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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.
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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.

A bizarre concept: grossly basis-dependent.

(Contrast with positive semidefiniteness.)

But . . . In many areas of mathematics, there is a preferred basis.
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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.

Applications:

Mechanics of oscillatory systems

Zeros of polynomials and entire functions

Numerical linear algebra

Approximation theory

Stochastic processes

Lie theory and cluster algebras

Representation theory of the infinite symmetric group

Planar discrete potential theory and the planar Ising model

Stieltjes moment problem

Enumerative combinatorics
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Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers
to matrices with entries in a partially ordered commutative ring.
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Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers
to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R
together with a subset P (the nonnegative elements) satisfying

(i) 0, 1 ∈ P.
(ii) If a, b ∈ P, then a+ b ∈ P and ab ∈ P.
(iii) P ∩ (−P) = {0}.

We write a ≥ b as a synonym for a− b ∈ P.
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Total positivity

Goal of this project (stated abstractly):

Generalize the theory of total positivity from matrices of real numbers
to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R
together with a subset P (the nonnegative elements) satisfying

(i) 0, 1 ∈ P.
(ii) If a, b ∈ P, then a+ b ∈ P and ab ∈ P.
(iii) P ∩ (−P) = {0}.

We write a ≥ b as a synonym for a− b ∈ P.

N.B.: 1) We do not assume that squares are nonnegative!

2) Even if a > 0 is invertible in R, we do not necessarily have a−1 > 0.

Total positivity is then defined in the usual way.
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Total positivity

Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial ring R[x]
equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.
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Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial ring R[x]
equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.

N.B.: 1) Squares are not nonnegative: (1− x)2 = 1− 2x + x2 ̸≥ 0
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Total positivity

Goal of this project (stated concretely):

Apply to enumerative combinatorics, when R is a polynomial ring R[x]
equipped with the coefficientwise order:

A polynomial is nonnegative if all its coefficients are nonnegative.

N.B.: 1) Squares are not nonnegative: (1− x)2 = 1− 2x + x2 ̸≥ 0

2) Nonconstant polynomials are not invertible in R[x].
And even in the formal-power-series ring R[[x]], 1 + x ≥ 0 but
(1 + x)−1 = 1− x + x2 − . . . ̸≥ 0
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A problem I’d like solved

Many of my conjectures are of the form:

Let A be a matrix of some kind (over a partially ordered commutative ring),
and let B be a matrix defined in some way from A.

Conjecture: If A is totally positive, then so is B.

Abstract version of this problem:

Let P1(x), . . . ,Pk(x) and Q(x) be polynomials in indeterminates x.

Can Q be written as a polynomial with nonnegative coefficients in
P1, . . . ,Pk?

We want Q(x) =
∑

m am
∏k

i=1 Pi (x)
mi with all am ≥ 0

If we knew which multi-indices m could contribute, this would be a
problem in linear programming −→ feasible up to quite high dimension.

How to know? (Look at nonzero monomials . . . ??)
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Hankel-total positivity

Given a sequence a = (an)n≥0, we define its Hankel matrix

H∞(a) = (ai+j)i ,j≥0 =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
...

. . .



We say that the sequence a is Hankel-totally positive if its Hankel
matrix H∞(a) is totally positive.

This implies that the sequence is log-convex, but is much stronger.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 5 / 29



Hankel-total positivity

Given a sequence a = (an)n≥0, we define its Hankel matrix

H∞(a) = (ai+j)i ,j≥0 =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
...

. . .



We say that the sequence a is Hankel-totally positive if its Hankel
matrix H∞(a) is totally positive.

This implies that the sequence is log-convex, but is much stronger.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 5 / 29



Hankel-total positivity

Given a sequence a = (an)n≥0, we define its Hankel matrix

H∞(a) = (ai+j)i ,j≥0 =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
...

. . .


We say that the sequence a is Hankel-totally positive if its Hankel
matrix H∞(a) is totally positive.

This implies that the sequence is log-convex, but is much stronger.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 5 / 29



Hankel-total positivity

Given a sequence a = (an)n≥0, we define its Hankel matrix

H∞(a) = (ai+j)i ,j≥0 =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
...

. . .


We say that the sequence a is Hankel-totally positive if its Hankel
matrix H∞(a) is totally positive.

This implies that the sequence is log-convex, but is much stronger.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 5 / 29



Hankel-total positivity

Main Characterization (Stieltjes 1894, Gantmakher–Krein 1937)

For a sequence a = (an)n≥0 of real numbers, the following are equivalent:

(a) a is Hankel-totally positive.

(b) There exists a positive measure µ on [0,∞) such that
an =

∫
xn dµ(x) for all n ≥ 0.

[That is, a is a Stieltjes moment sequence.]

(c) There exist numbers α0, α1, . . . ≥ 0 such that
∞∑
n=0

ant
n =

α0

1−
α1t

1−
α2t

1− · · ·
in the sense of formal power series.

[Stieltjes-type continued fraction with nonnegative coefficients]
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From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1 Counting subsets of [n]: an = 2n

Counting subsets of [n] by cardinality: Pn(x) =
n∑

k=0

(n
k

)
xk

2 Counting permutations of [n]: an = n!

Counting permutations of [n] by number of cycles:

Pn(x) =
n∑

k=0

[n
k

]
xk (Stirling cycle polynomial)

Counting permutations of [n] by number of descents:

Pn(x) =
n∑

k=0

〈n
k

〉
xk (Eulerian polynomial)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 7 / 29



From numbers to polynomials
[or, From counting to counting-with-weights]

3 Counting partitions of [n]: an = Bn (Bell number)

Counting partitions of [n] by number of blocks:

Pn(x) =
n∑

k=0

{n
k

}
xk (Bell polynomial)

4 Counting non-crossing partitions of [n]: an = Cn (Catalan number)

Counting non-crossing partitions of [n] by number of blocks:

Pn(x) =
n∑

k=0

N(n, k) xk (Narayana polynomial)

These polynomials can also be multivariate!
(count with many simultaneous statistics)

An industry in combinatorics: cf. Sokal–Zeng 2020 and Deb–Sokal 2022
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Coefficientwise total positivity

Consider sequences and matrices whose entries are polynomials
with real coefficients in one or more indeterminates x.

A matrix is coefficientwise totally positive if every minor is a
polynomial with nonnegative coefficients.

A sequence is coefficientwise Hankel-totally positive if its Hankel
matrix is coefficientwise totally positive.

More generally, can consider sequences and matrices with entries in a
partially ordered commutative ring.

But now there is no analogue of the Main Characterization!

Coefficientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise Hankel-TP implies that (Pn(x))n≥0 is a Stieltjes
moment sequence for all x ≥ 0, but it is stronger .
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Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials (Pn(x))n≥0

have been proven in recent years to be coefficientwise log-convex:

Bell polynomials Bn(x) =
n∑

k=0

{n
k

}
xk

(Liu–Wang 2007, Chen–Wang–Yang 2011)

Narayana polynomials Nn(x) =
n∑

k=0

N(n, k) xk

(Chen–Wang–Yang 2010)

Narayana polynomials of type B: Wn(x) =
n∑

k=0

(n
k

)2
xk

(Chen–Tang–Wang–Yang 2010)

Eulerian polynomials An(x) =
n∑

k=0

〈n
k

〉
xk

(Liu–Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?
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Coefficientwise Hankel-TP in combinatorics

Might these sequences actually be coefficientwise Hankel-totally positive?

In many cases I can prove that the answer is yes, by using the
Flajolet–Viennot method of continued fractions.

In many other cases I have strong empirical evidence that the
answer is yes, but no proof.

The continued-fraction approach gives a sufficient but not
necessary condition for coefficientwise Hankel-total positivity.

More general approach: production matrices — still sufficient but
far from necessary.
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Classical continued fractions

Stieltjes-type continued fractions (S-fractions):

∞∑
n=0

Sn(α)︸ ︷︷ ︸
Stieltjes–Rogers

polynomial

tn =
1

1−
α1t

1−
α2t

1− · · ·

Jacobi-type continued fractions (J-fractions):

∞∑
n=0

Jn(β,γ)︸ ︷︷ ︸
Jacobi–Rogers

polynomial

tn =
1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− · · ·

This is combinatorialists’ notation. Analysts take tn → 1

zn+1
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Classical continued fractions (lattice-path interpretation)

Paths in N× N starting at (0, 0):

Motzkin path of length n: From (0, 0) → (n, 0)
using steps (1, 1) [rise], (1, 0) [level step], (1,−1) [fall]

Dyck path of length 2n: From (0, 0) → (2n, 0)
using steps (1, 1) [rise], (1,−1) [fall]

Theorem (Flajolet 1980)

The Jacobi–Rogers polynomial Jn(β,γ) is the generating polynomial
for Motzkin paths of length n, in which each rise gets weight 1,
each level step at height i gets weight γi , and each fall from height i
gets weight βi .

The Stieltjes–Rogers polynomial Sn(α) is the generating polynomial
for Dyck paths of length 2n, in which each rise gets weight 1 and
each fall from height i gets weight αi .
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Computing classical continued fractions

fk(t) =
1

1 − αk+1t fk+1(t)

Primitive algorithm.

1. Set f0(t) = f (t).

2. For k = 1, 2, 3, . . ., do:

(a) If fk−1(t) = 1, set αk = 0 and terminate.

(b) If fk−1(t) ̸= 1, set αk = [t1] fk−1(t) and

fk(t) = α−1
k t−1

(
1 − 1

fk−1(t)

)

Disadvantage of this algorithm: it requires division of power series.
But we can linearize the problem . . .
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Computing classical continued fractions

Given a power series f (t) =
∞∑
n=0

ant
n with a0 = 1, how to compute
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1− · · ·
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ant
n with a0 = 1, how to compute

f (t) =
1
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α1t

1−
α2t

1− · · ·

?

Define for k ≥ 0 the S-fraction starting at level k :
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1− · · ·

Then we have the obvious recurrence
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fk(t) =
1

1 − αk+1t fk+1(t)

Primitive algorithm.

1. Set f0(t) = f (t).

2. For k = 1, 2, 3, . . ., do:

(a) If fk−1(t) = 1, set αk = 0 and terminate.

(b) If fk−1(t) ̸= 1, set αk = [t1] fk−1(t) and

fk(t) = α−1
k t−1
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fk−1(t)
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Computing classical continued fractions (bis)

Define gk(t) =
k∏

i=0
fi (t) for k ≥ −1

So g−1(t) = 1 and fk(t) =
gk(t)

gk−1(t)

Nonlinear 2-term recurrence for (fk) −→ linear 3-term recurrence

gk(t)− gk−1(t) = αk+1t gk+1(t)

gk(t)− gk−1(t) = αk+1t gk+1(t)

Refined algorithm.

1. Set g−1(t) = 1 and g0(t) = f (t).

2. For k = 1, 2, 3, . . ., do:

(a) If gk−1(t) = gk−2(t), set αk = 0 and terminate.

(b) If gk−1(t) ̸= gk−2(t), set αk = [t1]
(
gk−1(t)− gk−2(t)

)
and

gk(t) = α−1
k t−1

(
gk−1(t)− gk−2(t)

)
Can also let g−1(t) = 1 + . . . be arbitrary, not just = 1.
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Computing classical continued fractions (bis2)
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Computing classical continued fractions (bis2)

Probably written circa 1746

Presented to the St. Petersburg Academy in 1753

Published in 1760

Euler derives the continued fraction
∞∑
n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1−
3t

1−
3t

1− · · ·
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Computing classical continued fractions (bis2)

Euler 1746

Viscovatov 1805

Rediscovered a few times in the 20th century

Barely known even to experts . . .

I call it the Euler–Viscovatov algorithm
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Computing classical continued fractions (bis2)

Euler 1746

Viscovatov 1805

Rediscovered a few times in the 20th century

Barely known even to experts . . .

I call it the Euler–Viscovatov algorithm

Surely the story unfolded here emphasizes how valuable it is to
study and understand the central ideas behind major pieces of
mathematics produced by giants like Euler.

— George Andrews
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Comparing efficiency of algorithms

Timing tests for

∞∑
n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1−
3t

1−
3t

1− · · ·
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Comparing efficiency of algorithms

Primitive Refined
N algorithm algorithm Ratio
100 0.20 0.15 1.33
200 0.87 0.14 6.32
300 2.20 0.29 7.47
400 4.87 0.51 9.53
500 9.41 0.79 11.86
600 17.32 1.15 15.06
700 30.26 1.58 19.17
800 51.10 2.09 24.44
900 83.48 2.69 31.07

1000 131.90 3.25 40.63
1100 200.71 4.14 48.46
1200 297.45 5.10 58.38
1300 429.43 6.21 69.18
1400 606.35 7.20 84.20
1500 840.25 8.75 95.99
1600 1128.79 9.54 118.28
1700 1490.64 11.00 135.50
1800 1947.84 12.59 154.68
1900 2505.78 14.40 174.06
2000 3176.93 15.74 201.85
3000 20896.0 43.85 476.52
4000 94.49
5000 170.51
6000 277.10
7000 420.58
8000 604.25
9000 835.81
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Comparing efficiency of algorithms

Euler also proved the more general continued fraction

∞∑
n=0

xn tn =
1

1−
xt

1−
1t

1−
(x + 1)t

1−
2t

1−
(x + 2)t

1−
3t

1− · · ·

where xn = x(x + 1)(x + 2) · · · (x + n − 1)
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Comparing efficiency of algorithms

Primitive Refined
N algorithm algorithm Ratio
10 0.02 0.02 1.21
15 0.08 0.06 1.46
20 0.27 0.12 2.25
25 0.50 0.21 2.40
30 1.04 0.36 2.85
35 3.15 0.56 5.64
40 16.13 0.77 21.07
45 57.23 1.04 55.14
50 139.52 1.41 98.66
55 283.39 1.72 164.86
60 505.61 2.15 234.67
65 1029.79 2.90 355.29
70 5390.53 3.44 1567.81
75 20714.2 4.23 4893.62
80 54919.5 4.75 11560.1
90 6.35

100 8.60
110 10.79
120 13.52
130 16.54
140 19.97
150 24.06
160 28.42
170 33.76
180 39.46
190 45.91
200 52.23
300 158.25
400 360.65
500 691.27
600 1184.81
700 1910.57
800 2909.85
900 4244.91

1000 5960.16
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Hankel-TP for Stieltjes-type continued fractions

Theorem (A.S. 2014, based on Viennot 1983)

The sequence (Sn(α))n≥0 of Stieltjes–Rogers polynomials is coefficientwise
Hankel-totally positive in the polynomial ring Z[α].

Proof uses the Lindström–Gessel–Viennot lemma on families of
nonintersecting paths.

Can now specialize α to nonnegative elements in any partially ordered
commutative ring, and get Hankel-TP.

Many applications . . .
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Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What about J-type continued fractions?

As before, we form the Hankel matrix

H∞(J) =
(
Ji+j(β,γ)

)
i ,j≥0

But the story is more complicated than for S-type fractions, because:

The matrix H∞(J) is not totally positive in Z[β,γ].

It is not even totally positive in R for all β,γ ≥ 0.

Rather, the total positivity of H∞(J) holds only when β and γ
satisfy suitable inequalities.

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 19 / 29



Hankel-TP for Jacobi-type continued fractions

What inequalities?

Form the infinite tridiagonal matrix

M∞(β,γ) =


γ0 1 0 0 · · ·
β1 γ1 1 0 · · ·
0 β2 γ2 1 · · ·
0 0 β3 γ3 · · ·
...

...
...

...
. . .


Theorem (A.S. 2014)

If M∞(β,γ) is totally positive, then so is H∞(J).

This is a sufficient condition, not a necessary one.

Proof uses the method of production matrices.
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Production matrices

Let P = (pij)i ,j≥0 be a row-finite or column-finite matrix (usually
lower-Hessenberg) with entries in a commutative ring R.

Define the matrix A = (ank)n,k≥0 by ank = (Pn)0k .

(n-step walks on N from 0 → k , with weight pij for each step i → j .)

We call P the production matrix and A = O(P) the output matrix.

Recurrence ank =
∑
i
an−1,i pik −→ Matrix formulation: ∆A = AP

where ∆ is the matrix with 1 on the superdiagonal and 0 elsewhere

Hence P = A−1∆A

Theorem (A.S. 2014)

In any partially ordered commutative ring R: If P is totally positive, then

(a) A = O(P) is totally positive.

(b) The zeroth column of A is Hankel-totally positive.

When applied to tridiagonal matrices, this handles J-fractions.

But it is a much more general tool.
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Production matrices (proof of theorem)

Define the augmented production matrix

P̃
def
=

[
1 0 0 0 · · ·

P

]
It is totally positive iff P is.

Then the definition A = O(P) gives

A =

[
1 0 0 0 · · ·

AP

]
=

[
1 0
0 A

] [
1 0 0 0 · · ·

P

]
=

[
1 0
0 A

]
P̃

Now iterate this to get

A = · · ·

[
I3 0

0 P̃

][
I2 0

0 P̃

][
I1 0

0 P̃

]
P̃

Hence if P̃ is TP, then so is A (Cauchy–Binet).

Part (b) on the Hankel matrix needs one small further step.
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An open problem for computer algebra

Let a = (an)n≥0 be a Hankel-TP sequence with a0 = 1.

Does there exist a TP production matrix that generates a as the
zeroth column of its output matrix?

And if so, how to find it?

Equivalent formulation: Fill in the unit-lower-triangular matrix

A =



1
a1 1
a2 ∗ 1
a3 ∗ ∗ 1
a4 ∗ ∗ ∗ 1
...

...
...

...
...

. . .


such that P = A−1∆A is TP.

This implies that A is TP, but is much stronger.

Having such an algorithm would be extremely useful.
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A new tool: Branched continued fractions
(also called multicontinued fractions)

Generalize classical continued fractions by considering more general paths.

(I will show only branched S-fractions. Can also do branched J-fractions.)

Fix an integer m ≥ 1.

m-Dyck path of length (m + 1)n: From (0, 0) → ((m + 1)n, 0)

using steps (1, 1) [rise], (1,−m) [m-fall]

For m = 1 these are ordinary Dyck paths.

A 2-Dyck path of length 18:
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A new tool: Branched continued fractions

Let S
(m)
n (α) be the generating polynomial for m-Dyck paths of length

(m + 1)n in which each m-fall starting at height i gets weight αi .

We call S
(m)
n (α) the m-Stieltjes–Rogers polynomial of order n.

Theorem (Pétréolle–A.S.–Zhu 2018)

The sequence (S
(m)
n (α))n≥0 of m-Stieltjes–Rogers polynomials is

coefficientwise Hankel-TP in the polynomial ring Z[α].

Proof is essentially identical to the one for m = 1!
(Lindström–Gessel–Viennot)

Many applications: see our paper arXiv:1807.03271

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 25 / 29



A new tool: Branched continued fractions

Let S
(m)
n (α) be the generating polynomial for m-Dyck paths of length

(m + 1)n in which each m-fall starting at height i gets weight αi .

We call S
(m)
n (α) the m-Stieltjes–Rogers polynomial of order n.
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Many applications: see our paper arXiv:1807.03271
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Coefficientwise Hankel-TP seems to be very common . . .
. . . but not so easy to prove

There are many cases where:

I find empirically that a sequence (Pn(x))n≥0 is coefficientwise
Hankel-TP . . .

But I am unable to prove it because there is neither an S-type
nor a J-type continued fraction in the ring of polynomials
(and maybe no TP production matrix, either?).

Domb polynomials

Apéry polynomials

Boros–Moll polynomials

Inversion enumerators for trees (= Mallows–Riordan polynomials)

Reduced binomial discriminant polynomials
...
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Example 1: Apéry polynomials

Apéry numbers An =
n∑

k=0

(
n

k

)2(n + k

k

)2

played key role in Apéry’s 1978 proof of the irrationality of ζ(3)

Theorem (conjectured by me, 2014; proven by G. Edgar, 2017):
(An)n≥0 is a Stieltjes moment sequence.

Define Apéry polynomials An(x) =
n∑

k=0

(
n

k

)2(n + k

k

)2

xk

Conjecture 1: (An(x))n≥0 is a Stieltjes moment sequence
for all x ≥ 1 (but not for 0 < x < 1).

Conjecture 2: (An(1 + y))n≥0 is coefficientwise Hankel-TP in y .
(Tested up to 12× 12)

Don’t know (even conjecturally) any continued fraction or
production matrix.
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Apéry numbers An =
n∑

k=0

(
n

k

)2(n + k

k

)2
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Example 2: Inversion enumerator for trees (cf. Kilian Raschel talk)

Let T be a tree with vertex set [n], rooted at the vertex 1.

An inversion of T is an ordered pair (j , k) of vertices such that j > k
and the path from 1 to k passes through j .

Define the inversion enumerator for trees In(q) =
∑
T∈Tn

q# inversions

In(0) = (n − 1)! and In(1) = nn−2

Fact: (In+1(q))n≥0 is a Stieltjes moment sequence for all q ∈ [0, 1].
(Proof: Deformed exponential function ∈ Laguerre–Pólya class LP+)

Conjecture: (In+1(q))n≥0 is coefficientwise Hankel-totally positive.
(Tested up to 10× 10)

Don’t know (even conjecturally) any continued fraction or
production matrix.
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(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.

Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.

Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.

Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.

BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.

Dedicated to the memory of Philippe Flajolet (1948–2011)

Alan Sokal (University College London) Some problems I’d like solved IHP Computer Algebra Workshop 29 / 29



(Tentative) Conclusion

Many interesting sequences (Pn(x))n≥0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

In some cases this can be proven by the Flajolet–Viennot method of
continued fractions.

When S-fractions exist, they give the simplest proofs.
Sometimes S-fractions don’t exist, but J-fractions can work.
Sometimes neither S-fractions nor J-fractions exist,
but branched S-fractions do.
Sometimes branched S-fractions don’t exist, but branched J-fractions
(= production matrices) can work.
BCFs and production matrices are powerful (but not universal) tools.

Alas, in many cases none of these methods work!

New methods of proof will be needed.

Coefficientwise Hankel-TP is a big phenomenon that we understand,
at present, only very incompletely.
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