Some problems l'd like solved (and a few that l've solved) from a user of computer algebra

Alan Sokal
University College London

Computer Algebra for Functional Equations in Combinatorics and Physics Institut Henri Poincaré
4-8 December 2023

A big project in collaboration with
Mathias Pétréolle, Bao-Xuan Zhu, Jiang Zeng, Andrew Elvey Price, Alex Dyachenko, Tomack Gilmore, Xi Chen, Bishal Deb, Veronica Bitonti, ...

Overview

Overview

- Total positivity (over a partially ordered commutative ring)

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved
- Hankel-total positivity (over the reals)

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra I'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra I'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions
- Computing continued fractions: The Euler-Viscovatov algorithm

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions
- Computing continued fractions: The Euler-Viscovatov algorithm
- Production matrices

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra I'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions
- Computing continued fractions: The Euler-Viscovatov algorithm
- Production matrices
- Another problem I'd like solved

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions
- Computing continued fractions: The Euler-Viscovatov algorithm
- Production matrices
- Another problem I'd like solved
- Branched continued fractions

Overview

- Total positivity (over a partially ordered commutative ring)
- A problem in computer algebra l'd like solved
- Hankel-total positivity (over the reals)
- From numbers to polynomials: Coefficientwise Hankel-TP
- Combinatorics of classical continued fractions
- Computing continued fractions: The Euler-Viscovatov algorithm
- Production matrices
- Another problem I'd like solved
- Branched continued fractions
- (Tentative) conclusion

Total positivity

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

- A bizarre concept: grossly basis-dependent.

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

- A bizarre concept: grossly basis-dependent.
- (Contrast with positive semidefiniteness.)

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

- A bizarre concept: grossly basis-dependent.
- (Contrast with positive semidefiniteness.)
- But ... In many areas of mathematics, there is a preferred basis.

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

Applications:

- Mechanics of oscillatory systems
- Zeros of polynomials and entire functions
- Numerical linear algebra
- Approximation theory
- Stochastic processes
- Lie theory and cluster algebras
- Representation theory of the infinite symmetric group
- Planar discrete potential theory and the planar Ising model
- Stieltjes moment problem
- Enumerative combinatorics

Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying
(i) $0,1 \in \mathcal{P}$.
(ii) If $a, b \in \mathcal{P}$, then $a+b \in \mathcal{P}$ and $a b \in \mathcal{P}$.
(iii) $\mathcal{P} \cap(-\mathcal{P})=\{0\}$.

We write $a \geq b$ as a synonym for $a-b \in \mathcal{P}$.

Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying
(i) $0,1 \in \mathcal{P}$.
(ii) If $a, b \in \mathcal{P}$, then $a+b \in \mathcal{P}$ and $a b \in \mathcal{P}$.
(iii) $\mathcal{P} \cap(-\mathcal{P})=\{0\}$.

We write $a \geq b$ as a synonym for $a-b \in \mathcal{P}$.
N.B.: 1) We do not assume that squares are nonnegative!

Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying
(i) $0,1 \in \mathcal{P}$.
(ii) If $a, b \in \mathcal{P}$, then $a+b \in \mathcal{P}$ and $a b \in \mathcal{P}$.
(iii) $\mathcal{P} \cap(-\mathcal{P})=\{0\}$.

We write $a \geq b$ as a synonym for $a-b \in \mathcal{P}$.
N.B.: 1) We do not assume that squares are nonnegative!
2) Even if $a>0$ is invertible in R, we do not necessarily have $a^{-1}>0$.

Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying
(i) $0,1 \in \mathcal{P}$.
(ii) If $a, b \in \mathcal{P}$, then $a+b \in \mathcal{P}$ and $a b \in \mathcal{P}$.
(iii) $\mathcal{P} \cap(-\mathcal{P})=\{0\}$.

We write $a \geq b$ as a synonym for $a-b \in \mathcal{P}$.
N.B.: 1) We do not assume that squares are nonnegative!
2) Even if $a>0$ is invertible in R, we do not necessarily have $a^{-1}>0$.

Total positivity is then defined in the usual way.

Total positivity

Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial ring $\mathbb{R}[\mathbf{x}]$ equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.

Total positivity

Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial ring $\mathbb{R}[\mathbf{x}]$ equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.
N.B.: 1) Squares are not nonnegative: $(1-x)^{2}=1-2 x+x^{2} \nsupseteq 0$

Total positivity

Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial $\operatorname{ring} \mathbb{R}[\mathbf{x}]$ equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.
N.B.: 1) Squares are not nonnegative: $(1-x)^{2}=1-2 x+x^{2} \nsupseteq 0$
2) Nonconstant polynomials are not invertible in $\mathbb{R}[\mathbf{x}]$.

And even in the formal-power-series ring $\mathbb{R}[[\mathbf{x}]], 1+x \geq 0$ but $(1+x)^{-1}=1-x+x^{2}-\ldots \not \geq 0$

A problem l'd like solved

A problem l'd like solved

- Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring), and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

A problem l'd like solved

- Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring), and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

- Abstract version of this problem:

Let $P_{1}(\mathbf{x}), \ldots, P_{k}(\mathbf{x})$ and $Q(\mathbf{x})$ be polynomials in indeterminates \mathbf{x}.
Can Q be written as a polynomial with nonnegative coefficients in P_{1}, \ldots, P_{k} ?

A problem l'd like solved

- Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring), and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

- Abstract version of this problem:

Let $P_{1}(\mathbf{x}), \ldots, P_{k}(\mathbf{x})$ and $Q(\mathbf{x})$ be polynomials in indeterminates \mathbf{x}.
Can Q be written as a polynomial with nonnegative coefficients in P_{1}, \ldots, P_{k} ?

- We want $Q(\mathbf{x})=\sum_{\mathbf{m}} a_{\mathbf{m}} \prod_{i=1}^{k} P_{i}(\mathbf{x})^{m_{i}}$ with all $a_{\mathbf{m}} \geq 0$

A problem l'd like solved

- Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring), and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

- Abstract version of this problem:

Let $P_{1}(\mathbf{x}), \ldots, P_{k}(\mathbf{x})$ and $Q(\mathbf{x})$ be polynomials in indeterminates \mathbf{x}.
Can Q be written as a polynomial with nonnegative coefficients in P_{1}, \ldots, P_{k} ?

- We want $Q(\mathbf{x})=\sum_{\mathbf{m}} a_{\mathbf{m}} \prod_{i=1}^{k} P_{i}(\mathbf{x})^{m_{i}}$ with all $a_{\mathbf{m}} \geq 0$
- If we knew which multi-indices \mathbf{m} could contribute, this would be a problem in linear programming \longrightarrow feasible up to quite high dimension.

A problem l'd like solved

- Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring), and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

- Abstract version of this problem:

Let $P_{1}(\mathbf{x}), \ldots, P_{k}(\mathbf{x})$ and $Q(\mathbf{x})$ be polynomials in indeterminates \mathbf{x}.
Can Q be written as a polynomial with nonnegative coefficients in P_{1}, \ldots, P_{k} ?

- We want $Q(\mathbf{x})=\sum_{\mathbf{m}} a_{\mathbf{m}} \prod_{i=1}^{k} P_{i}(\mathbf{x})^{m_{i}}$ with all $a_{\mathbf{m}} \geq 0$
- If we knew which multi-indices \mathbf{m} could contribute, this would be a problem in linear programming \longrightarrow feasible up to quite high dimension.
- How to know? (Look at nonzero monomials . . . ??)

Hankel-total positivity

Hankel-total positivity

Given a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$, we define its Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hankel-total positivity

Given a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$, we define its Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- We say that the sequence \boldsymbol{a} is Hankel-totally positive if its Hankel matrix $H_{\infty}(a)$ is totally positive.

Hankel-total positivity

Given a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$, we define its Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- We say that the sequence \boldsymbol{a} is Hankel-totally positive if its Hankel matrix $H_{\infty}(a)$ is totally positive.
- This implies that the sequence is log-convex, but is much stronger.

Hankel-total positivity

Main Characterization (Stieltjes 1894, Gantmakher-Krein 1937)

For a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ of real numbers, the following are equivalent:
(a) \boldsymbol{a} is Hankel-totally positive.
(b) There exists a positive measure μ on $[0, \infty)$ such that
$a_{n}=\int x^{n} d \mu(x)$ for all $n \geq 0$.
[That is, \boldsymbol{a} is a Stieltjes moment sequence.]
(c) There exist numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

in the sense of formal power series.
[Stieltjes-type continued fraction with nonnegative coefficients]

From numbers to polynomials

[or, From counting to counting-with-weights]

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

(1) Counting subsets of $[n]: \quad a_{n}=2^{n}$

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

(1) Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

(1) Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
(2) Counting permutations of $[n]: a_{n}=n$!

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

(1) Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
(2) Counting permutations of $[n]: a_{n}=n$!

Counting permutations of $[n]$ by number of cycles:

$$
P_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \quad \text { (Stirling cycle polynomial) }
$$

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

(1) Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
(2) Counting permutations of $[n]: a_{n}=n$!

Counting permutations of $[n]$ by number of cycles:

$$
P_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \quad \text { (Stirling cycle polynomial) }
$$

Counting permutations of $[n]$ by number of descents:

$$
\left.P_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k} \quad \text { (Eulerian polynomial }\right)
$$

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

(9) Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number)

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

(9) Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number)

Counting non-crossing partitions of $[n]$ by number of blocks:

$$
\left.P_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad \text { (Narayana polynomial }\right)
$$

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

(9) Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number)

Counting non-crossing partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad(\text { Narayana polynomial })
$$

These polynomials can also be multivariate!
(count with many simultaneous statistics)

From numbers to polynomials

[or, From counting to counting-with-weights]
(3) Counting partitions of [n]: $a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

(9) Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number)

Counting non-crossing partitions of $[n]$ by number of blocks:

$$
\left.P_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad \text { (Narayana polynomial }\right)
$$

These polynomials can also be multivariate!
(count with many simultaneous statistics)
An industry in combinatorics: cf. Sokal-Zeng 2020 and Deb-Sokal 2022

Coefficientwise total positivity

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.
- More generally, can consider sequences and matrices with entries in a partially ordered commutative ring.

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.
- More generally, can consider sequences and matrices with entries in a partially ordered commutative ring.

But now there is no analogue of the Main Characterization!
Coefficientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.
- More generally, can consider sequences and matrices with entries in a partially ordered commutative ring.

But now there is no analogue of the Main Characterization!
Coefficientwise Hankel-TP is combinatorial, not analytic.
Coefficientwise Hankel-TP implies that $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $\mathbf{x} \geq 0$, but it is stronger.

Coefficientwise Hankel-TP in combinatorics

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
(Chen-Wang-Yang 2010)

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
(Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
(Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)
- Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$
(Liu-Wang 2007, Zhu 2013)

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
(Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)
- Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$
(Liu-Wang 2007, Zhu 2013)
Might these sequences actually be coefficientwise Hankel-totally positive?

Coefficientwise Hankel-TP in combinatorics

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.

Coefficientwise Hankel-TP in combinatorics

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In many other cases I have strong empirical evidence that the answer is yes, but no proof.

Coefficientwise Hankel-TP in combinatorics

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In many other cases I have strong empirical evidence that the answer is yes, but no proof.
- The continued-fraction approach gives a sufficient but not necessary condition for coefficientwise Hankel-total positivity.

Coefficientwise Hankel-TP in combinatorics

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In many other cases I have strong empirical evidence that the answer is yes, but no proof.
- The continued-fraction approach gives a sufficient but not necessary condition for coefficientwise Hankel-total positivity.
- More general approach: production matrices - still sufficient but far from necessary.

Classical continued fractions

Classical continued fractions

- Stieltjes-type continued fractions (S-fractions):

$$
\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha})}_{\substack{\text { Stieltjes-Rogers } \\ \text { polynomial }}} t^{n}=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

Classical continued fractions

- Stieltjes-type continued fractions (S-fractions):

$$
\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha})}_{\substack{\text { Stieltjes-Rogers } \\ \text { polynomial }}} t^{n}=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

- Jacobi-type continued fractions (J-fractions):

$$
\sum_{n=0}^{\infty} \underbrace{J_{n}(\boldsymbol{\beta}, \gamma)}_{\substack{\text { Jacobi-Rogers } \\ \text { polynomial }}} t^{n}=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\cdots}}}
$$

Classical continued fractions

- Stieltjes-type continued fractions (S-fractions):

$$
\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha})}_{\begin{array}{c}
\text { Stieltjes-Rogers } \\
\text { polynomial }
\end{array}} t^{n}=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

- Jacobi-type continued fractions (J-fractions):

$$
\sum_{n=0}^{\infty} \underbrace{J_{n}(\boldsymbol{\beta}, \gamma)}_{\substack{\text { Jacobi-Rogers } \\ \text { polynomial }}} t^{n}=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\cdots}}}
$$

- This is combinatorialists' notation. Analysts take $t^{n} \rightarrow \frac{1}{z^{n+1}}$

Classical continued fractions (lattice-path interpretation)

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

- Motzkin path of length n : From $(0,0) \rightarrow(n, 0)$ using steps $(1,1)$ [rise], $(1,0)$ [level step], $(1,-1)$ [fall]

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

- Motzkin path of length n : From $(0,0) \rightarrow(n, 0)$ using steps $(1,1)$ [rise], $(1,0)$ [level step], $(1,-1)$ [fall]

All the Motzkin paths of length $n=4$.

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

- Motzkin path of length n : From $(0,0) \rightarrow(n, 0)$ using steps $(1,1)$ [rise], $(1,0)$ [level step], $(1,-1)$ [fall]
- Dyck path of length $2 n$: From $(0,0) \rightarrow(2 n, 0)$
using steps $(1,1)$ [rise], $(1,-1)$ [fall]

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

- Motzkin path of length n : From $(0,0) \rightarrow(n, 0)$ using steps $(1,1)$ [rise], $(1,0)$ [level step], $(1,-1)$ [fall]
- Dyck path of length $2 n$: From $(0,0) \rightarrow(2 n, 0)$ using steps $(1,1)$ [rise], $(1,-1)$ [fall]

A Dyck path of length $2 n=10$

Classical continued fractions (lattice-path interpretation)

Paths in $\mathbb{N} \times \mathbb{N}$ starting at $(0,0)$:

- Motzkin path of length n : From $(0,0) \rightarrow(n, 0)$ using steps $(1,1)$ [rise], $(1,0)$ [level step], $(1,-1)$ [fall]
- Dyck path of length $2 n$: From $(0,0) \rightarrow(2 n, 0)$
using steps $(1,1)$ [rise], $(1,-1)$ [fall]

Theorem (Flajolet 1980)

- The Jacobi-Rogers polynomial $J_{n}(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is the generating polynomial for Motzkin paths of length n, in which each rise gets weight 1 , each level step at height i gets weight γ_{i}, and each fall from height i gets weight β_{i}.
- The Stieltjes-Rogers polynomial $S_{n}(\boldsymbol{\alpha})$ is the generating polynomial for Dyck paths of length $2 n$, in which each rise gets weight 1 and each fall from height i gets weight α_{i}.

Computing classical continued fractions

Computing classical continued fractions

- Given a power series $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ with $a_{0}=1$, how to compute

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

Computing classical continued fractions

- Given a power series $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ with $a_{0}=1$, how to compute

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

- Define for $k \geq 0$ the S-fraction starting at level k :

$$
f_{k}(t)=\frac{1}{1-\frac{\alpha_{k+1} t}{1-\frac{\alpha_{k+2} t}{1-\cdots}}}
$$

Computing classical continued fractions

- Given a power series $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ with $a_{0}=1$, how to compute

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

- Define for $k \geq 0$ the S-fraction starting at level k :

$$
f_{k}(t)=\frac{1}{1-\frac{\alpha_{k+1} t}{1-\frac{\alpha_{k+2} t}{1-\cdots}}}
$$

- Then we have the obvious recurrence

$$
f_{k}(t)=\frac{1}{1-\alpha_{k+1} t f_{k+1}(t)}
$$

Computing classical continued fractions

$$
f_{k}(t)=\frac{1}{1-\alpha_{k+1} t f_{k+1}(t)}
$$

Primitive algorithm.

1. Set $f_{0}(t)=f(t)$.
2. For $k=1,2,3, \ldots$, do:
(a) If $f_{k-1}(t)=1$, set $\alpha_{k}=0$ and terminate.
(b) If $f_{k-1}(t) \neq 1$, set $\alpha_{k}=\left[t^{1}\right] f_{k-1}(t)$ and

$$
f_{k}(t)=\alpha_{k}^{-1} t^{-1}\left(1-\frac{1}{f_{k-1}(t)}\right)
$$

Computing classical continued fractions

$$
f_{k}(t)=\frac{1}{1-\alpha_{k+1} t f_{k+1}(t)}
$$

Primitive algorithm.

1. Set $f_{0}(t)=f(t)$.
2. For $k=1,2,3, \ldots$, do:
(a) If $f_{k-1}(t)=1$, set $\alpha_{k}=0$ and terminate.
(b) If $f_{k-1}(t) \neq 1$, set $\alpha_{k}=\left[t^{1}\right] f_{k-1}(t)$ and

$$
f_{k}(t)=\alpha_{k}^{-1} t^{-1}\left(1-\frac{1}{f_{k-1}(t)}\right)
$$

Disadvantage of this algorithm: it requires division of power series.

Computing classical continued fractions

$$
f_{k}(t)=\frac{1}{1-\alpha_{k+1} t f_{k+1}(t)}
$$

Primitive algorithm.

1. Set $f_{0}(t)=f(t)$.
2. For $k=1,2,3, \ldots$, do:
(a) If $f_{k-1}(t)=1$, set $\alpha_{k}=0$ and terminate.
(b) If $f_{k-1}(t) \neq 1$, set $\alpha_{k}=\left[t^{1}\right] f_{k-1}(t)$ and

$$
f_{k}(t)=\alpha_{k}^{-1} t^{-1}\left(1-\frac{1}{f_{k-1}(t)}\right)
$$

Disadvantage of this algorithm: it requires division of power series. But we can linearize the problem ...

Computing classical continued fractions (bis)

- Define $g_{k}(t)=\prod_{i=0}^{k} f_{i}(t) \quad$ for $k \geq-1$

Computing classical continued fractions (bis)

- Define $g_{k}(t)=\prod_{i=0}^{k} f_{i}(t) \quad$ for $k \geq-1$
- So $g_{-1}(t)=1$ and $f_{k}(t)=\frac{g_{k}(t)}{g_{k-1}(t)}$

Computing classical continued fractions (bis)

- Define $g_{k}(t)=\prod_{i=0}^{k} f_{i}(t) \quad$ for $k \geq-1$
- So $g_{-1}(t)=1$ and $f_{k}(t)=\frac{g_{k}(t)}{g_{k-1}(t)}$
- Nonlinear 2-term recurrence for $\left(f_{k}\right) \longrightarrow$ linear 3-term recurrence

$$
g_{k}(t)-g_{k-1}(t)=\alpha_{k+1} t g_{k+1}(t)
$$

Computing classical continued fractions (bis)

$$
g_{k}(t)-g_{k-1}(t)=\alpha_{k+1} t g_{k+1}(t)
$$

Refined algorithm.

1. Set $g_{-1}(t)=1$ and $g_{0}(t)=f(t)$.
2. For $k=1,2,3, \ldots$, do:
(a) If $g_{k-1}(t)=g_{k-2}(t)$, set $\alpha_{k}=0$ and terminate.
(b) If $g_{k-1}(t) \neq g_{k-2}(t)$, set $\alpha_{k}=\left[t^{1}\right]\left(g_{k-1}(t)-g_{k-2}(t)\right)$ and

$$
g_{k}(t)=\alpha_{k}^{-1} t^{-1}\left(g_{k-1}(t)-g_{k-2}(t)\right)
$$

Computing classical continued fractions (bis)

$$
g_{k}(t)-g_{k-1}(t)=\alpha_{k+1} t g_{k+1}(t)
$$

Refined algorithm.

1. Set $g_{-1}(t)=1$ and $g_{0}(t)=f(t)$.
2. For $k=1,2,3, \ldots$, do:
(a) If $g_{k-1}(t)=g_{k-2}(t)$, set $\alpha_{k}=0$ and terminate.
(b) If $g_{k-1}(t) \neq g_{k-2}(t)$, set $\alpha_{k}=\left[t^{1}\right]\left(g_{k-1}(t)-g_{k-2}(t)\right)$ and

$$
g_{k}(t)=\alpha_{k}^{-1} t^{-1}\left(g_{k-1}(t)-g_{k-2}(t)\right)
$$

Can also let $g_{-1}(t)=1+\ldots$ be arbitrary, not just $=1$.

Computing classical continued fractions (bis2)

(incen) (o) (205

D E

SERIEBVS DIVERGENTIBVS.

Autiore LEON. EKLERO.

§. x.

Cum feries conurergentes ita definiantưr, it conftenit terminis continuo decrefcentibus, qui tandem, fi feries in infinitum proceflerit penitus euanefcant; facile intelligitur, quarum ferierum termini infinitefimi non in nihilum abeant, fed vel finiti maneant, vel in infiniturn excrefcant, eas, quia, ion fint contuergentes, ad clafferni ferierum diuergentiun referri opórtere. Prout igitur termini feriei vitimi, ad quos progreffione in infinitum continuata peruenitur, fuerint vel maguitudinis finitae, vel infinitae, duo habebuntur ferierum dinergentium genera, quorum vtrumque porro in duas fpeciey fubdiuiditur, prout vel omnes termini codem fint affectit figno, vel figna + et-alternatim fe excipiant. Onnino ergo habebimus quatuor ferierum diuergentium fpecies, ex quibus maioris perficuitatis gratia alicuot exempla fubiungam.
I.... $x+1+1+x+1+1+e t c$.
$\frac{5}{5}+\frac{3}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{8}+\frac{6}{7}+$ etc.
II. . . $x-1+1-x+1-x+$ etc.
$\frac{1}{2}-\frac{2}{2}+\frac{3}{4}-\frac{7}{5}+\frac{5}{5}-\frac{6}{5}+$ etc.
III. . . . $x+2+3+4+5+6+$ etc.
$1+2+4+8+16+32+1$ etc.

Computing classical continued fractions (bis2)

- Probably written circa 1746
- Presented to the St. Petersburg Academy in 1753
- Published in 1760

Computing classical continued fractions (bis2)

- Probably written circa 1746
- Presented to the St. Petersburg Academy in 1753
- Published in 1760
- Euler derives the continued fraction

$$
\sum_{n=0}^{\infty} n!t^{n}=\frac{1}{1-\frac{1 t}{1-\frac{1 t}{1-\frac{2 t}{1-\frac{2 t}{1-\frac{3 t}{1-\frac{3 t}{1-\cdots}}}}}}}
$$

Computing classical continued fractions (bis2)

224

DESERIEBVS

6. 2x. Datur vero alius modus in fummam hujus feriei inquirendi ex natura fractionum continuarum petitus, qui multo facilius et promtius negotium con ficit: fit enim formulam generalins exprimendo :
$\mathbf{A}=1-1 x+2 x^{2}-6 x^{3}+24 x^{4}-120 x^{5}+720 x^{6}-5040 x^{2}+$ ctc. $=\frac{1}{1+B}$

ct $x+C=1-1 x^{x}+2 x^{2}-6 x^{3}+24 x^{4}-12^{00} x^{3}+720 x^{6}-5046 x^{7}+$ elc:

vade $\mathrm{D}=\frac{2 x-12 x^{2}+72 x^{5}-480 x^{4}+3600 x^{5}-\text { etc. }}{1-4 x+14 x^{2}-86 x^{3}+600 x^{4}-\frac{e t c}{e n}}$

$$
=\frac{x}{1+D}
$$

vode $\mathrm{D}=\frac{2 x-12 x^{2}+72 x^{3}-40 x^{2}+30}{1-4 x+18 x^{2}-96 x^{3}+600 x^{4}-\text { efc. }}$
$=\frac{2 x}{1+E}$
PorroE= $\frac{2 x-16 x^{2}+14 x^{3}-1200 x^{4}+\text { etc: }}{8}$. $6 x+86 x^{2}-240 x^{3}+$ etc.
$=\frac{2 x}{1+3}$
Atque $\mathrm{F}=\frac{3 x-36 x^{2}+360 x^{3}-\text { etc. }}{1-9 x+72 x^{2}-600 x^{5}+e t G}$
$=\frac{3 x}{1+6}$
Erit $G=\frac{3 x-4 \mathrm{~B} x^{2}+\mathrm{etc} .}{1-18 x^{2}+12^{9} x^{2}}$
$=\frac{3 m}{1+\mathrm{H}}$
Sic $\mathrm{H}=\frac{4 x-\text { ete: }}{1-16 x}$
$=\frac{4 x}{1+1}$
Sicque porro patebit fore $I=\frac{1^{x}}{1+K}, K=\frac{1 x}{5+L} ; L=\frac{5^{\prime} x}{1+\bar{X}}$ etc. in infinitum, ita vt harum formularam ordo facile perfpiciatur. His auter valoribus fucceflive fubftitutis, erit

$$
1-1 x+2 x^{2}-6 x^{5}+24 x^{4}-120 x^{5}+420 x^{6}
$$

Computing classical continued fractions (bis2)

DIVERGENTIBYS. 225

$$
A=\frac{1}{1+\frac{x}{1+\frac{x}{1+\frac{2 x}{1+\frac{2 x}{1+3 x}}}}}
$$

§. 22. Quemadmodum autem huiusmodi fractionum, continuarum valor fit inveftigandus, alibi oftendi : Scilicet cum fingulorum denominatorum partes integrae fint vnitates, foli numeratores in computum veniunt; fit ergo $x=\mathrm{x}$, atque inveftigatio fummae A fequenti modo inftituetur :

$$
\begin{aligned}
& \text { A }=\frac{0}{1}, \frac{1}{1}, \frac{1}{4}, \frac{2}{3}, \frac{4}{\frac{4}{4}}, \frac{4}{15}, \frac{20}{54}, \frac{4}{12}, \frac{12 t}{30}, \frac{50}{501}, \text { etc. } \\
& \text { num. } 1,1,2,2,3,3,4,4,5,5, \text { etc: }
\end{aligned}
$$

Fractiones nimirum hic exhibitae continuo propius ad verum valorem ipfius \backslash A accedunt, et quidem alternatim eo funt maiores et minores; ita vt fit:

Computing classical continued fractions (bis2)

226
 DE LA MÉTHODE GÉNERALE POUR REDUIRE TOUTES SORTES DES QUANTITESEN fractions continues.

par
B. VISCOVATOV.

Présenté le 18. Décembre 1805.

J'ai en l'honneur de présenter á l'Académie en 1802 un mémoire soús le titre: Essai d'une méthode générale pour réduire toutes sortes de séries en fractions continues: après ce tems ayant en occasion de penser encore à cette matière, j'ai fait de nouvelles réflexions qui peuvent servir à perfectionner et simplifier la méthode dont il s’agit. Ce sont ces réflexions que je présente maintenant à la société savante.

1. Réduire une fraction quelconque

$$
\mathbf{P}=\frac{a_{1}+b_{1}+c_{1}+d_{1}+e_{1}+f_{1}+g_{1}+e t c}{a+b+c+d+e+f+g+e t c},
$$

Computing classical continued fractions (bis2)

- Euler 1746
- Viscovatov 1805
- Rediscovered a few times in the 20th century
- Barely known even to experts ...

Computing classical continued fractions (bis2)

- Euler 1746
- Viscovatov 1805
- Rediscovered a few times in the 20th century
- Barely known even to experts ...
- I call it the Euler-Viscovatov algorithm

Computing classical continued fractions (bis2)

- Euler 1746
- Viscovatov 1805
- Rediscovered a few times in the 20th century
- Barely known even to experts...
- I call it the Euler-Viscovatov algorithm

Surely the story unfolded here emphasizes how valuable it is to study and understand the central ideas behind major pieces of mathematics produced by giants like Euler.

- George Andrews

Comparing efficiency of algorithms

Timing tests for

$$
\sum_{n=0}^{\infty} n!t^{n}=\frac{1}{1-\frac{1 t}{1-\frac{1 t}{1-\frac{2 t}{1-\frac{2 t}{1-\frac{3 t}{1-\frac{3 t}{1-\cdots}}}}}}}
$$

Comparing efficiency of algorithms

N	Primitive algorithm	Refined algorithm	Ratio
100	0.20	0.15	1.33
200	0.87	0.14	6.32
300	2.20	0.29	7.47
400	4.87	0.51	9.53
500	9.41	0.79	11.86
600	17.32	1.15	15.06
700	30.26	1.58	19.17
800	51.10	2.09	24.44
900	83.48	2.69	31.07
1000	131.90	3.25	40.63
1100	200.71	4.14	48.46
1200	297.45	5.10	58.38
1300	429.43	6.21	69.18
1400	606.35	7.20	84.20
1500	840.25	8.75	95.99
1600	1128.79	9.54	118.28
1700	1490.64	11.00	135.50
1800	1947.84	12.59	154.68
1900	2505.78	14.40	174.06
2000	3176.93	15.74	201.85
3000	20896.0	43.85	476.52
4000		94.49	
5000		170.51	
6000		277.10	
7000		420.58	
8000		604.25	
9000		835.81	

Comparing efficiency of algorithms

Euler also proved the more general continued fraction

$$
\sum_{n=0}^{\infty} x^{\bar{n}} t^{n}=\frac{1}{1-\frac{x t}{1-\frac{1 t}{1-\frac{(x+1) t}{1-\frac{2 t}{1-\frac{(x+2) t}{1-\frac{3 t}{1-\cdots}}}}}}}
$$

where $x^{\bar{n}}=x(x+1)(x+2) \cdots(x+n-1)$

Comparing efficiency of algorithms

N	Primitive algorithm	Refined algorithm	Ratio
10	0.02	0.02	1.21
15	0.08	0.06	1.46
20	0.27	0.12	2.25
25	0.50	0.21	2.40
30	1.04	0.36	2.85
35	3.15	0.56	5.64
40	16.13	0.77	21.07
45	57.23	1.04	55.14
50	139.52	1.41	98.66
55	283.39	1.72	164.86
60	505.61	2.15	234.67
65	1029.79	2.90	355.29
70	5390.53	3.44	1567.81
75	20714.2	4.23	4893.62
80	54919.5	4.75	11560.1
90		6.35	
100		8.60	
110		10.79	
120		13.52	
130		16.54	
140		19.97	
150		24.06	
160		28.42	
170		33.76	
180		39.46	
190		45.91	
200		52.23	
300		158.25	
400		360.65	
500		691.27	
600		1184.81	
700		1910.57	
800		2909.85	
900		4244.91	
1000		5960.16	

Hankel-TP for Stieltjes-type continued fractions

Hankel-TP for Stieltjes-type continued fractions

Theorem (A.S. 2014, based on Viennot 1983)
The sequence $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials is coefficientwise Hankel-totally positive in the polynomial ring $\mathbb{Z}[\alpha]$.

Hankel-TP for Stieltjes-type continued fractions

Theorem (A.S. 2014, based on Viennot 1983)
The sequence $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials is coefficientwise Hankel-totally positive in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof uses the Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Hankel-TP for Stieltjes-type continued fractions

Theorem (A.S. 2014, based on Viennot 1983)

The sequence $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials is coefficientwise Hankel-totally positive in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof uses the Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Can now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring, and get Hankel-TP.

Hankel-TP for Stieltjes-type continued fractions

Theorem (A.S. 2014, based on Viennot 1983)

The sequence $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials is coefficientwise Hankel-totally positive in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof uses the Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Can now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring, and get Hankel-TP.

Many applications ...

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \gamma)\right)_{i, j \geq 0}
$$

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?
As before, we form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \gamma)\right)_{i, j \geq 0}
$$

But the story is more complicated than for S-type fractions, because:

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?
As before, we form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \gamma)\right)_{i, j \geq 0}
$$

But the story is more complicated than for S-type fractions, because:

- The matrix $H_{\infty}(\boldsymbol{J})$ is not totally positive in $\mathbb{Z}[\boldsymbol{\beta}, \gamma]$.

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?
As before, we form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \gamma)\right)_{i, j \geq 0}
$$

But the story is more complicated than for S-type fractions, because:

- The matrix $H_{\infty}(\boldsymbol{J})$ is not totally positive in $\mathbb{Z}[\boldsymbol{\beta}, \gamma]$.
- It is not even totally positive in \mathbb{R} for all $\boldsymbol{\beta}, \gamma \geq 0$.

Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?
As before, we form the Hankel matrix

$$
H_{\infty}(\boldsymbol{J})=\left(J_{i+j}(\boldsymbol{\beta}, \gamma)\right)_{i, j \geq 0}
$$

But the story is more complicated than for S-type fractions, because:

- The matrix $H_{\infty}(\boldsymbol{J})$ is not totally positive in $\mathbb{Z}[\boldsymbol{\beta}, \gamma]$.
- It is not even totally positive in \mathbb{R} for all $\boldsymbol{\beta}, \boldsymbol{\gamma} \geq 0$.
- Rather, the total positivity of $H_{\infty}(\boldsymbol{J})$ holds only when $\boldsymbol{\beta}$ and γ satisfy suitable inequalities.

Hankel-TP for Jacobi-type continued fractions

What inequalities?

Hankel-TP for Jacobi-type continued fractions

What inequalities?
Form the infinite tridiagonal matrix

$$
M_{\infty}(\boldsymbol{\beta}, \gamma)=\left(\begin{array}{ccccc}
\gamma_{0} & 1 & 0 & 0 & \cdots \\
\beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\
0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\
0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hankel-TP for Jacobi-type continued fractions

What inequalities?

Form the infinite tridiagonal matrix

$$
M_{\infty}(\boldsymbol{\beta}, \gamma)=\left(\begin{array}{ccccc}
\gamma_{0} & 1 & 0 & 0 & \cdots \\
\beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\
0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\
0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem (A.S. 2014)
If $M_{\infty}(\boldsymbol{\beta}, \gamma)$ is totally positive, then so is $H_{\infty}(\boldsymbol{J})$.

Hankel-TP for Jacobi-type continued fractions

What inequalities?
Form the infinite tridiagonal matrix

$$
M_{\infty}(\boldsymbol{\beta}, \gamma)=\left(\begin{array}{ccccc}
\gamma_{0} & 1 & 0 & 0 & \cdots \\
\beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\
0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\
0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem (A.S. 2014)

If $M_{\infty}(\boldsymbol{\beta}, \gamma)$ is totally positive, then so is $H_{\infty}(\boldsymbol{J})$.

This is a sufficient condition, not a necessary one.

Hankel-TP for Jacobi-type continued fractions

What inequalities?
Form the infinite tridiagonal matrix

$$
M_{\infty}(\boldsymbol{\beta}, \gamma)=\left(\begin{array}{ccccc}
\gamma_{0} & 1 & 0 & 0 & \cdots \\
\beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\
0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\
0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem (A.S. 2014)

If $M_{\infty}(\boldsymbol{\beta}, \gamma)$ is totally positive, then so is $H_{\infty}(\boldsymbol{J})$.

This is a sufficient condition, not a necessary one.
Proof uses the method of production matrices.

Production matrices

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k}$

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k} \longrightarrow$ Matrix formulation: $\Delta A=A P$ where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k} \longrightarrow$ Matrix formulation: $\Delta A=A P$ where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere
- Hence $P=A^{-1} \Delta A$

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k} \longrightarrow$ Matrix formulation: $\Delta A=A P$ where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere
- Hence $P=A^{-1} \Delta A$

Theorem (A.S. 2014)

In any partially ordered commutative ring R : If P is totally positive, then
(a) $A=\mathcal{O}(P)$ is totally positive.
(b) The zeroth column of A is Hankel-totally positive.

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k} \longrightarrow$ Matrix formulation: $\Delta A=A P$
where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere
- Hence $P=A^{-1} \Delta A$

Theorem (A.S. 2014)

In any partially ordered commutative ring R : If P is totally positive, then
(a) $A=\mathcal{O}(P)$ is totally positive.
(b) The zeroth column of A is Hankel-totally positive.

- When applied to tridiagonal matrices, this handles J-fractions.

Production matrices

- Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix (usually lower-Hessenberg) with entries in a commutative ring R.
- Define the matrix $A=\left(a_{n k}\right)_{n, k \geq 0}$ by $a_{n k}=\left(P^{n}\right)_{0 k}$.
- (n-step walks on \mathbb{N} from $0 \rightarrow k$, with weight $p_{i j}$ for each step $i \rightarrow j$.)
- We call P the production matrix and $A=\mathcal{O}(P)$ the output matrix.
- Recurrence $a_{n k}=\sum_{i} a_{n-1, i} p_{i k} \longrightarrow$ Matrix formulation: $\Delta A=A P$ where Δ is the matrix with 1 on the superdiagonal and 0 elsewhere
- Hence $P=A^{-1} \Delta A$

Theorem (A.S. 2014)

In any partially ordered commutative ring R : If P is totally positive, then
(a) $A=\mathcal{O}(P)$ is totally positive.
(b) The zeroth column of A is Hankel-totally positive.

- When applied to tridiagonal matrices, this handles J-fractions.
- But it is a much more general tool.

Production matrices (proof of theorem)

- Define the augmented production matrix

$$
\widetilde{P} \stackrel{\text { def }}{=}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots
\end{array}\right]
$$

It is totally positive iff P is.

Production matrices (proof of theorem)

- Define the augmented production matrix

$$
\widetilde{P} \stackrel{\text { def }}{=}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots
\end{array}\right]
$$

It is totally positive iff P is.

- Then the definition $A=\mathcal{O}(P)$ gives

$$
A=\left[\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdots \\
\hline & P &
\end{array}\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right] \widetilde{P}
$$

Production matrices (proof of theorem)

- Define the augmented production matrix

$$
\widetilde{P} \stackrel{\text { def }}{=}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdots
\end{array}\right]
$$

It is totally positive iff P is.

- Then the definition $A=\mathcal{O}(P)$ gives

$$
A=\left[\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right]\left[\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right] \widetilde{P}
$$

- Now iterate this to get

$$
A=\cdots\left[\begin{array}{c|c}
I_{3} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right]\left[\begin{array}{c|c}
I_{2} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right]\left[\begin{array}{c|c}
I_{1} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right] \widetilde{P}
$$

Hence if \widetilde{P} is TP, then so is A (Cauchy-Binet).

Production matrices (proof of theorem)

- Define the augmented production matrix

$$
\widetilde{P} \stackrel{\text { def }}{=}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdots
\end{array}\right]
$$

It is totally positive iff P is.

- Then the definition $A=\mathcal{O}(P)$ gives

$$
A=\left[\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right]\left[\right]=\left[\begin{array}{l|l}
1 & \mathbf{0} \\
\hline \mathbf{0} & A
\end{array}\right] \widetilde{P}
$$

- Now iterate this to get

$$
A=\cdots\left[\begin{array}{c|c}
I_{3} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right]\left[\begin{array}{c|c}
I_{2} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right]\left[\begin{array}{c|c}
I_{1} & \mathbf{0} \\
\hline \mathbf{0} & \widetilde{P}
\end{array}\right] \widetilde{P}
$$

Hence if \widetilde{P} is TP, then so is A (Cauchy-Binet).

- Part (b) on the Hankel matrix needs one small further step.

An open problem for computer algebra

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates \boldsymbol{a} as the zeroth column of its output matrix?

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates \boldsymbol{a} as the zeroth column of its output matrix?
- And if so, how to find it?

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates \boldsymbol{a} as the zeroth column of its output matrix?
- And if so, how to find it?
- Over the reals (or rationals), one always exists: just take the tridiagonal production matrix corresponding to the J-fraction.

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates \boldsymbol{a} as the zeroth column of its output matrix?
- And if so, how to find it?
- Over the reals (or rationals), one always exists: just take the tridiagonal production matrix corresponding to the J-fraction.
- But over the integers?

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates \boldsymbol{a} as the zeroth column of its output matrix?
- And if so, how to find it?
- Over the reals (or rationals), one always exists: just take the tridiagonal production matrix corresponding to the J-fraction.
- But over the integers?
- Or over a ring of polynomials with the coefficientwise order?

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates a as the zeroth column of its output matrix?
- And if so, how to find it?
- Equivalent formulation: Fill in the unit-lower-triangular matrix

$$
A=\left[\begin{array}{cccccc}
1 & & & & & \\
a_{1} & 1 & & & & \\
a_{2} & * & 1 & & & \\
a_{3} & * & * & 1 & & \\
a_{4} & * & * & * & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

such that $P=A^{-1} \Delta A$ is TP.

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates a as the zeroth column of its output matrix?
- And if so, how to find it?
- Equivalent formulation: Fill in the unit-lower-triangular matrix

$$
A=\left[\begin{array}{cccccc}
1 & & & & & \\
a_{1} & 1 & & & & \\
a_{2} & * & 1 & & & \\
a_{3} & * & * & 1 & & \\
a_{4} & * & * & * & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

such that $P=A^{-1} \Delta A$ is TP.

- This implies that A is TP, but is much stronger.

An open problem for computer algebra

- Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a Hankel-TP sequence with $a_{0}=1$.
- Does there exist a TP production matrix that generates a as the zeroth column of its output matrix?
- And if so, how to find it?
- Equivalent formulation: Fill in the unit-lower-triangular matrix

$$
A=\left[\begin{array}{cccccc}
1 & & & & & \\
a_{1} & 1 & & & & \\
a_{2} & * & 1 & & & \\
a_{3} & * & * & 1 & & \\
a_{4} & * & * & * & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

such that $P=A^{-1} \Delta A$ is TP.

- This implies that A is TP, but is much stronger.
- Having such an algorithm would be extremely useful.

A new tool: Branched continued fractions

(also called multicontinued fractions)

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths.

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

- Fix an integer $m \geq 1$.

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

- Fix an integer $m \geq 1$.
- m-Dyck path of length $(m+1) n$: From $(0,0) \rightarrow((m+1) n, 0)$ using steps $(1,1)$ [rise], $(1,-m)$ [m-fall]

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths. (I will show only branched S-fractions. Can also do branched J-fractions.)

- Fix an integer $m \geq 1$.
- m-Dyck path of length $(m+1) n$: From $(0,0) \rightarrow((m+1) n, 0)$ using steps $(1,1)$ [rise], $(1,-m)$ [m-fall]
- For $m=1$ these are ordinary Dyck paths.

A new tool: Branched continued fractions

(also called multicontinued fractions)
Generalize classical continued fractions by considering more general paths.
(I will show only branched S-fractions. Can also do branched J-fractions.)

- Fix an integer $m \geq 1$.
- m-Dyck path of length $(m+1) n$: From $(0,0) \rightarrow((m+1) n, 0)$ using steps $(1,1)$ [rise], $(1,-m)$ [m-fall]
- For $m=1$ these are ordinary Dyck paths.
- A 2-Dyck path of length 18 :

A new tool: Branched continued fractions

- Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length ($m+1$) n in which each m-fall starting at height i gets weight α_{i}.

A new tool: Branched continued fractions

- Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.
- We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

A new tool: Branched continued fractions

- Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.
- We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

Theorem (Pétréolle-A.S.-Zhu 2018)

The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

A new tool: Branched continued fractions

- Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.
- We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

Theorem (Pétréolle-A.S.-Zhu 2018)

The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

- Proof is essentially identical to the one for $m=1$!
(Lindström-Gessel-Viennot)

A new tool: Branched continued fractions

- Let $S_{n}^{(m)}(\boldsymbol{\alpha})$ be the generating polynomial for m-Dyck paths of length $(m+1) n$ in which each m-fall starting at height i gets weight α_{i}.
- We call $S_{n}^{(m)}(\boldsymbol{\alpha})$ the m-Stieltjes-Rogers polynomial of order n.

Theorem (Pétréolle-A.S.-Zhu 2018)

The sequence $\left(S_{n}^{(m)}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of m-Stieltjes-Rogers polynomials is coefficientwise Hankel-TP in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

- Proof is essentially identical to the one for $m=1$!
(Lindström-Gessel-Viennot)
- Many applications: see our paper arXiv:1807.03271

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to prove
Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP ...

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP ...
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP ...
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).
- Domb polynomials

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP . .
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).
- Domb polynomials
- Apéry polynomials

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP . .
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).
- Domb polynomials
- Apéry polynomials
- Boros-Moll polynomials

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP . .
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).
- Domb polynomials
- Apéry polynomials
- Boros-Moll polynomials
- Inversion enumerators for trees (= Mallows-Riordan polynomials)

Coefficientwise Hankel-TP seems to be very common ...

 but not so easy to proveThere are many cases where:

- I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP . .
- But I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials (and maybe no TP production matrix, either?).
- Domb polynomials
- Apéry polynomials
- Boros-Moll polynomials
- Inversion enumerators for trees (= Mallows-Riordan polynomials)
- Reduced binomial discriminant polynomials

Example 1: Apéry polynomials

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$
- Theorem (conjectured by me, 2014; proven by G. Edgar, 2017): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$
- Theorem (conjectured by me, 2014; proven by G. Edgar, 2017): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$
- Theorem (conjectured by me, 2014; proven by G. Edgar, 2017): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$
- Conjecture 1: $\left(A_{n}(x)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $x \geq 1$ (but not for $0<x<1$).

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$
- Theorem (conjectured by me, 2014; proven by G. Edgar, 2017): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$
- Conjecture 1: $\left(A_{n}(x)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $x \geq 1$ (but not for $0<x<1$).
- Conjecture 2: $\left(A_{n}(1+y)\right)_{n \geq 0}$ is coefficientwise Hankel-TP in y.
(Tested up to 12×12)

Example 1: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ played key role in Apéry's 1978 proof of the irrationality of $\zeta(3)$
- Theorem (conjectured by me, 2014; proven by G. Edgar, 2017): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$
- Conjecture 1: $\left(A_{n}(x)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $x \geq 1$ (but not for $0<x<1$).
- Conjecture 2: $\left(A_{n}(1+y)\right)_{n \geq 0}$ is coefficientwise Hankel-TP in y. (Tested up to 12×12)
- Don't know (even conjecturally) any continued fraction or production matrix.

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set $[n]$, rooted at the vertex 1 .

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set [n], rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set [n], rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.
- Define the inversion enumerator for trees $I_{n}(q)=\sum_{T \in \mathcal{T}_{n}} q^{\# \text { inversions }}$

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set [n], rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.
- Define the inversion enumerator for trees $I_{n}(q)=\sum_{T \in \mathcal{T}_{n}} q^{\# \text { inversions }}$
- $I_{n}(0)=(n-1)!$ and $I_{n}(1)=n^{n-2}$

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set $[n]$, rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.
- Define the inversion enumerator for trees $I_{n}(q)=\sum_{T \in \mathcal{T}_{n}} q^{\# \text { inversions }}$
- $I_{n}(0)=(n-1)$! and $I_{n}(1)=n^{n-2}$
- Fact: $\left(I_{n+1}(q)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $q \in[0,1]$. (Proof: Deformed exponential function \in Laguerre-Pólya class $L P^{+}$)

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set $[n]$, rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.
- Define the inversion enumerator for trees $I_{n}(q)=\sum_{T \in \mathcal{T}_{n}} q^{\# \text { inversions }}$
- $I_{n}(0)=(n-1)$! and $I_{n}(1)=n^{n-2}$
- Fact: $\left(I_{n+1}(q)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $q \in[0,1]$. (Proof: Deformed exponential function \in Laguerre-Pólya class $L P^{+}$)
- Conjecture: $\left(I_{n+1}(q)\right)_{n \geq 0}$ is coefficientwise Hankel-totally positive. (Tested up to 10×10)

Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

- Let T be a tree with vertex set $[n]$, rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k$ and the path from 1 to k passes through j.
- Define the inversion enumerator for trees $I_{n}(q)=\sum_{T \in \mathcal{T}_{n}} q^{\# \text { inversions }}$
- $I_{n}(0)=(n-1)$! and $I_{n}(1)=n^{n-2}$
- Fact: $\left(I_{n+1}(q)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $q \in[0,1]$. (Proof: Deformed exponential function \in Laguerre-Pólya class $L P^{+}$)
- Conjecture: $\left(I_{n+1}(q)\right)_{n \geq 0}$ is coefficientwise Hankel-totally positive. (Tested up to 10×10)
- Don't know (even conjecturally) any continued fraction or production matrix.

(Tentative) Conclusion

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S -fractions do.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.
- BCFs and production matrices are powerful (but not universal) tools.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.
- BCFs and production matrices are powerful (but not universal) tools.
- Alas, in many cases none of these methods work!

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.
- BCFs and production matrices are powerful (but not universal) tools.
- Alas, in many cases none of these methods work!
- New methods of proof will be needed.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.
- BCFs and production matrices are powerful (but not universal) tools.
- Alas, in many cases none of these methods work!
- New methods of proof will be needed.
- Coefficientwise Hankel-TP is a big phenomenon that we understand, at present, only very incompletely.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Sometimes neither S-fractions nor J-fractions exist, but branched S-fractions do.
- Sometimes branched S-fractions don't exist, but branched J-fractions (= production matrices) can work.
- BCFs and production matrices are powerful (but not universal) tools.
- Alas, in many cases none of these methods work!
- New methods of proof will be needed.
- Coefficientwise Hankel-TP is a big phenomenon that we understand, at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948-2011)

