On some functional equations for maps

Alexandros Singh (Université Paris 8)

Based on joint work(s) with Olivier Bodini and Konstantinos Tsagkaris

Topical day: Elimination for Functional Equations December 11, 2023

Outline

2 A

Outline

- Presentation of maps

Outline

- Presentation of maps
- Some of our results on statistics/parameters of maps

Outline

- Presentation of maps
- Some of our results on statistics/parameters of maps
- The basic tools we use to derive (most of) them

Outline

- Presentation of maps
- Some of our results on statistics/parameters of maps
- The basic tools we use to derive (most of) them
- "Guessing" and relating functional equations

Outline

- Presentation of maps
- Some of our results on statistics/parameters of maps
- The basic tools we use to derive (most of) them
- "Guessing" and relating functional equations
- Questions for computer algebraists

What are maps?

Cellular embeddings of (multi)graphs on surfaces.

What are maps?

Cellular embeddings of (multi)graphs on surfaces.
faces homeomorphic to open disks

What are maps?

$$
4 С Т \ldots
$$

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Tutte in the 60 s , as part of his approach to the four colour theorem.

Triangulations and trivalent maps

Triangulations and trivalent maps
A much studied class: maps where all faces are of degree 3

Triangulations and trivalent maps
A much studied class: maps where all faces are of degree 3

Triangulations and trivalent maps
A much studied class: maps where all faces are of degree 3 and their duals with vertices of degree 3 .

Triangulations and trivalent maps
A much studied class: maps where all faces are of degree 3 and their duals with vertices of degree 3 .

Rooting them makes it easier to count.

Triangulations and trivalent maps

Random triangulations of the sphere and torus with ≈ 3000 triangles:

Triangulations and trivalent maps Why study such maps?

Triangulations and trivalent maps Why study such maps?

Physics:

Triangulations and trivalent maps Why study such maps?

Physics:

- QFT in zero dimensions [CLP78]

$$
z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{z \phi^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{~d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=
$$

Triangulations and trivalent maps Why study such maps?

Physics:

- QFT in zero dimensions [CLP78]

$$
Z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{z \phi^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{~d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=0 \longrightarrow+
$$

Triangulations and trivalent maps Why study such maps?

Physics:

- QFT in zero dimensions [CLP78]

$Z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{z \phi^{3}}{3}\right)+J \phi} d \phi,\langle\phi\rangle_{J=0}=0 \longrightarrow+$
(Do a matrix integral if you want maps sorted by genus!)

Triangulations and trivalent maps
Why study such maps?

Physics:

- QFT in zero dimensions [CLP78]
$Z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{\not \phi^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=z+5 z^{3}+\ldots$

Triangulations and trivalent maps
Why study such maps?
Physics:

- QFT in zero dimensions [CLP78]
$z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{\chi \phi^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=z+5 z^{3}+\ldots$
- Quantum gravity in two dimensions [AJW95, AR98]
$\int \mathrm{D}[g] \rightarrow \sum_{\mathrm{t} \in \mathcal{G}}$ with \mathcal{G} a suitable class of triangulations

Triangulations and trivalent maps
Why study such maps?
Physics:

- QFT in zero dimensions [CLP78]
$z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{\chi \phi^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=z+5 z^{3}+\ldots$
- Quantum gravity in two dimensions [AJW95, AR98]
$\int \mathrm{D}[g] \rightarrow \sum_{\mathrm{t} \in \mathcal{G}}$ with \mathcal{G} a suitable class of triangulations
Computer science \& logic:
- Combinatorics of the linear λ-calculus

$$
(\lambda x \cdot x)(\lambda y \cdot(\lambda z \cdot z y)(\lambda w \cdot \lambda u \cdot w u))
$$

Triangulations and trivalent maps
Why study such maps?
Physics:

- QFT in zero dimensions [CLP78]
$z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{\chi \boldsymbol{\beta}^{3}}{3}\right)+\mathrm{J} \phi} \mathrm{d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=z+5 z^{3}+\ldots$
- Quantum gravity in two dimensions [AJW95, AR98]
$\int \mathrm{D}[\mathrm{g}] \rightarrow \sum_{\mathrm{t} \in \mathcal{G}}$ with \mathcal{G} a suitable class of triangulations
Computer science \& logic:
- Combinatorics of the linear λ-calculus

$$
(\lambda x . x)(\lambda y \cdot(\lambda z \cdot z y)(\lambda w \cdot \lambda u \cdot w u))
$$

Triangulations and trivalent maps
Why study such maps?
Physics:

- QFT in zero dimensions [CLP78]
$z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{z \phi^{3}}{3}\right)+J \phi} \mathrm{~d} \phi,\langle\phi\rangle_{\mathrm{J}=0}=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=z+5 z^{3}+\ldots$
- Quantum gravity in two dimensions [AJW95, AR98]
$\int \mathrm{D}[g] \rightarrow \sum_{\mathrm{t} \in \mathcal{G}}$ with \mathcal{G} a suitable class of triangulations
Computer science \& logic:
- Combinatorics of the linear λ-calculus [BGGJ13, Z16]

$$
(\lambda x \cdot x)(\lambda y \cdot(\lambda z . z y)(\lambda w \cdot \lambda u \cdot w u))
$$

Algebra:

- Combinatorics of subgroups of the modular group $\operatorname{PSL}(2 ; \mathbb{Z})$ [HMR16]

Combinatorial questions

Combinatorial questions

- Counting via generating functions

Combinatorial questions

- Counting via generating functions
size $=\#$ edges
$\mathrm{T}(\mathrm{z})=\sum_{\mathrm{t} \in \mathrm{T}} z^{|\mathrm{t}|}=0-\infty+$$z^{2}$
$5 z^{5}$
- "Advanced counting": combinatorial parameters, observables

Some results [BSZ21,S22]
$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet+$ Gittenberger, Wallner
Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms Limit law: Poisson(1)
- Vertices of degree 1 in (1,3)-valent maps and free variables in open linear terms

$$
\text { Limit law: } \mathcal{N}\left((2 n)^{1 / 3},(2 n)^{1 / 3}\right)
$$

- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$
- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11 n}{240}$

Our strategy:

1) Track evolution of parameters through decompositions of maps/ λ-terms

Our strategy:

1) Track evolution of parameters through decompositions of maps/ λ-terms
$\bullet T=u z+z T^{2}+z \partial_{u} T$

- $T=u z+z^{2}+z \top^{2}+2 z^{4} \partial_{z} \top$

- $\mathrm{T}=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)$

Our strategy:

1) Track evolution of parameters through decompositions of maps/ λ-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Develop tools for rapidly growing coefficients, based on:

- Moment pumping
- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z)$) [B75]
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A(z) \cdot B(z)) \sim a_{n} b_{0}+a_{0} b_{n}+O\left(a_{n-1}+b_{n-1}\right)
$$

for A, B, G divergent and F analytic

Decomposing rooted open trivalent maps

Decomposing rooted open trivalent maps

0

Decomposing rooted open trivalent maps

$\int_{\mathrm{T}(z, \mathfrak{u})}^{\text {edges }}=\mathbf{u z}+z \mathrm{~T}(z, \mathfrak{u})^{2}$

Decomposing rooted open trivalent maps

$\int_{T(z, u)}^{\text {edges }}=u z+z T(z, u)^{2}+z \partial_{u} T(z, u)$

Decomposing rooted open trivalent maps

edges \quad| See also: Schwinger-Dyson eq. of |
| :---: |
| $z=\int e^{-\left(\frac{\phi^{2}}{2}+\frac{z \phi^{3}}{3}\right)+J \phi} d \phi$ |

$\mathrm{T}(z, \mathfrak{u})=u z+z T(z, u)^{2}+z \partial_{u} T(z, u)$
unary vertices

Decomposing rooted open trivalent maps

Decomposing rooted open trivalent maps

Decomposing rooted open trivalent maps

Decomposing rooted open trivalent maps, again

Decomposing rooted open trivalent maps, again

$\mathrm{T}(z, u)=u z+z^{2}$

Decomposing rooted open trivalent maps, again

$$
\mathrm{T}(z, u)=u z+z^{2}+z \mathrm{~T}(z)^{2}
$$

Decomposing rooted open trivalent maps, again

$\mathrm{T}(z, u)=u z+z^{2}+z T(z)^{2}+2 z^{4} \partial_{z} T(z, u)$

Decomposing rooted open trivalent maps, again

Decomposing rooted open trivalent maps, again

Decomposing rooted open trivalent maps, again

Deriving equations via guess-and-prove

Deriving equations via guess-and-prove
\longrightarrow Schwinger-Dyson, elementary combinatorics

- Get one of the equations for free:

$$
\mathrm{T}(z, u)=u z+z \mathrm{~T}(z, u)^{2}+z \partial_{u} \mathrm{~T}(z, u)
$$

Deriving equations via guess-and-prove

\longrightarrow Schwinger-Dyson, elementary combinatorics

- Get one of the equations for free:

$$
\mathrm{T}(z, \mathfrak{u})=\mathfrak{u z}+z \mathrm{~T}(z, \mathfrak{u})^{2}+z \partial_{\mathfrak{u}} \mathrm{T}(z, \mathfrak{u})
$$

- Guess the terate the fistone, solve a large inear system to guess

$$
\mathrm{T}(z, u)=u z+z^{2}+z \mathrm{~T}(z, u)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, u)
$$

Deriving equations via guess-and-prove

Schwinger-Dyson, elementary combinatorics

- Get one of the equations for free:

$$
\mathrm{T}(z, \mathfrak{u})=\mathfrak{u z}+z \mathrm{~T}(z, \mathfrak{u})^{2}+z \partial_{\mathfrak{u}} \mathrm{T}(z, \mathfrak{u})
$$

- Guess the other one:

$$
\mathrm{T}(z, u)=u z+z^{2}+z \mathrm{~T}(z, u)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, u)
$$

- Use differential algebra to show equivalence of the two:

```
eq2 := -L(u, z) + u*z + z*L(u, z)^2 + z*diff(L(u, z), u);
eq1:= -L(u, z) + u*z + z^2 + z*L(u, z)^2 + 2*z^4* diff(L(u, z), z);
        eq2:=-L(u,z)+uz+zL(u,z)}\mp@subsup{}{}{2}+z(\frac{\partial}{\partialu}L(u,z)
        eq1:=-L(u,z)+uz+\mp@subsup{z}{}{2}+zL(u,z\mp@subsup{)}{}{2}+2\mp@subsup{z}{}{4}(\frac{\partial}{\partialz}L(u,z))
```

with(Differential A1 gebra) :
R := DifferentialRing(blocks=[L, E], derivations=[z, u]):
$G:=\operatorname{RosenfeldGroebner}([e q 2$, eq1-E $(u, z)], R)$;
$>$ Equations (G[1]) [2];

$$
\begin{equation*}
4\left(\frac{\partial^{2}}{\partial z \partial u} E(u, z)\right) E(u, z) z^{5}-4\left(\frac{\partial}{\partial z} E(u, z)\right)\left(\frac{\partial}{\partial u} E(u, z)\right) z^{5}-\left(\frac{\partial}{\partial u} E(u, z)\right)^{2} z^{2}+4 E(u, z)^{3} z-4 E(u, z)^{2} z^{2} u+E(u, z)^{2} \tag{3}
\end{equation*}
$$

$>$ Equations(G[2]);

$$
\left[-L(u, z)+u z+z^{2}+z L(u, z)^{2}+2 z^{4}\left(\frac{\partial}{\partial z} L(u, z)\right),-L(u, z)+u z+z L(u, z)^{2}+z\left(\frac{\partial}{\partial u} L(u, z)\right), E(u, z)\right]
$$

A persistent phenomenon

A persistent phenomenon

- Loops in trivalent maps:

$$
\begin{aligned}
\mathrm{T}(z, u, v)= & u z+v z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{u}(\mathrm{~T}(z, u, v)-u z) \\
\mathrm{T}(z, u, v)= & u z+(v-1) z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{v} \mathrm{~T}(z, u, v) \\
\mathrm{T}(z, 0, v)= & v z^{2}+2(v-1)^{2} z^{5}+z \mathrm{~T}(z, 0, v)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, 0, v) \\
& -2 z^{3}(v-1)\left(\mathrm{T}(z, 0, v)-z \mathrm{~T}(z, 0, v)^{2}\right) \quad \text { easy to guess }
\end{aligned}
$$

First two can be proven equivalent via diff. alg. All three can be proven equivalent combinatorially (at $u=0$).

A persistent phenomenon

- Loops in trivalent maps:

$$
\begin{aligned}
\mathrm{T}(z, u, v)= & u z+v z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{u}(\mathrm{~T}(z, u, v)-u z) \\
\mathrm{T}(z, u, v)= & u z+(v-1) z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{v} \mathrm{~T}(z, u, v) \\
\mathrm{T}(z, 0, v)= & v z^{2}+2(v-1)^{2} z^{5}+z \mathrm{~T}(z, 0, v)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, 0, v)- \\
& -2 z^{3}(v-1)\left(\mathrm{T}(z, 0, v)-z \mathrm{~T}(z, 0, v)^{2}\right) \quad \text { easy to guess }
\end{aligned}
$$

easy to derive

First two can be proven equivalent via diff. alg. All three can be proven equivalent combinatorially $($ at $u=0)$.

A persistent phenomenon

- Loops in trivalent maps:

$$
\begin{aligned}
\mathrm{T}(z, u, v)= & u z+v z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{\mathfrak{u}}(\mathrm{T}(z, u, v)-u z) \\
\mathrm{T}(z, u, v)= & u z+(v-1) z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{v} \mathrm{~T}(z, u, v) \\
\mathrm{T}(z, 0, v)= & v z^{2}+2(v-1)^{2} z^{5}+z \mathrm{~T}(z, 0, v)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, 0, v)- \\
& -2 z^{3}(v-1)\left(\mathrm{T}(z, 0, v)-z \mathrm{~T}(z, 0, v)^{2}\right) \quad \text { easy to guess }
\end{aligned}
$$

First two can be proven equivalent via diff. alg. All three can be proven equivalent combinatorially (at $u=0$).

A persistent phenomenon

- Loops in trivalent maps:

$$
\begin{aligned}
\mathrm{T}(z, u, v)= & u z+v z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{\mathfrak{u}}(\mathrm{T}(z, u, v)-u z) \\
\mathrm{T}(z, u, v)= & u z+(v-1) z^{2}+z \mathrm{~T}(z, u, v)^{2}+z \partial_{v} \mathrm{~T}(z, u, v) \\
\mathrm{T}(z, 0, v)= & v z^{2}+2(v-1)^{2} z^{5}+z \mathrm{~T}(z, 0, v)^{2}+2 z^{4} \partial_{z} \mathrm{~T}(z, 0, v) \\
& -2 z^{3}(v-1)\left(\mathrm{T}(z, 0, v)-z \mathrm{~T}(z, 0, v)^{2}\right) \quad \text { easy to guess }
\end{aligned}
$$

First two can be proven equivalent via diff. alg.
All three can be proven equivalent combinatorially (at $u=0$).

- Similar situations for bridges: \rightarrow easy to derive
$\mathrm{T}(z, u, w)=u z+z\left(\mathrm{~T}(z, u, w)^{2}+(v-1) \mathrm{T}(z, u, w)^{2}\right)+z\left(\partial_{u} \mathrm{~T}(z, u, w)\right.$

$$
\left.+(v-1) \partial_{\mathfrak{u}} T(z, u, w)\right)
$$

$\partial_{w} \mathrm{~T}(z, 0, w)=-\frac{w^{2} \mathrm{~T}(z, 0, w)^{3}+z^{2} \mathrm{~T}(z, 0, w)-\mathrm{T}(z, 0, w)^{2}}{\left(w^{3}-w^{2}\right) z \mathrm{~T}(z, 0, w)^{2}+w z^{2}-(w-1) \mathrm{T}(z, 0, w)}$
Combinatorics shows that two are equivalent.

Questions

Questions

-Can this be done consistently and automatically?
Tetravalent maps
easy to derive (SD)

$$
\begin{aligned}
& \left.\rho\left(\phi^{2}+\varepsilon^{4}\right)+\boldsymbol{\phi ^ { 4 }}\right) \\
& e^{-\left(\frac{\phi^{2}}{2}+z \frac{\phi^{4}}{4}\right)+\mathrm{J} \phi} d \phi \quad \text { easy to guess } \quad \text { birooted } \\
& >F=\frac{1+z F^{2}+4 z^{2} \partial_{z} F}{1-2 z}, F=\partial_{J} \Phi_{J=0}
\end{aligned}
$$

Questions

-Can this be done consistently and automatically?
Tetravalent maps
easy to derive (SD)

-Can we deal with projections?
$\mathrm{T}=\mathfrak{u}+z \mathrm{~T}^{2}+\left.z \partial_{\mathfrak{u}} \mathrm{T} \rightarrow \mathrm{T}\right|_{\mathfrak{u}=0}=z^{2}+z\left(\left.\mathrm{~T}\right|_{\mathfrak{u}=0}\right)^{2}+\left.2 z^{4} \partial_{z} \mathrm{~T}\right|_{\mathfrak{u}=0}$

Questions

-Can this be done consistently and automatically?
Tetravalent maps
easy to derive (SD)

$$
e^{-\left(\frac{\phi^{2}}{2}+z \frac{\phi^{4}}{4}\right)+\mathrm{J} \phi} \Phi \Phi=-z \partial_{\mathrm{J}}^{2} \Phi-3 z \Phi \partial_{\mathrm{J}} \Phi-z \Phi+\mathrm{J}, \Phi=\langle\phi\rangle_{\mathrm{J}} \mathrm{C}
$$

\bullet Can we deal with projections?

$$
\mathrm{T}=\mathfrak{u}+z \mathrm{~T}^{2}+\left.z \partial_{\mathfrak{u}} \mathrm{T} \rightarrow \mathrm{~T}\right|_{\mathfrak{u}=0}=z^{2}+z\left(\left.\mathrm{~T}\right|_{\mathfrak{u}=0}\right)^{2}+\left.2 z^{4} \partial_{z} \mathrm{~T}\right|_{\mathfrak{u}=0}
$$

-Can we deal with systems of eqs?
easy to derive (SD)
$\int e^{-\left(\frac{\phi^{2}}{2}+z \frac{\psi^{2}}{2}+\frac{\phi^{3}}{3}+\frac{\psi^{3}}{3}+\phi \psi\right)+J \phi} d \phi d \psi \quad B=-u-z\left(B^{2}+\partial_{u} B\right)+a A(z, u, v)$

Questions

-Can this be done consistently and automatically?
Tetravalent maps
easy to derive (SD)

$$
\mathrm{e}^{-\left(\frac{\phi^{2}}{2}+z \frac{\phi^{4}}{4}\right)+\mathrm{J} \phi} \Phi \Phi=-z \partial_{\mathrm{J}}^{2} \Phi-3 z \Phi \partial_{\mathrm{J}} \Phi-z \Phi+\mathrm{J}, \Phi=\langle\phi\rangle_{\mathrm{J}} \mathrm{C}
$$

\bullet Can we deal with projections?
$\mathrm{T}=\mathrm{u}+z \mathrm{~T}^{2}+\left.z \partial_{\mathfrak{u}} \mathrm{T} \rightarrow \mathrm{T}\right|_{\mathfrak{u}=0}=z^{2}+z\left(\left.\mathrm{~T}\right|_{u=0}\right)^{2}+\left.2 z^{4} \partial_{z} T\right|_{u=0}$
-Can we deal with systems of eqs?
easy to derive (SD)
$\int e^{-\left(\frac{\phi^{2}}{2}+z \frac{\psi^{2}}{2}+\frac{\phi^{3}}{3}+\frac{\psi^{3}}{3}+\phi \psi\right)+\mathrm{J} \phi} d \phi d \psi$

$$
A=-\mathfrak{u}-z\left(A^{2}+\partial_{\mathfrak{u}} A\right)+\mathfrak{a B}(z, u, v)
$$

$$
B=-\mathfrak{u}-z\left(B^{2}+\partial_{\mathfrak{u}} B\right)+a A(z, u, v)
$$

-Ubiquity of Riccati equations?
See: R. J. Martin and M. J. Kearney, "An exactly solvable self-convolutive recurrence", Aequationes mathematicae vol. 80, 2010

Questions

-Can this be done consistently and automatically?
Tetravalent maps
easy to defive (SD)

$$
\mathrm{e}^{-\left(\frac{\phi^{2}}{2}+z \frac{\phi^{4}}{4}\right)+\mathrm{J} \phi} \Phi \Phi=-z \partial_{\mathrm{J}}^{2} \Phi-3 z \Phi \partial_{\mathrm{J}} \Phi-z \Phi+\mathrm{J}, \Phi=\langle\phi\rangle_{\mathrm{J}} \mathrm{C}
$$

\bullet Can we deal with projections?
$\mathrm{T}=\mathfrak{u}+z \mathrm{~T}^{2}+\left.z \partial_{\mathfrak{u}} \mathrm{T} \rightarrow \mathrm{T}\right|_{\mathfrak{u}=0}=z^{2}+z\left(\left.T\right|_{\mathfrak{u}=0}\right)^{2}+\left.2 z^{4} \partial_{z} T\right|_{u=0}$
-Can we deal with systems of eqs?
easy to derive (SD)
$\int e^{-\left(\frac{\phi^{2}}{2}+z \frac{\psi^{2}}{2}+\frac{\phi^{3}}{3}+\frac{\psi^{3}}{3}+\phi \psi\right)+J \phi} d \phi \mathrm{~d} \psi \quad \mathrm{~B}=-\mathrm{u-Z}\left(\mathrm{~B}^{2}+\partial_{u} \mathrm{~B}\right)+\mathrm{a} \mathcal{A}(z, u, v)$
-Ubiquity of Riccati equations?
See: R. J. Martin and M. J. Kearney, "An exactly solvable self-convolutive recurrence", Aequationes mathematicae vol. 80, 2010

Thanks!

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[CLP78] Cvitanović, P., Lautrup, B., \& Pearson, R. B. (1978).
Number and weights of Feynman diagrams.
Physical review D, 18(6), 1939.
[AJW95] Ambjørn, Jan, J. Jurkiewicz, and Y. Watabiki (1995).
On the fractal structure of two-dimensional quantum gravity.
Nuclear Physics B, 454(1-2), 313-342.
[AL98] Ambjørn, J., \& Loll, R. (1998).
Non-perturbative Lorentzian quantum gravity, causality and topology change.
Nuclear Physics B, 536(1-2), 407-434.

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013).
Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[HMR16] He, Y. H., McKay, J., \& Read, J. (2013).
Modular subgroups, dessins d'enfants and elliptic K3 surfaces.
LMS Journal of Computation and Mathematics, 16, 271-318.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[BSZ21] Bodini, O., Singh, A., \& Zeilberger, N. (2021).
Asymptotic distribution of parameters in trivalent maps and linear lambda terms.
Submitted, prepreint: arXiv preprint arXiv:2106.08291.

Bibliography

[S22] Singh, A. (2022).
Une approche unifiée de la combinatoire du lambda-calcul et des cartes: bijections et propriétés limites.
PhD diss., Université Paris-Nord-Paris XIII, 2022.

