
Commuting ODOs BC ideal Differential resultant Elimination ideals Factorization

Differential elimination ideals and spectral curves

Sonia L. Rueda, Universidad Politécnica de Madrid
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I will present recent and ongoing joint work
with M.A. Zurro

Algorithmic Differential Algebra and Integrability (ADAI)
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Commuting ODOs BC ideal Differential resultant Elimination ideals Factorization

The theory of commuting ODOs

[Zheglov, 2020] The theory of commuting ODOs has broad
connections with many branches of modern mathematics:

• Non-linear partial differential equations (find new exact
solutions).

• Algebra (the Dixmier or Jacobian or Poisson conjectures,
highly non-trivial and still open).

• Complex analysis. Deformation quantisation. . . .
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The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP)
Korteweg-de Vries equation modeled the solitary waves (solitons)

in shallow water.
⇕

COMMUTING ODOs
−→←− ALGEBRAIC CURVES

[Burchnall-Chaundy 1923 ] Baker, Krichever, Mumford ...
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Spectral problem

Schrödinger equation

Ψxx − u(x)Ψ = λΨ (1)

with u(x) satisfying a Korteweg de Vries (KdV) equation of the
celebrated KdV hierarchy. For instance, the classical stationary
KdV equation

uxxx − 6uux = 0.

λ spectral parameter

(Drach’s Ideology, 1919) Brehznev 2008, 2012, 2013.
Integrate (1) as an ODE to obtain a parametric solution Ψ(x ;λ)
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(Σ, ∂) ordinary differential field
field of constants C = C , characteristic 0.

u ∈ Σ

λ algebraic variable over C , ∂(λ) = 0
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Algebro-geometric Schrödinger operators

(with Morales-Ruiz, Zurro)
Given us ∈ Σ and the Schrödinger operator Ls = −∂2 + us .

Using [Goodearl, 1983]

(MRZ 2021) The following are equivalent.

1. ∃! monic operator A2s+1 of minimal order 2s + 1 such that

C(Ls) = C [Ls ,A2s+1] = {p0(Ls)+p1(Ls)A2s+1 | p0, p1 ∈ C [Ls ]}

and A2
2s+1 + R2s+1(Ls) = fs(Ls ,A2s+1) = 0, with fs ∈ C [λ, µ].

2. us is a KdV -potential of KdV level s.

Ls is called algebro-geometric.
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Stationary KdV hierarchy

{kdvn(u)}n≥1 differential polynomials in C{u} = C [u, u′, u′′, . . .]

kdv0 := u′, kdvn := R(kdvn−1), for n ≥ 1.

Recursion operator R = −1
4∂

2 + u + 1
2u

′∂−1

kdv1 = −
1

4
u′′′ +

3

2
uu′, kdv2 =

1

16
u(5) − 5

8
uu′′′ − 5

4
u′u′′ +

15

8
u2u′

Conditions on u for the existence of
A2n+1 commuting with −∂2 + u

[P2n+1,−∂2 + u] = kdvn + c1kdvn−1 + · · ·+ cnkdv0.
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KdV solitons

Families of solutions of KdVs(u, c̄
s) = 0.

Rational Rosen-Morse Elliptic

us =
s(s + 1)

x2
us =

−s(s + 1)

cosh2(x)
us = s(s + 1)℘(x ; g2, g3)

[Veselov, A.P., 2011. On Darboux-Treibich-Verdier Potentials.
Letters in Mathematical Physics, 96(1), 209-216.]
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Centralizers
Schur, Flanders, Krichever, Amitsur, Carlson, Ore....

Given L ∈ D = Σ[∂]

Z(L) = {A ∈ Σ[∂] | [L,A] = 0}

[Goodearl, 1983]

Σ differential field ⇒ Z(L) commutative domain.

• Trivial

Z(L) = C [L] =

{
s∑

i=1

aiL
i | ai ∈ C

}
• Non-trivial

Z(L) is a free C [L]-module
the cardinal of a basis divides ord(L).
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True rank pairs

(with Previato, Zurro)
Ring of differential operators D = Σ[∂]. The rank of a subset
S ⊆ D is

rk (S) = gcd{ord(L) | L ∈ S}.

Given a pair P,Q ∈ D then rk(P,Q) ≤ rkC [P,Q].

C [P,Q] =

∑
i ,j

σi ,jP
iQ j | σi ,j ∈ C

 .

P and Q is a true rank pair if equality holds, a fake rank pair
otherwise.
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Rank of L (PRZ 2019)

Maximal commutative subalgebras in Σ[∂] are centralizer.

If Z(L) ̸= C [L], we define the rank of L to be rkZ(L).

Given P,Q ∈ Z(L) then

C [P,Q] ⊆ Z(L).

If Z(L) = C [L,B] we call L, B a Burchnall-Chaundy (BC) pair.

If L, B is a BC pair then L, B is a true rank pair

rkZ(L) = rkC [L,B] = rk(L,B)
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More than Algebro-geometric ODOs
Given

f (λ, µ) = µ2 − λ3

is the BC polynomial of

• Rank 1 pair,

L2 = −∂2 +
2

x2
and P3 = ∂3 − 3

x2
∂ +

3

x3
,

P2
3 − L32 = 0

• Rank 2 pair, [Dixmier, 1968].

L4 = H2+2x and P6 = H2+
3

2
(xH+Hx) , with H = ∂2+x2.

P2
6 − L34 = 0

Σ = C (x) with ∂ = d/dx
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Centralizer ord(L) = p prime

Using [Goodearl, 1983]

Z(L) = C [L] or
Z(L) equals the free C [L]-module with basis {1,A1, . . . ,Ap−1},

Z(L) = {q0(L) + q1(L)A1 + · · ·+ qp−1(L)Ap−1 | qi ∈ C [L]}

with Ai of minimal order ≡ i(mod p)
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Computing centralizers

Given Ln ∈ Σ[∂] of order n.

If n prime then rkZ(L) = 1

• (MRZ 2020,2021) Z(L2) = C [L2,A1], with ord(A1) = 2s +1.

• (RZ 2021) Z(L3) = C [L3,A1,A2],
In some cases Z(L3) = C [L3,Ai ], for instance if ord(A2) = 2.

If n not prime then rkZ(L) ≥ 1

• (PRZ 2019) Z(L4) = C [L4,A2], with ord(A2) = 4g + 2.
with L4 in the first Weyl algebra.



Commuting ODOs BC ideal Differential resultant Elimination ideals Factorization

Computing Commuting Operators

L algebro-geometric ⇔ Z(L) ̸= C [L]

L = ∂n + un−2∂
n−2 · · ·+ u1∂ + u0 in Σ[∂]

• n = 2: u0 solutions of KdV hierarchy

• n = 3: u0, u1 solutions of Boussinesq (systems) hierarchy

• n = 4: u0, u1, u2 solutions of Krichever-Novikov (KN)
hierarchy

• · · ·
• u0, u1, . . . , un−2 solutions of the Gelfand-Dikii hierarchies.
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Centralizers in ring of pseudo-differential operators
Commutative ring of differential operators (R, ∂), whose ring of
constants is a field of zero characteristic C

R((∂−1)) =

{
n∑

i=−∞
ai∂

i | ai ∈ R, n ∈ Z

}
L ∈ R[∂], centralizer in the ring of pseudo-differential operators

Z(L) ⊂ Z((L)) = {A ∈ R((∂−1)) | [L,A] = 0}

ord(L) = n, ∃! monic pseudo-differential operator Q = L1/n.
Generalized Schur’s Theorem [Goodearl, 1983]

Z((L)) =


m∑

j=−∞
cjQ

j | cj ∈ C ,m ∈ Z


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Almost commuting basis

(with Jimenez-Pastor, Delgado, Hernandez-Heredero, Zurro)

Given A =
∑n

i=−∞ ai∂
i in R((∂−1)) then A+ =

∑n
i=0 ai∂

i .

Based on [Wilson 1985]

L ∈ R[∂], ord(L) = n,

Z((L))+ := {A+ | A ∈ Z((L))} = {B ∈ R[∂] | ord([L,B]) ≤ n − 2}.

C -vector space of almost commuting operators with basis

B(L) := {Pm := (Qm)+ | m ∈ N,Q = L1/n}
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Formal differential operators

U = {u0, . . . , un−2} differential variables over C .
Formal differential operator

L = ∂n + un−2∂
n−2 · · ·+ u1∂ + u0 ∈ C{U}[∂]

Linear algorithm based on assigning weights to U:

• Almost commuting basis of homogeneous operators

{Pm := (Qm)+ | M ≥ m ≥ 0,Q = L1/n}.

• Hierarchy Hm,j ∈ C{U}

[L,Pm] = Hm,0 + Hm,1∂ + . . .+ Hm,n−2∂
n−2.

Implementation in SAGE. Workstation MOUNTAIN, 1TB Ram.
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Spectral problem

(Σ, ∂) ordinary differential field
field of constants C = C , characteristic 0.

Given
L in Σ[∂]\C [∂]

assuming

NON-TRIVIAL CENTRALIZER Z(L)

Integrate to obtain a parametric solution Ψ(x ;λ, µ)

L(Ψ) = λΨ, B(Ψ) = µΨ

for B ∈ Z(L).
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The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP)
⇕

COMMUTING ODOs
−→←− ALGEBRAIC CURVES

[Burchnall-Chaundy 1923 ] Baker, Krichever, Mumford ...

DIRECT PROBLEM −→
Implicitization

Inverse problem ←−
Parametrization

Beret’s conjecture [Guo, Zheglov 2022].
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ADAI Goals

Algorithmic Differential Algebra and Integrability (ADAI)

Develop Picard-Vessiot (PV) theory for spectral problems.
Use effective differential algebra to develop symbolic algorithms:

• Parametric factorization of algebro-geometric ODOs.

• Compute integrable hierarchies and almost commuting basis.

• Compute new algebro-geometric ODOs, order ≥ 3.
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(with M.A. Zurro)
Computing defining ideals of space spectral curves for

algebro-geometric third order ODOs. arXiv:2311.09988, 2023.
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BC Ideal of a pair

Commuting P and Q in Σ[∂]

eP,Q : C [λ, µ]→ Σ[∂]

homomorphism of C -algebras defined by

g(P,Q) := eP,Q(g) = eP,Q(σi ,jλ
iµj) = σi ,jP

iQ j .

Define the Burchnall-Chaundy BC ideal of the pair P and Q as

BC(P,Q) := Ker(eP,Q) = {g ∈ C [λ, µ] | g(P,Q) = 0}.

Its elements are BC polynomials
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Spectral curve of a pair

Commuting P and Q in Σ[∂]\C [∂]

Z(P) finitely generated C [P]-module ⇒ BC(P,Q) non zero ideal.

Σ[∂] domain ⇒ BC(P,Q) prime ideal

Spectral curve:

ΓP,Q :=V (BC(P,Q))

Coordinate ring of ΓP,Q

C [λ, µ]

BC(P,Q)
≃ C [P,Q].
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Spectral curve of a pair

There exists an irreducible polynomial f ∈ C [λ, µ] such that

BC(P,Q) = (f )

ΓP,Q =
{
(λ0, µ0) ∈ C 2 | f (λ0, µ0) = 0

}
.

How do we compute f ?
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Differential resultant of 2 ODOs

Defined by Ritt (1932), Berkovich and Tsirulik (1986) and studied
by Chardin (1991), Li (1998), McCallum and Winkler (2018).

(D, ∂) differential domain, with fraction field K.

P,Q ∈ D[∂], ord(P) = n, ord(Q) = m

D := K[∂] is a (left and right) Euclidean domain. K-linear map

S : Dn ⊕Dm → Dn+m

(C ,D) 7→ CP + DQ.

Fix K-basis {∂ℓ, . . . , ∂, 1} for Dℓ
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Differential resultant of 2 ODOs

Sylvester matrix S(P,Q), coefficient matrix of

{∂m−1P, . . . , ∂P,P, ∂n−1Q, . . . , ∂Q,Q},

squared matrix of size n +m and entries in D.

Differential (Sylvester) resultant of P and Q,

∂Res(P,Q):= det(S(P,Q))

= C0P + D0Q ∈ Im(S) ∩ D

with ord(C0) = m − 1 and ord(D0) = n − 1.

∂Res(P,Q) ∈ (P,Q) ∩ D

Im(S) ⊆ (P,Q) = K[∂]P +K[∂]Q.
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Example

P = a2∂
2 + a1∂ + a0, Q = b3∂

3 + b2∂
2 + b1∂ + b0

∂Res(P,Q) =

∣∣∣∣∣∣∣∣∣∣
a2 a1 + 2∂(a2) a0 + 2∂(a1) + ∂2(a2) 2∂(a0) + ∂2(a1) ∂2(a0)
0 a2 a1 + ∂(a2) a0 + ∂(a1) ∂(a0)
0 0 a2 a1 a0
b3 b2 + ∂(b3) b1 + ∂(b2) b0 + ∂(b1) ∂(b0)
0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣
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Differential Resultant Theorem I

Let us consider P,Q ∈ D[∂] ⊂ K[∂].

If gcrd(P,Q) ∈ K, we call P and Q right coprime.

The following statements are equivalent:

1. ∂Res(P,Q) ̸= 0.

2. Im(S) ∩ D ̸= 0.

3. P and Q are right coprime in K[∂].

If ∂Res(P,Q) ̸= 0 then the elimination ideal (P,Q)∩D is nonzero.
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Poisson’s Formula

(K, ∂) differential field, field of constants C = C and of zero
characteristic.

P,Q ∈ D[∂] ⊂ K[∂].
Picard-Vessiot extensions (EP , ∂P) and (EQ , ∂Q) of K for P(y) = 0
and Q(y) = 0 resp., whose field of constants is C .

ord(P) = n, ord(Q) = m, leading coefficients an and bm.
Given fundamental systems of solutions ψ1, . . . , ψn of P(y) = 0 in
EP and ϕ1, . . . , ϕm of Q(y) = 0 in EQ then

∂Res(P,Q) = amn
detW (Q(ψi ))

detW (ψi )
= (−1)mnbnm

detW (P(ϕi ))

detW (ϕi )
.
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Differential Resultant Theorem II

Let E be a Picard-Vessiot extension of K for P(y) = 0 (or Q(y) =
0). Then the system

P(y) = 0 , Q(y) = 0

has a nontrivial solution in E if and only if ∂Res(P,Q) = 0.

By Poisson’s formula,

∂Res(P,Q) = 0 if and only if det(W (Q(ψi ))) = 0

Equivalent to the existence of a nonzero ψ =
∑

i ciψi in
V = ⊕iCψi ⊂ EP such that Q(ψ) = 0.
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Computing BC ideals

Given (monic) P, Q ∈ Σ[∂], then P − λ, Q − µ in D = Σ[λ, µ].

ord(P) = n, ord(Q) = m

h(λ, µ) =∂Res(P − λ,Q − µ) = µn − λm + ...

a non trivial polynomial in Σ[λ, µ]

Generalize [Wilson, 1985], [Previato, 1991].

(RZ 2023) Arbitrary (Σ, ∂), Const(Σ) = C = C .

If [P,Q] = 0 then h(λ, µ) ∈ BC(P,Q).

1. Proof by Poisson’s Formula h(λ, µ) ∈ C [λ, µ].

2. Proof by elimination ideals h(P,Q) = 0.
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Rosen-Morse potential u1 =
−2

cosh2(x)

L1 = −∂2 + u1, [L1,A3] = KdV0(u1) +KdV1(u1) = 0

f1(λ, µ) = −µ2 − λ(λ− 1)2 =

= ∂Res(L1 − λ,A3 − µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 −2
(cosh(x))2 − λ 8 sinh(x)

(cosh(x))3
4

(cosh(x))2 − 12 (sinh(x))2

(cosh(x))4

0 −1 0 −2
(cosh(x))2 − λ 4 sinh(x)

(cosh(x))3

0 0 −1 0 −2
(cosh(x))2 − λ

−1 0 −3
(cosh(x))2 + 1 9 sinh(x)

(cosh(x))3
− µ 3

(cosh(x))2 − 9 (sinh(x))2

(cosh(x))4

0 −1 0 −3
(cosh(x))2 + 1 3 sinh(x)

(cosh(x))3
− µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Elimination ideals

Left ideal

(P − λ,Q − µ) = {C (P − λ) + D(Q − µ) | C ,D ∈ Σ[λ, µ][∂]}

Two sided ideals

E(P − λ,Q − µ) := (P − λ,Q − µ) ∩ Σ[λ, µ].

and
EC (P − λ,Q − µ) := (P − λ,Q − µ) ∩ C [λ, µ].

By definition of the differential resultant

h(λ, µ) = ∂Res(P − λ,Q − µ) ∈ EC (P − λ,Q − µ).

Thus both elimination ideals are nonzero.
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Elimination ideals

Commuting P and Q in Σ[∂]\C [∂], both of positive order,

f =
√
h, with h = ∂Res(P − λ,Q − µ).

(RZ 2023)

1. The radical of the elimination ideal EC (P − λ,Q − µ) equals

BC(P,Q) = (f ).

2. The radical of the elimination ideal E(P −λ,Q−µ) equals [f ].

Recall f ∈ C [λ, µ],

(f ) = C [λ, µ]f and [f ] = Σ[λ, µ]f differential ideal.
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Σ-linear evaluation map

Σ[λ, µ] as a Σ-vector space with basis {λiµj}

εP,Q : Σ[λ, µ]→ Σ[∂], defined by

εP,Q

∑
i ,j

σi ,jλ
iµj

 =
∑
i ,j

σi ,jeP,Q

(
λiµj

)
.

given g ∈ Σ[λ, µ] denote g(P,Q) := εP,Q(g)

Ker(εP,Q) = {g ∈ Σ[λ, µ] | g(P,Q) = 0}.

Restriction of εP,Q to C [λ, µ] is the ring homomorphism eP,Q , and

BC(P,Q) = Ker(eP,Q) = Ker(εP,Q) ∩ C [λ, µ].
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Σ-linear evaluation map

Commuting P and Q in Σ[∂]\C [∂], both of positive order

E(P − λ,Q − µ) ⊆ Ker(εP,Q)

⇓

h(P,Q) = 0

that is h(λ, µ) = ∂Res(P − λ,Q − µ) ∈ BC(P,Q)
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Σ-linear evaluation map

Given g in E(P − λ,Q − µ)

g(λ, µ) = C (P − λ) + D(Q − µ), C ,D ∈ Σ[λ, µ][∂].

Given λ0 ∈ C , ∃µ0 ∈ C such that h(λ0, µ0) = 0.
By the Differential Resultant Theorem ∃ψλ0 such that

P(ψλ0) = λ0ψλ0 ,Q(ψλ0) = µ0ψλ0

Ψ = {ψλ0 | λ0 ∈ C} infinite set of eigenfunctions

g(P,Q)(ψλ0) = g(λ0, µ0)·ψλ0 = C 0(P−λ0)(ψλ0)+D0(Q−µ0)(ψλ0) = 0

Ψ included in the C -linear space of solutions of g(P,Q)(y) = 0.
Then g(P,Q) is the zero operator.
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Σ-linear evaluation map

P and Q in Σ[∂]\C [∂], both of positive order

E(P − λ,Q − µ) ⊆ Ker(εP,Q)

As a consequence h = ∂Res(P − λ,Q − µ) ∈ EC (P − λ,Q − µ)
belongs to

BC(P,Q) = Ker(εP,Q) ∩ C [λ, µ]

f =
√
h

Ker(εP,Q) = [f ] is a prime differential ideal in Σ[λ, µ]
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Elimination ideals

Commuting P and Q in Σ[∂]\C [∂], both of positive order,

f =
√
h, with h = ∂Res(P − λ,Q − µ).

(RZ 2023)

1. The radical of the elimination ideal EC (P − λ,Q − µ) equals

BC(P,Q) = (f ).

2. The radical of the elimination ideal E(P −λ,Q−µ) equals [f ].

Recall f ∈ C [λ, µ],

(f ) = C [λ, µ]f and [f ] = Σ[λ, µ]f differential ideal.
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Spectral curve of L

Generalized Schur’s Theorem [Goodearl, 1983]

Z((L)) =


m∑

j=−∞
cjQ

j | cj ∈ C ,m ∈ Z


Commutative differential domain

Z(L) = Z((L)) ∩ Σ[∂]

Spec(Z(L)) is an abstract algebraic curve Γ

Compute the defining ideal of Γ
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BC ideal of L. CASE I

Given L ∈ Σ[∂]\C [∂], with Z(L) ̸= C [L].

CASE I: Z(L) = C [L,A].

Define then Burchnall-Chaundy ideal of L to be the

BC(L) := BC(L,A).

Examples

• (MRZ2020) If ord(L) = 2 then Z(L) = C [L,A] with A of odd
order.

• (PRZ2019) If ord(L) = 4 and L belongs to the first Weyl
algebra Z(L) = C [L,A] with A of even order ≡ 2 (mod 4).
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Spectral curve of L. CASE I

Define the spectral curve of L to be

Γ := ΓL,A = V (BC(L,A))

whose coordinate ring is

C [λ, µ]

BC(L)
≃ Z(L) = C [L,A]

isomorphic to the centralizer of L.
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BC ideal of L. CASE II

Given L ∈ Σ[∂]\C [∂], with Z(L) ̸= C [L].

CASE II: Z(L) ̸= C [L,A].

ord(L) = 3. Z(L) is a free C [L]-module of rank 3.

{1,A1,A2} basis of Z(L) as a C [L]-module. Each Ai is a monic
operator in Z(L)\C [L] of minimal order

oi := ord(Ai ) ≡ i (mod 3).

Z(L) = C [L]⊕ C [L]A1 ⊕ C [L]A2 = C [L,A1,A2]
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BC ideal of L. CASE II
ord(L) = 3.

eL : C [λ, µ1, µ2]→ Σ[∂]

eP,Q(λ) = L, eP,Q(µ1) = A1, eP,Q(µ2) = A2.

Image of eL,
Z(L) = C [L,A1,A2]

Given g ∈ C [λ, µ1, µ2] denote

g(L,A1,A2) := eL(g).

BC-ideal of L

BC(L) := Ker(eL) = {g ∈ C [λ, µ1, µ2] | g(L,A1,A2) = 0}.

Call the elements of the BC ideal BC-polynomials.
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Spectral curve of L

ord(L) = 3 in Σ[∂], Z(L) = C [L,A1,A2], ord(Ai ) = 3ni + i{
fi = ∂Res(L− λ,Ai − µi ), i = 1, 2
f r3 = ∂Res(A1 − µ1,A2 − µ2)

are irreducible in C [λ, µ1, µ2] since

BC(L,Ai ) = (fi ) and BC (A1,A2) = (f3)

(RZ 2023) BC(L) is a prime ideal, affine algebraic curve in C 3

Γ = V (BC(L))

Z(L) ≃ C [Γ] =
C [λ, µ1, µ2]

BC(L)

BC(L) = (f1, f2, f3)
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Spectral curves for third order operators

If a non constant coefficient operator A2 of order 2 belongs to
Z(L) then

Z(L) = C(A2) = C [L,A2] ≃
C [λ, µ]

(f2)

which is isomorphic to the ring of the plane algebraic curve.

In this case the operator of minimal order 3n1 + 1 in Z(L) is A2
2,

implying that f3 = (µ− γ2)2.
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Planar spectral curve

[Dickson, Gesztesy, Unterkofler, 1999] Σ = C(x), ∂ = d/dx

L = ∂3 − 15

x2
∂ +

15

x3
+ h .

Z(L) = C [L,A1,A2] , ord(A1) = 4, ord(A2) = 8.

We compute the generators of the ideal BC(L) = (f1, f2, f3)
using differential resultants

f1 =− µ31 + (λ− h)4 , f2 = −µ32 + (λ− h)8, f 43 = (µ2 − µ21)4.

Since f3 is the BC polynomial of A1 and A2 we have A2 = A2
1,

implying that

Z(L) = C [L,A1] ≃
C [λ, µ1]

(f1)
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Non-planar spectral curves
(RZ 2022) Σ = C(x), ∂ = d/dx

L = ∂3 − 6

x2
∂ +

12

x3
+ h , h ∈ C.

Z(L) = C[L,A1,A2] with ord(A1) = 4, ord(A2) = 5.
Using differential resultants we compute

f1 = −µ3 + (λ− h)4, f2 = −γ3 + (λ− h)5, f3 = γ4 − µ5.

BC(L) = (f1, f2, f3) is a prime ideal.

First explicit example of a non-planar spectral curve.

The curve defined by BC(L) is a non-planar curve Γ parametrized by

ℵ(τ) = (h − τ3, τ4,−τ5), τ ∈ C.
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Σ = C(z = ex),∂ = d/dx

L = ∂3 +
24z

(z + 1)2
∂ +
−48z(z − 1)

(z + 1)3
, ord(A1) = 4, ord(A2) = 5

Non-planar spectral curve Γ defined by the prime ideal

BC(L) = (f1, f2, f3)

f1 =∂Res(L− λ,A1 − µ1) = 1 + λ4 +
44

27
λ2 − µ31 − 4λ2µ1 + 3µ21 − 3µ1

f2 =∂Res(L− λ,A2 − µ2) =
λ5 + 16(µ2 − 1)λ2/3 + (4096λ)/729− (µ2 − 1)3

f3 =∂Res(A1 − µ1,A2 − µ2) = ...
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New coefficient field
P,Q ∈ Σ[∂]

[P,Q] = 0⇒ ∂Res(P − λ,Q − µ) = f (λ, µ)r ∈ C [λ, µ].

As differential operators in Σ[λ, µ][∂],

∂Res(P − λ,Q − µ) ̸= 0⇒ gcrd(P − λ,Q − µ) = 1.

ΓP,Q := {(λ, µ) ∈ C 2 | f (λ, µ) = 0}

Σ(ΓP,Q) = Fr

(
Σ[λ, µ]

[f ]

)
As differential operators in Σ(ΓP,Q)[∂],

∂Res(P − λ,Q − µ) = 0⇒ gcrd(P − λ,Q − µ) ̸= 1.
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New coefficient field

[BC(L)] is a prime differential ideal of Σ[λ, µ1, µ2]

Differential domain

Σ[Γ] =
Σ[λ, µ1, µ2]

[BC(L)]

Its fraction field
Σ(Γ)

is a differential field with the extended derivation.
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Intrinsic right factor

ord(L) = 3 in Σ[∂], Z(L) = C [L,A1,A2]

The greatest common right divisor in Σ(Γ)[∂]

∂ + ϕ = gcrd(L− λ,A1 − µ1,A2 − µ2)

equals

gcrd(L− λ,A1 − µ1) = gcrd(L− λ,A2 − µ2)
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Spectral Picard-Vessiot fields

(MRZ 2021) for Schrödinger operators

Definition, existence and computation of spectral Picard-Vessiot
fields

• Differential field extension of Σ(Γ), the minimal extension
containing all the solutions.

• Requires a full factorization of L− λ over Σ(Γ)
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• (MRZ 2020) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro.
Factorization of KdV Schrödinger operators using differential
subresultants. Adv. Appl. Math., 120:102065, 2020.

• (MRZ 2021) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro.
Spectral Picard-Vessiot fields for algebro-geometric
Schrödinger operators . Annales de l’Institut Fourier, Vol. 71, No.
3, pp. 1287-1324, 2021.

• (PRZ 2019) E. Previato, S.L. Rueda, and M.A. Zurro. Commuting
Ordinary Differential Operators and the Dixmier Test. SIGMA
Symmetry Integrability Geom. Methods Appl., 15(101):23 pp.,
2019.

• (RZ 2021) S.L. Rueda and M.A. Zurro. Factoring Third Order
Ordinary Differential Operators over Spectral Curves. See
arXiv:2102.04733v1, 2021.
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