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(T = uz+ zT2 + z∂uT)|u=0

T = z2 + zT2 + 2z4∂zT

(T = (v− 1)z2 + zT2 + z∂vT)|v=1
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Outline

Presentation of maps

Some of our results on statistics/parameters of maps

The basic tools we use to derive (most of) them

“Guessing” and relating functional equations

Questions for computer algebraists



3 A

What are maps?

Cellular embeddings of (multi)graphs on surfaces.
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What are maps?

Cellular embeddings of (multi)graphs on surfaces.

faces homeomorphic to open disks
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

4CT...

scaling limits... matrix integrals, Witten’s conjecture, . . .
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

Their enumeration was pioneered by Tutte in the 60s, as
part of his approach to the four colour theorem.
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Triangulations and trivalent maps
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Triangulations and trivalent maps

A much studied class: maps where all faces are of degree 3
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Triangulations and trivalent maps

A much studied class: maps where all faces are of degree 3
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Triangulations and trivalent maps

A much studied class: maps where all faces are of degree 3
and their duals with vertices of degree 3.
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Triangulations and trivalent maps

A much studied class: maps where all faces are of degree 3
and their duals with vertices of degree 3.

Rooting them makes it easier to count.
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Triangulations and trivalent maps
Random triangulations of the sphere and torus with ≈ 3000 triangles:
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Triangulations and trivalent maps

Why study such maps?
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Triangulations and trivalent maps

Why study such maps?

Physics:
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
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+Jϕ

dϕ, ⟨ϕ⟩J=0 =
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
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3

3
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+Jϕ

dϕ, ⟨ϕ⟩J=0 = + + . . .
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5z3
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 = + + . . .

z

5z3

(Do a matrix integral if you want maps sorted by genus!)
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 =
∑
t∈T

z|t| = z+ 5z3 + . . .
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 =
∑
t∈T

z|t| = z+ 5z3 + . . .

Quantum gravity in two dimensions [AJW95, AR98]∫
D[g] →

∑
t∈G

with G a suitable class of triangulations
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 =
∑
t∈T

z|t| = z+ 5z3 + . . .

Quantum gravity in two dimensions [AJW95, AR98]∫
D[g] →

∑
t∈G

with G a suitable class of triangulations

Computer science & logic:

Combinatorics of the linear λ-calculus

(λx.x) (λy.(λz.z y) (λw.λu.w u))
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 =
∑
t∈T

z|t| = z+ 5z3 + . . .

Quantum gravity in two dimensions [AJW95, AR98]∫
D[g] →

∑
t∈G

with G a suitable class of triangulations

Computer science & logic:

Combinatorics of the linear λ-calculus
λ

λ

λ

λ

λ

(λx.x) (λy.(λz.z y) (λw.λu.w u))

α

α

α
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Triangulations and trivalent maps

Why study such maps?

Physics:

QFT in zero dimensions [CLP78]

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ, ⟨ϕ⟩J=0 =
∑
t∈T

z|t| = z+ 5z3 + . . .

Quantum gravity in two dimensions [AJW95, AR98]∫
D[g] →

∑
t∈G

with G a suitable class of triangulations

Computer science & logic:

Combinatorics of the linear λ-calculus

(λx.x) (λy.(λz.z y) (λw.λu.w u))

Algebra:

Combinatorics of subgroups of the modular group PSL(2;Z)
[HMR16]

[BGGJ13, Z16]
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Combinatorial questions
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Combinatorial questions

Counting via generating functions

+ + . . .T(z) =
∑
t∈T

z|t| =

z2

5z5

size = # edges
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Combinatorial questions

Counting via generating functions

+ + . . .T(z) =
∑
t∈T

z|t| =

“Advanced counting”: combinatorial parameters, observables

+ + . . .T(z, v) =
∑
t∈T

z|t|v#loops =

z2

5z5

vz2

(v2 + 2v+ 2)z5

size = # edges
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Some results [BSZ21,S22]

Parameters on maps and terms of arbitrary genus (number of):
Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

Vertices of degree 1 in (1,3)-valent maps and free variables in open
linear terms

Limit law: N((2n)1/3, (2n)1/3)

Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: n
24

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: 11n
240

=w. Bodini, Zeilberger = + Gittenberger, Wallner
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Our strategy:

1) Track evolution of parameters through decompositions of maps/λ-terms
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Our strategy:

1) Track evolution of parameters through decompositions of maps/λ-terms

T = uz+ zT2 + z∂uT

T = uz+ z2 + zT2 + 2z4∂zT

T = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)⊙ exp(z3/3+ uz)

))

→
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Our strategy:

1) Track evolution of parameters through decompositions of maps/λ-terms

generating functions divergent away from 0

2) Develop tools for rapidly growing coefficients, based on:

Bender’s theorem for compositions F(z,G(z)) [B75]

Coefficient asymptotics of Cauchy products

[zn](A(z) · B(z)) ∼ anb0 + a0bn +O(an−1 + bn−1)
for A,B,G divergent and F analytic

different decompositions ⇝ differential equations, Hadamard products, . . .

Moment pumping
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Decomposing rooted open trivalent maps
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T(z,u) = uz

edges

Decomposing rooted open trivalent maps

unary vertices
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T(z,u) = uz zT(z,u)2+

edges

Decomposing rooted open trivalent maps

unary vertices
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T(z,u) = uz zT(z,u)2+ + z∂uT(z,u)

edges

Decomposing rooted open trivalent maps

unary vertices
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T(z,u) = uz zT(z,u)2+ + z∂uT(z,u)

edges

Decomposing rooted open trivalent maps

unary vertices

See also: Schwinger-Dyson eq. of

Z =

∫
e
−
(
ϕ2

2 + zϕ
3

3

)
+Jϕ

dϕ
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Decomposing rooted open trivalent maps



9 G

Decomposing rooted open trivalent maps
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Decomposing rooted open trivalent maps

. . .
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Decomposing rooted open trivalent maps, again
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T(z,u) = z2

Decomposing rooted open trivalent maps, again

uz +
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T(z,u) = z2 zT(z)2+

Decomposing rooted open trivalent maps, again

uz +
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T(z,u) = z2 zT(z)2+ + 2z4∂zT(z,u)

Decomposing rooted open trivalent maps, again

uz +
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Decomposing rooted open trivalent maps, again



10 F

Decomposing rooted open trivalent maps, again



10 G

Decomposing rooted open trivalent maps, again

. . .



11 A

Deriving equations via guess-and-prove
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Deriving equations via guess-and-prove

Get one of the equations for free:

T(z,u) = uz+ zT(z,u)2 + z∂uT(z,u)

Schwinger-Dyson, elementary combinatorics
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Deriving equations via guess-and-prove

Get one of the equations for free:

T(z,u) = uz+ z2 + zT(z,u)2 + 2z4∂zT(z,u)

T(z,u) = uz+ zT(z,u)2 + z∂uT(z,u)

Guess the other one:

Schwinger-Dyson, elementary combinatorics

Iterate the first one, solve a large linear system to guess
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Deriving equations via guess-and-prove

Get one of the equations for free:

T(z,u) = uz+ z2 + zT(z,u)2 + 2z4∂zT(z,u)

T(z,u) = uz+ zT(z,u)2 + z∂uT(z,u)

Guess the other one:

Schwinger-Dyson, elementary combinatorics

Iterate the first one, solve a large linear system to guess

Use differential algebra to show equivalence of the two:

Proof due to Pierre Lairez.
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A persistent phenomenon
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A persistent phenomenon

Loops in trivalent maps:

T(z,u, v) = uz+ vz2 + zT(z,u, v)2 + z∂u(T(z,u, v) − uz)

T(z,u, v) = uz+ (v− 1)z2 + zT(z,u, v)2 + z∂vT(z,u, v)

T(z, 0, v) = vz2 + 2(v− 1)2z5 + zT(z, 0, v)2 + 2z4∂zT(z, 0, v)
−2z3(v− 1)(T(z, 0, v) − zT(z, 0, v)2)

easy to derive

easy to guess
First two can be proven equivalent via diff. alg.
All three can be proven equivalent combinatorially (at u = 0).
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A persistent phenomenon

Loops in trivalent maps:

T(z,u, v) = uz+ vz2 + zT(z,u, v)2 + z∂u(T(z,u, v) − uz)

T(z,u, v) = uz+ (v− 1)z2 + zT(z,u, v)2 + z∂vT(z,u, v)

T(z, 0, v) = vz2 + 2(v− 1)2z5 + zT(z, 0, v)2 + 2z4∂zT(z, 0, v)
−2z3(v− 1)(T(z, 0, v) − zT(z, 0, v)2)

easy to derive

easy to guess
First two can be proven equivalent via diff. alg.
All three can be proven equivalent combinatorially (at u = 0).
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A persistent phenomenon

Loops in trivalent maps:

T(z,u, v) = uz+ vz2 + zT(z,u, v)2 + z∂u(T(z,u, v) − uz)

T(z,u, v) = uz+ (v− 1)z2 + zT(z,u, v)2 + z∂vT(z,u, v)

T(z, 0, v) = vz2 + 2(v− 1)2z5 + zT(z, 0, v)2 + 2z4∂zT(z, 0, v)
−2z3(v− 1)(T(z, 0, v) − zT(z, 0, v)2)

easy to derive

easy to guess
First two can be proven equivalent via diff. alg.
All three can be proven equivalent combinatorially (at u = 0).

Similar situations for bridges:

T(z,u,w) = uz+ z(T(z,u,w)2 + (v− 1)T(z,u,w)2) + z(∂uT(z,u,w)
+(v− 1)∂uT(z,u,w))

∂wT(z, 0,w) = − w2T(z,0,w)3+z2T(z,0,w)−T(z,0,w)2

(w3−w2)zT(z,0,w)2+wz2−(w−1)T(z,0,w)

Combinatorics shows that two are equivalent.

easy to derive

easy to guess
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Questions

Can this be done consistently and automatically?∫
e
−
(
ϕ2

2 +zϕ
4

4

)
+Jϕ

dϕ

Φ = −z∂2JΦ− 3zΦ∂JΦ− zΦ+ J,Φ = ⟨ϕ⟩J

F = 1+zF2+4z2∂zF
1−2z , F = ∂JΦJ=0

Tetravalent maps easy to derive (SD)

easy to guess birooted
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Questions

Can this be done consistently and automatically?∫
e
−
(
ϕ2

2 +zϕ
4

4

)
+Jϕ

dϕ

Φ = −z∂2JΦ− 3zΦ∂JΦ− zΦ+ J,Φ = ⟨ϕ⟩J

F = 1+zF2+4z2∂zF
1−2z , F = ∂JΦJ=0

Tetravalent maps easy to derive (SD)

easy to guess birooted

Can we deal with projections?

T = u+ zT2 + z∂uT → T |u=0= z
2 + z(T |u=0)

2 + 2z4∂zT |u=0
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Questions

Can this be done consistently and automatically?∫
e
−
(
ϕ2

2 +zϕ
4

4

)
+Jϕ

dϕ

Φ = −z∂2JΦ− 3zΦ∂JΦ− zΦ+ J,Φ = ⟨ϕ⟩J

F = 1+zF2+4z2∂zF
1−2z , F = ∂JΦJ=0

Tetravalent maps easy to derive (SD)

easy to guess birooted

Can we deal with projections?

T = u+ zT2 + z∂uT → T |u=0= z
2 + z(T |u=0)

2 + 2z4∂zT |u=0

Can we deal with systems of eqs?∫
e
−
(
ϕ2

2 +zψ
2

2 +ϕ
3

3 +ψ
3

3 +ϕψ
)
+Jϕ

dϕdψ

A = −u− z(A2 + ∂uA) + aB(z,u, v)

B = −u− z(B2 + ∂uB) + aA(z,u, v)

easy to derive (SD)

???
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Questions

Can this be done consistently and automatically?∫
e
−
(
ϕ2

2 +zϕ
4

4

)
+Jϕ

dϕ

Φ = −z∂2JΦ− 3zΦ∂JΦ− zΦ+ J,Φ = ⟨ϕ⟩J

F = 1+zF2+4z2∂zF
1−2z , F = ∂JΦJ=0

Tetravalent maps easy to derive (SD)

easy to guess birooted

Can we deal with projections?

T = u+ zT2 + z∂uT → T |u=0= z
2 + z(T |u=0)

2 + 2z4∂zT |u=0

Ubiquity of Riccati equations?
See: R. J. Martin and M. J. Kearney, “An exactly solvable self-convolutive
recurrence”, Aequationes mathematicae vol. 80, 2010

Can we deal with systems of eqs?∫
e
−
(
ϕ2

2 +zψ
2

2 +ϕ
3

3 +ψ
3

3 +ϕψ
)
+Jϕ

dϕdψ

A = −u− z(A2 + ∂uA) + aB(z,u, v)

B = −u− z(B2 + ∂uB) + aA(z,u, v)

easy to derive (SD)

???



13 F

Questions

Can this be done consistently and automatically?∫
e
−
(
ϕ2

2 +zϕ
4

4

)
+Jϕ

dϕ

Φ = −z∂2JΦ− 3zΦ∂JΦ− zΦ+ J,Φ = ⟨ϕ⟩J

F = 1+zF2+4z2∂zF
1−2z , F = ∂JΦJ=0

Tetravalent maps easy to derive (SD)

easy to guess birooted

Can we deal with projections?

T = u+ zT2 + z∂uT → T |u=0= z
2 + z(T |u=0)

2 + 2z4∂zT |u=0

Ubiquity of Riccati equations?
See: R. J. Martin and M. J. Kearney, “An exactly solvable self-convolutive
recurrence”, Aequationes mathematicae vol. 80, 2010

Thanks!

Can we deal with systems of eqs?∫
e
−
(
ϕ2

2 +zψ
2

2 +ϕ
3

3 +ψ
3

3 +ϕψ
)
+Jϕ

dϕdψ

A = −u− z(A2 + ∂uA) + aB(z,u, v)

B = −u− z(B2 + ∂uB) + aA(z,u, v)

easy to derive (SD)

???
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