta(t)-12 \frac{d \delta(t)}{d t} \Delta(t) \frac{d \Delta(t)}{d t} .
\end{gathered}
$$

This matches the differential operator derived using the Griffiths-Dwork method

Extended Griffiths-Dwork algorithms

In general the graph hypersurface does not have isolated singularities (which is the generic case) therefore the "naïve" implementation of the Griffiths-Dwork algorithm does not work

One could use the implementation of Doron Zeilberger (1990) creative telescoping algorithm by F. Chyzak or C. Koutschan but the algorithm takes a very long time for graph with many edges

$$
\Omega_{\Gamma}=\frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0}
$$

We used period by Pierre Lairez of an extended Griffiths-Dwork algorithm that handles singular hypersurfaces

Extended Griffiths-Dwork: syzygies

In this example we saw the pole reduction

$$
\frac{\partial^{2} \eta_{\ominus}}{\left(\partial p^{2}\right)^{2}}=\frac{2\left(x_{1} x_{2} x_{3}\right)^{2}}{\mathcal{F}_{\ominus}(\underline{x})^{3}} \Omega_{0}=\frac{\sum_{i=1}^{3} \partial_{x_{i}} C_{i}}{\mathcal{F}_{\ominus}(\underline{x})^{2}} \Omega_{0}+d \beta_{1}
$$

For singular hypersurface $X_{\Gamma} \subset \mathbb{P}^{n-1}$ the Jacobian reduction may not be enough to reduce the pole order when $k \geq n$
Other reduction rules come from the syzygies of the derivatives $\frac{\partial \mathcal{F}_{r}}{\partial x_{i}}$, i.e. tuples $\left(B_{1}, \ldots, B_{n}\right)$ be homogeneous of degree $k \operatorname{deg} \mathcal{F}_{\Gamma}-n+1$ such that $\sum_{i} B_{i} \frac{\partial \mathcal{F}_{r}}{\partial x_{i}}=0$ such that $\left(\xi_{i}=(-1)^{i-1} d x_{1} \cdots \widehat{d x_{i}} \cdots d x_{n}\right)$

$$
\frac{\sum_{i} \frac{\partial B_{i}}{x_{i}}}{\mathcal{F}_{\Gamma}^{k}} \Omega_{0}=d\left(\sum_{i} \frac{B_{i}}{\mathcal{F}_{\Gamma}^{k}} \xi_{i}\right) \Longrightarrow \int_{\gamma} \frac{\sum_{i} \frac{\partial B_{i}}{\partial x_{i}}}{\mathcal{F}_{\Gamma}^{k}} \Omega_{0}=0
$$

In singular cases, these relations are missed by the Griffiths-Dwork reduction, we need the extended Griffiths-Dwork reduction implemented by [Lairez]

Extended Griffiths-Dwork : syzygies

Given a form $\Omega=\frac{A}{\mathcal{F}_{\Gamma}^{k}} d \underline{x} \quad \operatorname{deg} A=k \operatorname{deg} \mathcal{F}_{\Gamma}-n$
(1) Compute a basis of the space S_{k} of all syzygies of degree $k \operatorname{deg} \mathcal{F}_{\Gamma}-n+1$ quotiented by the space of trivial syzygies

$$
D_{i j}=-D_{j i}, \quad B_{i}=\sum_{j=1}^{n} D_{i j} \frac{\partial \mathcal{F}_{\Gamma}}{\partial x_{j}} \Longrightarrow \sum_{i} B_{i} \frac{\partial \mathcal{F}_{\Gamma}}{\partial x_{i}}=0
$$

are irrelevant because already used by the Griffiths-Dwork reduction

Extended Griffiths-Dwork : syzygies

Given a form $\Omega=\frac{A}{\mathcal{F}_{\Gamma}^{k}} d \underline{x} \quad \operatorname{deg} A=k \operatorname{deg} \mathcal{F}_{\Gamma}-n$
(2) Compute a normal form R of A modulo the Jacobian ideal plus the space $d V=\left\{\left.\sum_{i} \frac{\partial B_{i}}{\partial x_{i}} \right\rvert\, \underline{B} \in V\right\}$, that is for some polynomials B_{i} and C_{i}

$$
A=R+\underbrace{\sum_{i} \frac{\partial B_{i}}{\partial x_{i}}}_{\in d V}+\underbrace{C_{1} \frac{\partial \mathcal{F}_{\Gamma}}{\partial x_{1}}+\cdots+C_{n} \frac{\partial \mathcal{F}_{\Gamma}}{\partial x_{n}}}_{\in \text { Jacobian ideal }}
$$

Extended Griffiths-Dwork : syzygies

Given a form $\Omega=\frac{A}{\mathcal{F}_{\Gamma}^{k}} d \underline{x} \quad \operatorname{deg} A=k \operatorname{deg} \mathcal{F}_{\Gamma}-n$
(3) This leads to the following relation

$$
(k-1) \frac{A}{\mathcal{F}_{\Gamma}^{k}} d \underline{x}=\frac{\sum_{i} \frac{\partial C_{i}}{\partial x_{i}}}{\mathcal{F}_{\Gamma}^{k-1}} d \underline{x}-d\left(\sum_{i} \frac{B_{i}}{\mathcal{F}_{\Gamma}^{k}} \xi_{i}+\sum_{i} \frac{C_{i}}{\mathcal{F}_{\Gamma}^{k-1}} \xi_{i}\right)
$$

Then

$$
\int_{\gamma} \frac{A(\underline{x})}{\mathcal{F}_{\Gamma}(\underline{x})^{k}} d \underline{x}=-\frac{1}{k-1} \int_{\gamma} \frac{\sum_{i} \frac{\partial C_{i}}{\partial x_{i}}}{\mathcal{F}_{\Gamma}^{k-1}} d \underline{x},
$$

The extended Griffiths-Dwork reduction presented above is not always enough and may need further extensions, i.e. syzygies of syzygies. There is a hierarchy of extensions which eventually collapse to the strongest possible reduction.
However, for all the computations presented here, we only needed the first extension.

Pole conditions

In the construction we will only consider the case where $\beta(\underline{x}, t)$ is holomorphic on $\mathbb{P}^{n-1} \backslash X_{\Gamma}$, that is is β_{Γ} does not have poles that are not present in Ω_{Γ}.
Consider the rational function $F\left(x_{1}, x_{2}\right)$

$$
\frac{a x_{1}+b x_{2}+c}{\left(\alpha x_{1}^{2}+\beta x_{2}^{2}+\gamma x_{1} x_{2}+\delta x_{1}+\eta x_{2}+\zeta\right)^{2}}=\partial_{x_{1}} \frac{N_{1}\left(x_{1}, x_{2}\right)}{D_{1}\left(x_{1}, x_{2}\right)}+\partial_{x_{2}} \frac{N_{2}\left(x_{1}, x_{2}\right)}{D_{2}\left(x_{1}, x_{2}\right)}
$$

where a, b, c, $\alpha, \beta, \gamma, \delta, \eta, \eta$ are constants and polynomials $N_{i}\left(x_{1}, x_{2}\right)$ and $D_{i}\left(x_{1}, x_{2}\right)$ with $i=1,2$.
The denominators have poles at $x_{2}^{0}=(a \delta-2 \alpha c) /(2 \alpha b-a \gamma)$ which is not a pole of the left-hand-side.
This means one can find a cycle γ passing by x_{2}^{0} such that the integral of $\int_{\gamma} F\left(x_{1}, x_{2}\right)$ is finite and non-vanishing.

Minimality of the Picard-Fuchs operator

This dimension $\operatorname{dim}\left(V_{\Gamma}\right)=(-1)^{n+1} \chi\left(\left(\mathbb{C}^{*}\right)^{n} \backslash \mathbb{V}\left(\mathcal{U}_{\Gamma}\right) \cup \mathbb{V}\left(\mathcal{F}_{\Gamma}\right)\right)$ gives an upper bound on the order of the minimal order differential operator acting on the Feynman integral. [Bitoun et al.]

The extended Griffiths-Dwork algorithm leads to a minimal order differential operator

$$
\mathscr{L}_{\Gamma} \Omega_{\Gamma}=d \beta_{\Gamma}
$$

annihilating (in cohomology) the Feynman integral differential form Ω_{Γ} with the condition that the certificate β_{Γ} is an holomorphic form on $\mathbb{P}^{n-1} \backslash Z_{\Gamma} . \mathscr{L}_{\Gamma}$ is the minimal differential order differential operator satisfying this condition.

Using the algorithm by [Chyzak, Goyer, Mezzarobba] we test the irreducibility of the the Picard-Fuchs operator and factorize when it is reducible.

Sunset graph Picard-Fuchs operator

$$
\begin{aligned}
& \Omega_{n}^{\ominus}\left(t, \underline{m}^{2}\right):=\frac{\Omega_{0}}{\mathcal{F}_{n}^{\ominus}\left(t, \underline{m}^{2} ; \underline{x}\right)} \in H^{n-1}\left(\mathbb{P}^{n-1} \backslash X_{\ominus}\right) \\
& \mathcal{F}_{n}^{\ominus}\left(t, \underline{m}^{2} ; \underline{x}\right):=x_{1} \cdots x_{n}\left(\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)\left(\sum_{j=1}^{n} m_{j}^{2} x_{j}\right)-t\right)
\end{aligned}
$$

The graph hypersurface $\mathcal{F}_{n}^{\ominus}\left(t, \underline{m}^{2} ; x\right)=0$ defines a Calabi-Yau manifold of dimension $n-1$
For generic physical parameters configurations we find a minimal order Picard-Fuchs operator [Lairez, Vanhove]

$$
\mathscr{L}_{t}=\sum_{r=0}^{o_{n}} q_{r}\left(t, \underline{m}^{2}\right)\left(\frac{d}{d t}\right)^{r} \quad o_{n}=2^{n}-\binom{n+1}{\left\lfloor\frac{n+1}{2}\right\rfloor} ; n \geq 2
$$

The three-loop sunset graph

At three-loop we have a $K 3$ surface of

$19 \leq$ Pic ≤ 16 depending on the mass configuration
For generic mass parameters the
Picard-Fuchs operators

$$
\mathscr{L}_{6}=\sum_{r=0}^{6} q_{r}(s)\left(\frac{d}{d p^{2}}\right)^{r}
$$

is order 6 and degree 25

$$
\begin{aligned}
& q_{6}\left(p^{2}\right)=\tilde{q}_{6}\left(p^{2}\right) \times \\
& \quad \prod_{\epsilon_{i}= \pm 1}\left(p^{2}-\left(\epsilon_{1} m_{1}+\epsilon_{2} m_{2}+\epsilon_{3} m_{3}+\epsilon_{4} m_{4}\right)^{2}\right)
\end{aligned}
$$

with $\tilde{q}_{6}\left(p^{2}\right)$ degree 17 with apparent singularities

The four-loop sunset graph

The geometry is the one of the Calabi-Yau threefold.
For generic kinematics we have an order 12 degree 121 operator
$\mathcal{L}_{t}^{\left[1^{5}\right]}=\sum_{r=0}^{12} q_{r}^{\left[1^{5}\right]}\left(t, \underline{m}^{2}\right)\left(\frac{d}{d t}\right)^{r}$.
The degree of the apparent singularities is a polynomial of degree 98

The five-loop and six-loop sunset graph

- The six mass configuration $m_{1} \neq m_{2} \neq m_{3} \neq m_{4} \neq m_{5} \neq m_{6}$ denote $\left[1^{6}\right]$: the Picard-Fuchs operator of order 29 and degree of the polynomial $q_{29}(t)$ is 521 .
- The seven mass configuration $m_{1} \neq m_{2} \neq m_{3} \neq m_{4} \neq m_{5} \neq m_{6} \neq m_{7}$: the Picard-Fuchs operator of order 58 with a degree 2273
- Results compatible with a CY n-1-fold Results obtained using Pierre Lairez period

Tardigrade

The rational differential form in \mathbb{P}^{5}

$$
\begin{aligned}
& \begin{array}{ll}
p_{2} \\
\downarrow
\end{array} \quad \Omega(t)=\frac{\Omega_{0}^{(6)}}{\left(\mathcal{U}_{6}(\underline{x}) \mathscr{L}_{6}\left(\underline{m}^{2}, \underline{x}\right)-t \mathcal{V}(\underline{s}, \underline{x})\right)^{2}} \\
& \xrightarrow{p_{1}} \\
& \mathcal{V}(\underline{s}, \underline{x})=\sum_{1 \leq i, j, k \leq 6} C_{i j k} y_{i} y_{j} y_{k} \text { with linear } \\
& \text { changes }\left(x_{2 i-1}, x_{2 i}\right) \rightarrow\left(y_{2 i-1}, y_{2 i}\right) \text { and } i=1,2,3 \\
& C_{i j k} \text { symmetric traceless i.e. } C_{i j}=0 \\
& \text { The algorithm gives an irreducible Picard-Fuchs } \\
& \text { operator of order } 11 \text { with an head polynomial of } \\
& \text { degree up to 215. [Lairez, Vanhove] }
\end{aligned}
$$

Tardigrade

The rational differential form in \mathbb{P}^{5}

$$
\Omega(t)=\frac{\Omega_{0}^{(6)}}{\left(\mathcal{U}_{6}(\underline{x}) \mathscr{L}_{6}\left(\underline{m}^{2}, \underline{x}\right)-t \mathcal{V}(\underline{s}, \underline{x})\right)^{2}}
$$

The motive associated to this graph

Theorem (Tardigrade motive)

Let $X_{(2,2,2) ; D}$ be the tardigrade hypersurface for generic mass and momentum parameters and $D \geq 2$. Then there is a quartic K3 surface with six A_{1} singularities so that $\operatorname{Gr}_{4}^{W} H^{4}\left(X_{(2,2,2) ; D ; \mathbb{Q})}\right.$ is isomorphic to $\mathrm{H}^{2}(S ; \mathbb{Q})(-1)$ for a K3 surface S up to mixed Tate factors.

[^0]
Tardigrade

The rational differential form in \mathbb{P}^{5}

$$
\Omega(t)=\frac{\Omega_{0}^{(6)}}{\left(\mathcal{U}_{6}(\underline{x}) \mathscr{L}_{6}\left(\underline{m}^{2}, \underline{x}\right)-t \mathcal{V}(\underline{s}, \underline{x})\right)^{2}}
$$

The singularities of the graph polynomials are all of type A_{1} and one can apply Eric Pichon-Pharabod program lefschetz-family to (numerically) determine the transcendental lattice and confirm that we have a K3 of Picard Rank 11

The non-rational case

We now consider the non-rational case $D \in \mathbb{R}$

$$
\Omega_{\Gamma}=\left(\frac{\mathcal{U}_{\Gamma}(\underline{x})}{\mathcal{F}_{\Gamma}(\underline{x})}\right)^{\sum_{i} \nu_{i}}\left(\frac{\mathcal{U}_{\Gamma}(\underline{x})^{L+1}}{\mathcal{F}_{\Gamma}(\underline{x})^{L}}\right)^{D} \prod_{i=1}^{n} x_{i}^{\nu_{i}-1} \Omega_{0}
$$

- We relax all assumption on the mass parameters who can all vanish $m_{1}, \cdots, m_{n} \in \mathbb{R}$
- We have degree 0 rational form

$$
R(\underline{x}):=\frac{\mathcal{U}_{\Gamma}(\underline{x})^{L+1}}{\mathcal{F}_{\Gamma}(\underline{x})^{L}}
$$

Feynman Integrals: divergences

As a function of the powers of the propagators $\underline{\nu}$ and the dimension D the integral has singularities located on hyperplane defined by
$\sum_{i=1}^{n} a_{i} \nu_{i}+a_{0} D=0$ with $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1}$
One can perform a Laurent expansion near say $D_{c}=4$ dimensions

$$
I_{\Gamma}\left(\underline{s}, \underline{m}^{2} ; \underline{\nu}, D\right)=\sum_{r \geq-2 L}\left(D-D_{c}\right)^{r} I_{\Gamma}^{(r)}\left(\underline{s}, \underline{m}^{2} ; \underline{\nu}\right)
$$

where $I_{\Gamma}^{(r)}\left(\underline{s}, \underline{m}^{2} ; \underline{\nu}\right)$ are convergent integrals.

Q Eugene R. Speer
Generalized Feynman Amplitudes
Princeton University Press, (1969)

The sunset graph

The two-loop sunset graph in $D=2-2 \epsilon$ with $\epsilon \in \mathbb{R}$

$$
I_{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\int_{\mathbb{R}_{+}^{3}}\left(\frac{\mathcal{U}_{\ominus}^{3}(\underline{x})}{\mathcal{F}_{\ominus}^{2}(\underline{x})}\right)^{\epsilon} \frac{d x_{1} d x_{2} d x_{3}}{\mathcal{F}_{\ominus}(\underline{x})}
$$

with

$$
\mathcal{U}_{\ominus}(\underline{x})=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

The polar hypersurface of the integral is still the elliptic curve $\mathcal{F}_{\ominus}(\underline{x})=0$

$$
\mathcal{F}_{\ominus}(\underline{x})=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}\right)-p^{2} x_{1} x_{2} x_{3}
$$

The sunset graph : Griffiths-Dwork method I

We consider differentiation with respect to a single physical parameter $z \in\{\vec{m}, \vec{s}\}$
We consider the derivative

$$
\left(\frac{d}{d z}\right)^{a} \Omega_{\Gamma}^{\epsilon}=\frac{\Gamma(1+a+\epsilon)}{\Gamma(1+2 \epsilon)} \frac{\left(x_{1} x_{2} x_{3}\right)^{a}}{\mathcal{F}_{\ominus}^{a+1}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{n}^{(0)}
$$

we reduce the numerator in the Jacobian ideal of \mathcal{F}_{\ominus}

$$
\frac{\Gamma(1+a+\epsilon)}{\Gamma(1+2 \epsilon)}\left(x_{1} x_{2} x_{3}\right)^{a}=\vec{C}_{(a)} \cdot \vec{\nabla} \mathcal{F}_{\ominus}
$$

The sunset graph : Griffiths-Dwork method II

Integration by part gives
$\left(\frac{d}{d z}\right)^{a} \Omega_{\Gamma}^{\epsilon}=\frac{\vec{\nabla} \cdot \vec{C}_{(a)}}{a \mathcal{F}_{\ominus}^{a}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{0}+\epsilon \frac{\vec{C}_{(a)} \cdot \vec{\nabla} \log \left(\mathcal{U}_{\ominus}^{3} / \mathcal{F}_{\ominus}^{2}\right)}{a \mathcal{F}_{\ominus}^{a}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{0}+d \beta_{(a)}$
or equivalently
$\left(\frac{d}{d z}\right)^{a} \Omega_{\Gamma}^{\epsilon}=\frac{\vec{\nabla} \cdot \vec{C}_{(a)}}{(a+2 \epsilon) \mathcal{F}_{\ominus}^{a}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{0}+3 \epsilon \frac{\vec{C}_{(a)} \cdot \vec{\nabla} \log \left(\mathcal{U}_{\ominus}\right)}{(a+2 \epsilon) \mathcal{F}_{\ominus}^{a}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{0}+d \beta_{(a)}$
We ask that

$$
\vec{C}_{(a)} \cdot \vec{\nabla} \mathcal{U}_{\ominus}=c_{(a)}(\underline{x}) \mathcal{U}_{\ominus}
$$

The sunset graph : Griffiths-Dwork method III

Solving the system

$$
\begin{aligned}
\frac{\Gamma(1+a+\epsilon)}{\Gamma(1+2 \epsilon)}\left(x_{1} x_{2} x_{3}\right)^{a} & =\vec{C}_{(a)} \cdot \vec{\nabla} \mathcal{F}_{\ominus}, \\
\vec{C}_{(a)} \cdot \vec{\nabla} \mathcal{U}_{\ominus} & =c_{(a)}(\underline{x}) \mathcal{U}_{\ominus}
\end{aligned}
$$

Gives the pole reduction

$$
\left(\frac{d}{d z}\right)^{a} \Omega_{\Gamma}^{\epsilon}=\frac{\vec{\nabla} \cdot \vec{C}_{(a)}+3 \epsilon C_{(a)}(\underline{x})}{(a+2 \epsilon) \mathcal{F}_{\ominus}^{a}}\left(\frac{\mathcal{U}_{\ominus}^{3}}{\mathcal{F}_{\ominus}^{2}}\right)^{\epsilon} \Omega_{0}+d \beta_{(a)}
$$

- This tells us how to modify the Griffiths-Dwork pole reduction and deduce the ϵ deformed differential equation.
- This allows to treat case that are divergence for $\epsilon=0$ which was not possible with the previous algorithm
Work in progress [de la Cruz, Vanhove]

The sunset integrals : all equal mass case

For the all equal mass case the algorithm gives (up to 20 loops) For the all equal mass case $m_{1}=\cdots=m_{l+1}=1$ we find the sunset Feynman integral satisfies the differential equation

$$
\mathscr{L}_{\ominus}^{(I), \epsilon} I_{\ominus}(\{1, \ldots, 1\}, t, \epsilon)=-(I+1)!\frac{\Gamma(1+\epsilon)^{\prime}}{\Gamma(1+I \epsilon)}
$$

with

$$
\mathscr{L}_{\ominus}^{(I), \epsilon}=\mathscr{L}_{\ominus}^{(I), I}+\epsilon \mathscr{L}_{\ominus}^{(I), I-1}+\cdots+\epsilon^{I} \mathscr{L}_{\ominus}^{(I), 0}
$$

where the differential operator is $\mathscr{L}_{\ominus}^{(1), r}$ is of order r.

Two loop Sunset: different masses I

$\mathscr{L}_{\ominus}^{(2), \epsilon}=\mathscr{L}_{1}^{(1)} \mathscr{L}_{1}^{(2)} \mathscr{L}_{\ominus}^{3-\text { mass }}+\epsilon \mathscr{L}_{4}^{(3)}+\epsilon^{2} \mathscr{L}_{3}^{(4)}+\epsilon^{3} \mathscr{L}_{2}^{(5)}+\epsilon^{4} \mathscr{L}_{1}^{(6)}+\epsilon^{5} \mathscr{L}_{0}^{(7)}$
where $\mathscr{L}_{m}^{(r)}$ are irreducible differential operator of order m and $\mathscr{L}_{\ominus}^{3-\text { mass }}$ is the differential operator for the three-mass two-loop sunset integral in two dimensions.
Its actions on the Feynman integral is given by

$$
\mathscr{L}_{\ominus}^{(2), \epsilon} I(\underline{m}, t ; \epsilon)=\mathscr{S}(\vec{m}, t ; \epsilon)
$$

with the source term
$\mathscr{S}(\vec{m}, t ; \epsilon)=\frac{c_{23}(t, \epsilon) \Gamma(\epsilon+1)^{2}}{\left(m_{2} m_{3}\right)^{2 \epsilon} \Gamma(1+2 \epsilon)}+\frac{c_{13}(t, \epsilon) \Gamma(\epsilon+1)^{2}}{\left(m_{1} m_{3}\right)^{2 \epsilon} \Gamma(1+2 \epsilon)}+\frac{c_{12}(t, \epsilon) \Gamma(\epsilon+1)^{2}}{\left(m_{1} m_{2}\right)^{2 \epsilon} \Gamma(1+2 \epsilon)}$

Two loop Sunset: different masses II

The ϵ deformed operator has for highest order term

$$
\begin{aligned}
& \left.\mathscr{L}_{\ominus}^{(2), \epsilon}\right|_{(d / d t)^{4}}=t^{3} \prod_{i=1}^{4}\left(t-\mu_{i}^{2}\right) \\
& \quad \times\left(-(2 \epsilon+5) t^{2}-2\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)(1+2 \epsilon) t+(7+6 \epsilon) \prod_{i=1}^{4} \mu_{i}\right)
\end{aligned}
$$

where
$\mu_{i}=\left\{m_{1}+m_{2}+m_{3},-m_{1}+m_{2}+m_{3}, m_{1}-m_{2}+m_{3}, m_{1}+m_{2}-m_{3}\right\}$ are the thresholds.

- The ϵ deformation is only affecting the apparent singularities
- The non-apparent singularities are still the roots of the discriminant of the sunset elliptic curve
- The order 4 operator is irreducible

Outlook

We have put forward a new approach for deriving the differential

 equation for Feynman integralsWe can derive the differential equations in general dimension by extending the Griffiths-Dwork reduction
We see how the twist ϵ-factor affects only the apparent singularities
For graphs with many edges the reduction takes a long time we have been using the FiniteFlow program to speed up the computation but still improvements are needed

We have a seminar on these mathematical aspects of Feynman integral run by Francis Brown, Erik Panzer, Federico Zerbini and myself at the address https://www.ihes.fr/~vanhove/motivefeynman.html

[^0]: Determined in [Doran, Harder, Pichon-Pharabod, Vanhove]

