Differential elimination ideals and spectral curves

Sonia L. Rueda, Universidad Politécnica de Madrid

Recent Trends in Computer Algebra 2023
Elimination for Functional Equations
Paris, 11 December 2023

I will present recent and ongoing joint work with M.A. Zurro

Algorithmic Differential Algebra and Integrability (ADAI)

Contents

The theory of commuting ODOs
Algebro-geometric Schrödinger operators
Centralizers
Computing Commuting Operators
Burchnall-Chaundy ideal of a pair
Differential resultant of two ODOs
Elimination ideals
Factorization
$B C$ ideal of an operator
Coefficient field for factorization

Contents

The theory of commuting ODOs
Algebro-geometric Schrödinger operators
Centralizers
Computing Commuting Operators
Burchnall-Chaundy ideal of a pair
Differential resultant of two ODOs
Elimination ideals
Factorization
BC ideal of an operator
Coefficient field for factorization

The theory of commuting ODOs

[Zheglov, 2020] The theory of commuting ODOs has broad connections with many branches of modern mathematics:

- Non-linear partial differential equations (find new exact solutions).
- Algebra (the Dixmier or Jacobian or Poisson conjectures, highly non-trivial and still open).
- Complex analysis. Deformation quantisation. ...

The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP) Korteweg-de Vries equation modeled the solitary waves (solitons) in shallow water.
\downarrow
COMMUTING ODOs \rightleftarrows ALGEBRAIC CURVES
[Burchnall-Chaundy 1923] Baker, Krichever, Mumford ...

Spectral problem

Schrödinger equation

$$
\begin{equation*}
\Psi_{x x}-u(x) \Psi=\lambda \Psi \tag{1}
\end{equation*}
$$

with $u(x)$ satisfying a Korteweg de Vries (KdV) equation of the celebrated KdV hierarchy. For instance, the classical stationary $K d V$ equation

$$
\begin{gathered}
u_{x x x}-6 u u_{x}=0 . \\
\lambda \text { spectral parameter }
\end{gathered}
$$

(Drach's Ideology, 1919) Brehznev 2008, 2012, 2013.
Integrate (1) as an ODE to obtain a parametric solution $\Psi(x ; \lambda)$

(Σ, ∂) ordinary differential field field of constants $C=\bar{C}$, characteristic 0 .

$$
u \in \Sigma
$$

λ algebraic variable over $C, \partial(\lambda)=0$

Algebro-geometric Schrödinger operators

(with Morales-Ruiz, Zurro)
Given $u_{s} \in \Sigma$ and the Schrödinger operator $L_{s}=-\partial^{2}+u_{s}$.
Using [Goodearl, 1983]
(MRZ 2021) The following are equivalent.

1. \exists ! monic operator $A_{2 s+1}$ of minimal order $2 s+1$ such that

$$
\begin{aligned}
& \mathcal{C}\left(L_{s}\right)=C\left[L_{s}, A_{2 s+1}\right]=\left\{p_{0}\left(L_{s}\right)+p_{1}\left(L_{s}\right) A_{2 s+1} \mid p_{0}, p_{1} \in C\left[L_{s}\right]\right\} \\
& \text { and } A_{2 s+1}^{2}+R_{2 s+1}\left(L_{s}\right)=f_{s}\left(L_{s}, A_{2 s+1}\right)=0, \text { with } f_{s} \in C[\lambda, \mu] .
\end{aligned}
$$

2. u_{s} is a $K d V$-potential of $K d V$ level s.
L_{s} is called algebro-geometric.

Stationary KdV hierarchy

$\left\{k d v_{n}(u)\right\}_{n \geq 1}$ differential polynomials in $C\{u\}=C\left[u, u^{\prime}, u^{\prime \prime}, \ldots\right]$

$$
k d v_{0}:=u^{\prime}, \quad k d v_{n}:=\mathcal{R}\left(k d v_{n-1}\right), \text { for } n \geq 1
$$

Recursion operator $\mathcal{R}=-\frac{1}{4} \partial^{2}+u+\frac{1}{2} u^{\prime} \partial^{-1}$

$$
\begin{gathered}
k d v_{1}=-\frac{1}{4} u^{\prime \prime \prime}+\frac{3}{2} u u^{\prime}, \quad k d v_{2}=\frac{1}{16} u^{(5)}-\frac{5}{8} u u^{\prime \prime \prime}-\frac{5}{4} u^{\prime} u^{\prime \prime}+\frac{15}{8} u^{2} u^{\prime} \\
\text { Conditions on } u \text { for the existence of } \\
A_{2 n+1} \text { commuting with }-\partial^{2}+u \\
{\left[P_{2 n+1},-\partial^{2}+u\right]=k d v_{n}+c_{1} k d v_{n-1}+\cdots+c_{n} k d v_{0} .}
\end{gathered}
$$

KdV solitons

Families of solutions of $\operatorname{KdV}_{s}\left(u, \bar{c}^{s}\right)=0$.

$$
\begin{array}{c|c|c}
\text { Rational } & \text { Rosen-Morse } & \text { Elliptic } \\
u_{s}=\frac{s(s+1)}{x^{2}} & u_{s}=\frac{-s(s+1)}{\cosh ^{2}(x)} & u_{s}=s(s+1) \wp\left(x ; g_{2}, g_{3}\right)
\end{array}
$$

[Veselov, A.P., 2011. On Darboux-Treibich-Verdier Potentials.
Letters in Mathematical Physics, 96(1), 209-216.]

Centralizers

Schur, Flanders, Krichever, Amitsur, Carlson, Ore....
Given $L \in \mathcal{D}=\Sigma[\partial]$

$$
\mathcal{Z}(L)=\{A \in \Sigma[\partial] \mid[L, A]=0\}
$$

[Goodearl, 1983]
Σ differential field $\Rightarrow \mathcal{Z}(L)$ commutative domain.

- Trivial

$$
\mathcal{Z}(L)=C[L]=\left\{\sum_{i=1}^{s} a_{i} L^{i} \mid a_{i} \in C\right\}
$$

- Non-trivial
$\mathcal{Z}(L)$ is a free $C[L]$-module the cardinal of a basis divides ord (L).

True rank pairs

(with Previato, Zurro)
Ring of differential operators $\mathcal{D}=\Sigma[\partial]$. The rank of a subset $\mathcal{S} \subseteq \mathcal{D}$ is

$$
\operatorname{rk}(\mathcal{S})=\operatorname{gcd}\{\operatorname{ord}(L) \mid L \in \mathcal{S}\}
$$

Given a pair $P, Q \in \mathcal{D}$ then $\operatorname{rk}(P, Q) \leq \operatorname{rk} C[P, Q]$.

$$
C[P, Q]=\left\{\sum_{i, j} \sigma_{i, j} P^{i} Q^{j} \mid \sigma_{i, j} \in C\right\}
$$

P and Q is a true rank pair if equality holds, a fake rank pair otherwise.

Rank of L(PRZ 2019)

Maximal commutative subalgebras in $\Sigma[\partial]$ are centralizer.
If $\mathcal{Z}(L) \neq C[L]$, we define the rank of L to be $\operatorname{rk} \mathcal{Z}(L)$.
Given $P, Q \in \mathcal{Z}(L)$ then

$$
C[P, Q] \subseteq \mathcal{Z}(L)
$$

If $\mathcal{Z}(L)=C[L, B]$ we call L, B a Burchnall-Chaundy $(B C)$ pair.
If L, B is a $B C$ pair then L, B is a true rank pair

$$
\operatorname{rk} \mathcal{Z}(L)=\operatorname{rk} C[L, B]=\operatorname{rk}(L, B)
$$

More than Algebro-geometric ODOs

Given

$$
f(\lambda, \mu)=\mu^{2}-\lambda^{3}
$$

is the $B C$ polynomial of

- Rank 1 pair,

$$
\begin{gathered}
L_{2}=-\partial^{2}+\frac{2}{x^{2}} \text { and } P_{3}=\partial^{3}-\frac{3}{x^{2}} \partial+\frac{3}{x^{3}}, \\
P_{3}^{2}-L_{2}^{3}=0
\end{gathered}
$$

- Rank 2 pair, [Dixmier, 1968].

$$
\begin{aligned}
L_{4}=H^{2}+2 x \text { and } P_{6}= & H^{2}+\frac{3}{2}(x H+H x), \text { with } H=\partial^{2}+x^{2} . \\
& P_{6}^{2}-L_{4}^{3}=0
\end{aligned}
$$

$\Sigma=C(x)$ with $\partial=d / d x$

Centralizer $\operatorname{ord}(L)=p$ prime

Using [Goodearl, 1983]
$\mathcal{Z}(L)=C[L]$ or
$\mathcal{Z}(L)$ equals the free $C[L]$-module with basis $\left\{1, A_{1}, \ldots, A_{p-1}\right\}$,

$$
\mathcal{Z}(L)=\left\{q_{0}(L)+q_{1}(L) A_{1}+\cdots+q_{p-1}(L) A_{p-1} \mid q_{i} \in C[L]\right\}
$$

with A_{i} of minimal order $\equiv i(\bmod p)$

Computing centralizers

Given $L_{n} \in \Sigma[\partial]$ of order n.
If n prime then $\operatorname{rk} \mathcal{Z}(L)=1$

- (MRZ 2020,2021) $\mathcal{Z}\left(L_{2}\right)=C\left[L_{2}, A_{1}\right]$, with $\operatorname{ord}\left(A_{1}\right)=2 s+1$.
- (RZ 2021) $\mathcal{Z}\left(L_{3}\right)=C\left[L_{3}, A_{1}, A_{2}\right]$, In some cases $\mathcal{Z}\left(L_{3}\right)=C\left[L_{3}, A_{i}\right]$, for instance if $\operatorname{ord}\left(A_{2}\right)=2$.
If n not prime then $\operatorname{rk} \mathcal{Z}(L) \geq 1$
- (PRZ 2019) $\mathcal{Z}\left(L_{4}\right)=C\left[L_{4}, A_{2}\right]$, with $\operatorname{ord}\left(A_{2}\right)=4 g+2$. with L_{4} in the first Weyl algebra.

Computing Commuting Operators

$$
\begin{array}{r}
L \text { algebro-geometric } \Leftrightarrow \mathcal{Z}(L) \neq C[L] \\
L=\partial^{n}+u_{n-2} \partial^{n-2} \cdots+u_{1} \partial+u_{0} \text { in } \Sigma[\partial]
\end{array}
$$

- $n=2: u_{0}$ solutions of KdV hierarchy
- $n=3: u_{0}, u_{1}$ solutions of Boussinesq (systems) hierarchy
- $n=4: u_{0}, u_{1}, u_{2}$ solutions of Krichever-Novikov (KN) hierarchy
- $u_{0}, u_{1}, \ldots, u_{n-2}$ solutions of the Gelfand-Dikii hierarchies.

Centralizers in ring of pseudo-differential operators

Commutative ring of differential operators (R, ∂), whose ring of constants is a field of zero characteristic C

$$
R\left(\left(\partial^{-1}\right)\right)=\left\{\sum_{i=-\infty}^{n} a_{i} \partial^{i} \mid a_{i} \in R, n \in \mathbb{Z}\right\}
$$

$L \in R[\partial]$, centralizer in the ring of pseudo-differential operators

$$
\mathcal{Z}(L) \subset \mathcal{Z}((L))=\left\{A \in R\left(\left(\partial^{-1}\right)\right) \mid[L, A]=0\right\}
$$

$\operatorname{ord}(L)=n$, \exists ! monic pseudo-differential operator $Q=L^{1 / n}$. Generalized Schur's Theorem [Goodearl, 1983]

$$
\mathcal{Z}((L))=\left\{\sum_{j=-\infty}^{m} c_{j} Q^{j} \mid c_{j} \in C, m \in \mathbb{Z}\right\}
$$

Almost commuting basis

(with Jimenez-Pastor, Delgado, Hernandez-Heredero, Zurro)
Given $A=\sum_{i=-\infty}^{n} a_{i} \partial^{i}$ in $R\left(\left(\partial^{-1}\right)\right)$ then $A_{+}=\sum_{i=0}^{n} a_{i} \partial^{i}$.
Based on [Wilson 1985]
$L \in R[\partial], \operatorname{ord}(L)=n$,
$\mathcal{Z}((L))_{+}:=\left\{A_{+} \mid A \in \mathcal{Z}((L))\right\}=\{B \in R[\partial] \mid \operatorname{ord}([L, B]) \leq n-2\}$.
C-vector space of almost commuting operators with basis

$$
\mathcal{B}(L):=\left\{P_{m}:=\left(Q^{m}\right)_{+} \mid m \in \mathbb{N}, Q=L^{1 / n}\right\}
$$

Formal differential operators

$U=\left\{u_{0}, \ldots, u_{n-2}\right\}$ differential variables over C.
Formal differential operator

$$
L=\partial^{n}+u_{n-2} \partial^{n-2} \cdots+u_{1} \partial+u_{0} \in C\{U\}[\partial]
$$

Linear algorithm based on assigning weights to U :

- Almost commuting basis of homogeneous operators

$$
\left\{P_{m}:=\left(Q^{m}\right)_{+} \mid M \geq m \geq 0, Q=L^{1 / n}\right\}
$$

- Hierarchy $H_{m, j} \in C\{U\}$

$$
\left[L, P_{m}\right]=H_{m, 0}+H_{m, 1} \partial+\ldots+H_{m, n-2} \partial^{n-2} .
$$

Implementation in SAGE. Workstation MOUNTAIN, 1TB Ram.

Spectral problem

(Σ, ∂) ordinary differential field
field of constants $C=\bar{C}$, characteristic 0

Given

$$
L \text { in } \Sigma[\partial] \backslash C[\partial]
$$

assuming

NON-TRIVIAL CENTRALIZER $\mathcal{Z}(L)$

Integrate to obtain a parametric solution $\Psi(x ; \lambda, \mu)$

$$
L(\Psi)=\lambda \Psi, \quad B(\Psi)=\mu \Psi
$$

for $B \in \mathcal{Z}(L)$.

The theory of commuting ODOs

Non-linear differential equations (KdV, Boussinesq, KN...KP)

COMMUTING ODOs \rightleftarrows ALGEBRAIC CURVES

[Burchnall-Chaundy 1923] Baker, Krichever, Mumford ...

DIRECT PROBLEM \longrightarrow
Implicitization
Inverse problem \qquad
Parametrization
Beret's conjecture [Guo, Zheglov 2022].

ADAI Goals

Algorithmic Differential Algebra and Integrability (ADAI)
Develop Picard-Vessiot (PV) theory for spectral problems.
Use effective differential algebra to develop symbolic algorithms:

- Parametric factorization of algebro-geometric ODOs.
- Compute integrable hierarchies and almost commuting basis.
- Compute new algebro-geometric ODOs, order ≥ 3.
(with M.A. Zurro)
Computing defining ideals of space spectral curves for algebro-geometric third order ODOs. arXiv:2311.09988, 2023.

Contents

The theory of commuting ODOs Algebro-geometric Schrödinger operators Centralizers
Computing Commuting Operators
Burchnall-Chaundy ideal of a pair

Differential resultant of two ODOs

Elimination ideals

Factorization
BC ideal of an operator
Coefficient field for factorization

BC Ideal of a pair

Commuting P and Q in $\Sigma[\partial]$

$$
e_{P, Q}: C[\lambda, \mu] \rightarrow \Sigma[\partial]
$$

homomorphism of C-algebras defined by

$$
g(P, Q):=e_{P, Q}(g)=e_{P, Q}\left(\sigma_{i, j} \lambda^{i} \mu^{j}\right)=\sigma_{i, j} P^{i} Q^{j}
$$

Define the Burchnall-Chaundy BC ideal of the pair P and Q as

$$
\operatorname{BC}(P, Q):=\operatorname{Ker}\left(e_{P, Q}\right)=\{g \in C[\lambda, \mu] \mid g(P, Q)=0\} .
$$

Its elements are BC polynomials

Spectral curve of a pair

Commuting P and Q in $\Sigma[\partial] \backslash C[\partial]$
$\mathcal{Z}(P)$ finitely generated $C[P]$-module $\Rightarrow \mathrm{BC}(P, Q)$ non zero ideal.
$\Sigma[\partial]$ domain $\Rightarrow \mathrm{BC}(P, Q)$ prime ideal
Spectral curve:

$$
\Gamma_{P, Q}:=V(\mathrm{BC}(P, Q))
$$

Coordinate ring of $\Gamma_{P, Q}$

$$
\frac{C[\lambda, \mu]}{\operatorname{BC}(P, Q)} \simeq C[P, Q] .
$$

Spectral curve of a pair

There exists an irreducible polynomial $f \in C[\lambda, \mu]$ such that

$$
\begin{gathered}
\operatorname{BC}(P, Q)=(f) \\
\Gamma_{P, Q}=\left\{\left(\lambda_{0}, \mu_{0}\right) \in C^{2} \mid f\left(\lambda_{0}, \mu_{0}\right)=0\right\}
\end{gathered}
$$

How do we compute f ?

Contents

The theory of commuting ODOs Algebro-geometric Schrödinger operators Centralizers
Computing Commuting Operators
Burchnall-Chaundy ideal of a pair
Differential resultant of two ODOs

Elimination ideals
Factorization
BC ideal of an operator
Coefficient field for factorization

Differential resultant of 2 ODOs

Defined by Ritt (1932), Berkovich and Tsirulik (1986) and studied by Chardin (1991), Li (1998), McCallum and Winkler (2018).
(\mathbb{D}, ∂) differential domain, with fraction field \mathbb{K}.
$P, Q \in \mathbb{D}[\partial], \operatorname{ord}(P)=n, \operatorname{ord}(Q)=m$
$\mathcal{D}:=\mathbb{K}[\partial]$ is a (left and right) Euclidean domain. \mathbb{K}-linear map

$$
\begin{aligned}
S: \mathcal{D}_{n} \oplus \mathcal{D}_{m} & \rightarrow \mathcal{D}_{n+m} \\
(C, D) & \mapsto C P+D Q .
\end{aligned}
$$

Fix \mathbb{K}-basis $\left\{\partial^{\ell}, \ldots, \partial, 1\right\}$ for \mathcal{D}_{ℓ}

Differential resultant of 2 ODOs

Sylvester matrix $S(P, Q)$, coefficient matrix of

$$
\left\{\partial^{m-1} P, \ldots, \partial P, P, \partial^{n-1} Q, \ldots, \partial Q, Q\right\},
$$

squared matrix of size $n+m$ and entries in \mathbb{D}.
Differential (Sylvester) resultant of P and Q,

$$
\begin{aligned}
\partial \operatorname{Res}(P, Q): & =\operatorname{det}(S(P, Q)) \\
& =C_{0} P+D_{0} Q \in \operatorname{Im}(S) \cap \mathbb{D}
\end{aligned}
$$

with $\operatorname{ord}\left(C_{0}\right)=m-1$ and $\operatorname{ord}\left(D_{0}\right)=n-1$.

$$
\partial \operatorname{Res}(P, Q) \in(P, Q) \cap \mathbb{D}
$$

$\operatorname{Im}(S) \subseteq(P, Q)=\mathbb{K}[\partial] P+\mathbb{K}[\partial] Q$.

Example

$$
\begin{gathered}
P=a_{2} \partial^{2}+a_{1} \partial+a_{0}, Q=b_{3} \partial^{3}+b_{2} \partial^{2}+b_{1} \partial+b_{0} \\
\partial \operatorname{Res}(P, Q)= \\
\left|\begin{array}{ccccc}
a_{2} & a_{1}+2 \partial\left(a_{2}\right) & a_{0}+2 \partial\left(a_{1}\right)+\partial^{2}\left(a_{2}\right) & 2 \partial\left(a_{0}\right)+\partial^{2}\left(a_{1}\right) & \partial^{2}\left(a_{0}\right) \\
0 & a_{2} & a_{1}+\partial\left(a_{2}\right) & a_{0}+\partial\left(a_{1}\right) & \partial\left(a_{0}\right) \\
0 & 0 & a_{2} & a_{1} & a_{0} \\
b_{3} & b_{2}+\partial\left(b_{3}\right) & b_{1}+\partial\left(b_{2}\right) & b_{0}+\partial\left(b_{1}\right) & \partial\left(b_{0}\right) \\
0 & b_{3} & b_{2} & b_{1} & b_{0}
\end{array}\right|
\end{gathered}
$$

Differential Resultant Theorem I

Let us consider $P, Q \in \mathbb{D}[\partial] \subset \mathbb{K}[\partial]$.
If $\operatorname{gcrd}(P, Q) \in \mathbb{K}$, we call P and Q right coprime.
The following statements are equivalent:

1. $\partial \operatorname{Res}(P, Q) \neq 0$.
2. $\operatorname{Im}(S) \cap \mathbb{D} \neq 0$.
3. P and Q are right coprime in $\mathbb{K}[\partial]$.

If $\partial \operatorname{Res}(P, Q) \neq 0$ then the elimination ideal $(P, Q) \cap \mathbb{D}$ is nonzero.

Poisson's Formula

(\mathbb{K}, ∂) differential field, field of constants $C=\bar{C}$ and of zero characteristic.
$P, Q \in \mathbb{D}[\partial] \subset \mathbb{K}[\partial]$.
Picard-Vessiot extensions $\left(\mathcal{E}_{P}, \partial_{P}\right)$ and $\left(\mathcal{E}_{Q}, \partial_{Q}\right)$ of \mathbb{K} for $P(y)=0$ and $Q(y)=0$ resp., whose field of constants is C.
$\operatorname{ord}(P)=n, \operatorname{ord}(Q)=m$, leading coefficients a_{n} and b_{m}.
Given fundamental systems of solutions $\psi_{1}, \ldots, \psi_{n}$ of $P(y)=0$ in \mathcal{E}_{P} and $\phi_{1}, \ldots, \phi_{m}$ of $Q(y)=0$ in \mathcal{E}_{Q} then

$$
\partial \operatorname{Res}(P, Q)=a_{n}^{m} \frac{\operatorname{det} W\left(Q\left(\psi_{i}\right)\right)}{\operatorname{det} W\left(\psi_{i}\right)}=(-1)^{m n} b_{m}^{n} \frac{\operatorname{det} W\left(P\left(\phi_{i}\right)\right)}{\operatorname{det} W\left(\phi_{i}\right)}
$$

Differential Resultant Theorem II

Let \mathcal{E} be a Picard-Vessiot extension of \mathbb{K} for $P(y)=0($ or $Q(y)=$ 0). Then the system

$$
P(y)=0, Q(y)=0
$$

has a nontrivial solution in \mathcal{E} if and only if $\partial \operatorname{Res}(P, Q)=0$.
By Poisson's formula,

$$
\partial \operatorname{Res}(P, Q)=0 \text { if and only if } \operatorname{det}\left(W\left(Q\left(\psi_{i}\right)\right)\right)=0
$$

Equivalent to the existence of a nonzero $\psi=\sum_{i} c_{i} \psi_{i}$ in $V=\oplus_{i} C \psi_{i} \subset \mathcal{E}_{P}$ such that $Q(\psi)=0$.

Contents

The theory of commuting ODOs Algebro-geometric Schrödinger operators Centralizers
Computing Commuting Operators

Burchnall-Chaundy ideal of a pair
Differential resultant of two ODOs

Elimination ideals
Factorization
BC ideal of an operator
Coefficient field for factorization

Computing BC ideals

Given (monic) $P, Q \in \Sigma[\partial]$, then $P-\lambda, Q-\mu$ in $\mathbb{D}=\Sigma[\lambda, \mu]$. $\operatorname{ord}(P)=n, \operatorname{ord}(Q)=m$

$$
\begin{aligned}
h(\lambda, \mu)= & \partial \operatorname{Res}(P-\lambda, Q-\mu)=\mu^{n}-\lambda^{m}+\ldots \\
& \text { a non trivial polynomial in } \Sigma[\lambda, \mu]
\end{aligned}
$$

Generalize [Wilson, 1985], [Previato, 1991].
(RZ 2023) Arbitrary $(\Sigma, \partial), \operatorname{Const}(\Sigma)=C=\bar{C}$.

$$
\text { If }[P, Q]=0 \text { then } h(\lambda, \mu) \in \operatorname{BC}(P, Q) \text {. }
$$

1. Proof by Poisson's Formula $h(\lambda, \mu) \in C[\lambda, \mu]$.
2. Proof by elimination ideals $h(P, Q)=0$.

$$
\begin{gathered}
\text { Rosen-Morse potential } u_{1}=\frac{-2}{\cosh ^{2}(x)} \\
L_{1}=-\partial^{2}+u_{1},\left[L_{1}, A_{3}\right]=\operatorname{KdV}_{0}\left(\mathrm{u}_{1}\right)+\operatorname{KdV}_{1}\left(\mathrm{u}_{1}\right)=0 \\
f_{1}(\lambda, \mu)=-\mu^{2}-\lambda(\lambda-1)^{2}= \\
\\
=\partial \operatorname{Res}\left(L_{1}-\lambda, A_{3}-\mu\right)= \\
\left\lvert\, \begin{array}{cccccc}
-1 & 0 & \frac{-2}{(\cosh (x))^{2}}-\lambda & 8 \frac{\sinh (x)}{(\cosh (x))^{3}} & \frac{4}{(\cosh (x))^{2}}-12 \frac{(\sinh (x))^{2}}{(\cosh (x))^{4}} \\
0 & -1 & 0 & \frac{-2}{(\cosh (x))^{2}}-\lambda & 4 \frac{\sinh (x)}{(\cosh (x))^{3}} \\
0 & 0 & -1 & 0 & \frac{-2}{(\cosh (x))^{2}}-\lambda \\
-1 & 0 & \frac{-3}{(\cosh (x))^{2}}+1 & 9 \frac{\sinh (x)}{(\cosh (x))^{3}}-\mu & \frac{3}{(\cosh (x))^{2}}-9 \frac{(\sinh (x))^{2}}{(\cosh (x))^{4}} \\
0 & -1 & 0 & \frac{-3}{(\cosh (x))^{2}}+1 & 3 \frac{\sinh (x)}{(\cosh (x))^{3}}-\mu
\end{array}\right.
\end{gathered}
$$

Elimination ideals

Left ideal

$$
(P-\lambda, Q-\mu)=\{C(P-\lambda)+D(Q-\mu) \mid C, D \in \Sigma[\lambda, \mu][\partial]\}
$$

Two sided ideals

$$
\mathcal{E}(P-\lambda, Q-\mu):=(P-\lambda, Q-\mu) \cap \Sigma[\lambda, \mu] .
$$

and

$$
\mathcal{E}_{C}(P-\lambda, Q-\mu):=(P-\lambda, Q-\mu) \cap C[\lambda, \mu] .
$$

By definition of the differential resultant

$$
h(\lambda, \mu)=\partial \operatorname{Res}(P-\lambda, Q-\mu) \in \mathcal{E}_{C}(P-\lambda, Q-\mu)
$$

Thus both elimination ideals are nonzero.

Elimination ideals

Commuting P and Q in $\Sigma[\partial] \backslash C[\partial]$, both of positive order,

$$
f=\sqrt{h}, \text { with } h=\partial \operatorname{Res}(P-\lambda, Q-\mu) .
$$

(RZ 2023)

1. The radical of the elimination ideal $\mathcal{E}_{C}(P-\lambda, Q-\mu)$ equals

$$
\mathrm{BC}(P, Q)=(f)
$$

2. The radical of the elimination ideal $\mathcal{E}(P-\lambda, Q-\mu)$ equals [f].

Recall $f \in C[\lambda, \mu]$,

$$
(f)=C[\lambda, \mu] f \text { and }[f]=\Sigma[\lambda, \mu] f \text { differential ideal. }
$$

E-linear evaluation map

$\Sigma[\lambda, \mu]$ as a Σ-vector space with basis $\left\{\lambda^{i} \mu^{j}\right\}$

$$
\begin{gathered}
\varepsilon_{P, Q}: \Sigma[\lambda, \mu] \rightarrow \Sigma[\partial] \text {, defined by } \\
\varepsilon_{P, Q}\left(\sum_{i, j} \sigma_{i, j} \lambda^{i} \mu^{j}\right)=\sum_{i, j} \sigma_{i, j} e_{P, Q}\left(\lambda^{i} \mu^{j}\right) .
\end{gathered}
$$

given $g \in \Sigma[\lambda, \mu]$ denote $g(P, Q):=\varepsilon_{P, Q}(g)$

$$
\operatorname{Ker}\left(\varepsilon_{P, Q}\right)=\{g \in \Sigma[\lambda, \mu] \mid g(P, Q)=0\} .
$$

Restriction of $\varepsilon_{P, Q}$ to $C[\lambda, \mu]$ is the ring homomorphism $e_{P, Q}$, and

$$
\operatorname{BC}(P, Q)=\operatorname{Ker}\left(e_{P, Q}\right)=\operatorname{Ker}\left(\varepsilon_{P, Q}\right) \cap C[\lambda, \mu] .
$$

\sum-linear evaluation map

Commuting P and Q in $\Sigma[\partial] \backslash C[\partial]$, both of positive order

$$
\mathcal{E}(P-\lambda, Q-\mu) \subseteq \operatorname{Ker}\left(\varepsilon_{P, Q}\right)
$$

$$
\begin{gathered}
\Downarrow \\
h(P, Q)=0
\end{gathered}
$$

that is $h(\lambda, \mu)=\partial \operatorname{Res}(P-\lambda, Q-\mu) \in \operatorname{BC}(P, Q)$

¿-linear evaluation map

Given g in $\mathcal{E}(P-\lambda, Q-\mu)$

$$
g(\lambda, \mu)=C(P-\lambda)+D(Q-\mu), \quad C, D \in \Sigma[\lambda, \mu][\partial] .
$$

Given $\lambda_{0} \in C, \exists \mu_{0} \in C$ such that $h\left(\lambda_{0}, \mu_{0}\right)=0$.
By the Differential Resultant Theorem $\exists \psi_{\lambda_{0}}$ such that

$$
P\left(\psi_{\lambda_{0}}\right)=\lambda_{0} \psi_{\lambda_{0}}, Q\left(\psi_{\lambda_{0}}\right)=\mu_{0} \psi_{\lambda_{0}}
$$

$$
\Psi=\left\{\psi_{\lambda_{0}} \mid \lambda_{0} \in C\right\} \text { infinite set of eigenfunctions }
$$

$g(P, Q)\left(\psi_{\lambda_{0}}\right)=g\left(\lambda_{0}, \mu_{0}\right) \cdot \psi_{\lambda_{0}}=C^{0}\left(P-\lambda_{0}\right)\left(\psi_{\lambda_{0}}\right)+D^{0}\left(Q-\mu_{0}\right)\left(\psi_{\lambda_{0}}\right)=0$
Ψ included in the C-linear space of solutions of $g(P, Q)(y)=0$.
Then $g(P, Q)$ is the zero operator.

E-linear evaluation map

P and Q in $\Sigma[\partial] \backslash C[\partial]$, both of positive order

$$
\mathcal{E}(P-\lambda, Q-\mu) \subseteq \operatorname{Ker}\left(\varepsilon_{P, Q}\right)
$$

As a consequence $h=\partial \operatorname{Res}(P-\lambda, Q-\mu) \in \mathcal{E}_{C}(P-\lambda, Q-\mu)$ belongs to

$$
\mathrm{BC}(P, Q)=\operatorname{Ker}\left(\varepsilon_{P, Q}\right) \cap C[\lambda, \mu]
$$

$f=\sqrt{h}$
$\operatorname{Ker}\left(\varepsilon_{P, Q}\right)=[f]$ is a prime differential ideal in $\Sigma[\lambda, \mu]$

Elimination ideals

Commuting P and Q in $\Sigma[\partial] \backslash C[\partial]$, both of positive order,

$$
f=\sqrt{h}, \text { with } h=\partial \operatorname{Res}(P-\lambda, Q-\mu) .
$$

(RZ 2023)

1. The radical of the elimination ideal $\mathcal{E}_{C}(P-\lambda, Q-\mu)$ equals

$$
\mathrm{BC}(P, Q)=(f)
$$

2. The radical of the elimination ideal $\mathcal{E}(P-\lambda, Q-\mu)$ equals [f].

Recall $f \in C[\lambda, \mu]$,

$$
(f)=C[\lambda, \mu] f \text { and }[f]=\Sigma[\lambda, \mu] f \text { differential ideal. }
$$

Contents

The theory of commuting ODOs Algebro-geometric Schrödinger operators Centralizers Computing Commuting Operators

 Burchnall-Chaundy ideal of a pair Differential resultant of two ODOsElimination ideals

Factorization
BC ideal of an operator Coefficient field for factorization

Spectral curve of L

Generalized Schur's Theorem [Goodearl, 1983]

$$
\mathcal{Z}((L))=\left\{\sum_{j=-\infty}^{m} c_{j} Q^{j} \mid c_{j} \in C, m \in \mathbb{Z}\right\}
$$

Commutative differential domain

$$
\mathcal{Z}(L)=\mathcal{Z}((L)) \cap \Sigma[\partial]
$$

$\operatorname{Spec}(\mathcal{Z}(L))$ is an abstract algebraic curve Γ
Compute the defining ideal of Γ

BC ideal of L. CASE I

Given $L \in \Sigma[\partial] \backslash C[\partial]$, with $\mathcal{Z}(L) \neq C[L]$.
CASE $I: \mathcal{Z}(L)=C[L, A]$.
Define then Burchnall-Chaundy ideal of L to be the

$$
\mathrm{BC}(L):=\mathrm{BC}(L, A) \text {. }
$$

Examples

- (MRZ2020) If $\operatorname{ord}(L)=2$ then $\mathcal{Z}(L)=C[L, A]$ with A of odd order.
- (PRZ2019) If $\operatorname{ord}(L)=4$ and L belongs to the first Weyl algebra $\mathcal{Z}(L)=C[L, A]$ with A of even order $\equiv 2(\bmod 4)$.

Spectral curve of L. CASE I

Define the spectral curve of L to be

$$
\Gamma:=\Gamma_{L, A}=V(\mathrm{BC}(L, A))
$$

whose coordinate ring is

$$
\frac{C[\lambda, \mu]}{\mathrm{BC}(L)} \simeq \mathcal{Z}(L)=C[L, A]
$$

isomorphic to the centralizer of L.

BC ideal of L. CASE II

Given $L \in \Sigma[\partial] \backslash C[\partial]$, with $\mathcal{Z}(L) \neq C[L]$.
CASE II: $\mathcal{Z}(L) \neq C[L, A]$.
$\operatorname{ord}(L)=3 . \mathcal{Z}(L)$ is a free $C[L]$-module of rank 3 .
$\left\{1, A_{1}, A_{2}\right\}$ basis of $\mathcal{Z}(L)$ as a $C[L]$-module. Each A_{i} is a monic operator in $\mathcal{Z}(L) \backslash C[L]$ of minimal order

$$
\begin{gathered}
o_{i}:=\operatorname{ord}\left(A_{i}\right) \equiv i(\bmod 3) \\
\mathcal{Z}(L)=C[L] \oplus C[L] A_{1} \oplus C[L] A_{2}=C\left[L, A_{1}, A_{2}\right]
\end{gathered}
$$

BC ideal of L. CASE II

$\operatorname{ord}(L)=3$.

$$
\begin{aligned}
& e_{L}: C\left[\lambda, \mu_{1}, \mu_{2}\right] \rightarrow \Sigma[\partial] \\
& e_{P, Q}(\lambda)=L, \quad e_{P, Q}\left(\mu_{1}\right)=A_{1}, \quad e_{P, Q}\left(\mu_{2}\right)=A_{2}
\end{aligned}
$$

Image of e_{L},

$$
\mathcal{Z}(L)=C\left[L, A_{1}, A_{2}\right]
$$

Given $g \in C\left[\lambda, \mu_{1}, \mu_{2}\right]$ denote

$$
g\left(L, A_{1}, A_{2}\right):=e_{L}(g)
$$

BC-ideal of L

$$
\mathrm{BC}(L):=\operatorname{Ker}\left(e_{L}\right)=\left\{g \in C\left[\lambda, \mu_{1}, \mu_{2}\right] \mid g\left(L, A_{1}, A_{2}\right)=0\right\}
$$

Call the elements of the BC ideal BC-polynomials.

Spectral curve of L

$$
\begin{aligned}
\operatorname{ord}(L)= & 3 \text { in } \Sigma[\partial], \quad \mathcal{Z}(L)=C\left[L, A_{1}, A_{2}\right], \operatorname{ord}\left(A_{i}\right)=3 n_{i}+i \\
& \left\{\begin{array}{l}
f_{i}=\partial \operatorname{Res}\left(L-\lambda, A_{i}-\mu_{i}\right), \quad i=1,2 \\
f_{3}^{r}=\partial \operatorname{Res}\left(A_{1}-\mu_{1}, A_{2}-\mu_{2}\right)
\end{array}\right.
\end{aligned}
$$

are irreducible in $C\left[\lambda, \mu_{1}, \mu_{2}\right]$ since

$$
\operatorname{BC}\left(L, A_{i}\right)=\left(f_{i}\right) \text { and } B C\left(A_{1}, A_{2}\right)=\left(f_{3}\right)
$$

(RZ 2023) $B C(L)$ is a prime ideal, affine algebraic curve in C^{3}

$$
\begin{gathered}
\Gamma=V(\mathrm{BC}(L)) \\
\mathcal{Z}(L) \simeq C[\Gamma]=\frac{C\left[\lambda, \mu_{1}, \mu_{2}\right]}{\mathrm{BC}(L)} \\
\mathrm{BC}(L)=\left(f_{1}, f_{2}, f_{3}\right)
\end{gathered}
$$

Spectral curves for third order operators

If a non constant coefficient operator A_{2} of order 2 belongs to $\mathcal{Z}(L)$ then

$$
\mathcal{Z}(L)=\mathcal{C}\left(A_{2}\right)=C\left[L, A_{2}\right] \simeq \frac{C[\lambda, \mu]}{\left(f_{2}\right)}
$$

which is isomorphic to the ring of the plane algebraic curve. In this case the operator of minimal order $3 n_{1}+1$ in $\mathcal{Z}(L)$ is A_{2}^{2}, implying that $f_{3}=\left(\mu-\gamma^{2}\right)^{2}$.

Planar spectral curve

[Dickson, Gesztesy, Unterkofler, 1999] $\Sigma=\mathbb{C}(x), \partial=d / d x$

$$
\begin{gathered}
L=\partial^{3}-\frac{15}{x^{2}} \partial+\frac{15}{x^{3}}+h . \\
\mathcal{Z}(L)=C\left[L, A_{1}, A_{2}\right], \operatorname{ord}\left(A_{1}\right)=4, \operatorname{ord}\left(A_{2}\right)=8 .
\end{gathered}
$$

We compute the generators of the ideal $\operatorname{BC}(L)=\left(f_{1}, f_{2}, f_{3}\right)$ using differential resultants

$$
f_{1}=-\mu_{1}^{3}+(\lambda-h)^{4}, f_{2}=-\mu_{2}^{3}+(\lambda-h)^{8}, f_{3}^{4}=\left(\mu_{2}-\mu_{1}^{2}\right)^{4} .
$$

Since f_{3} is the $B C$ polynomial of A_{1} and A_{2} we have $A_{2}=A_{1}^{2}$, implying that

$$
\mathcal{Z}(L)=C\left[L, A_{1}\right] \simeq \frac{C\left[\lambda, \mu_{1}\right]}{\left(f_{1}\right)}
$$

Non-planar spectral curves

(RZ 2022) $\Sigma=\mathbb{C}(x), \partial=d / d x$

$$
L=\partial^{3}-\frac{6}{x^{2}} \partial+\frac{12}{x^{3}}+h, h \in \mathbb{C} .
$$

$\mathcal{Z}(L)=\mathbb{C}\left[L, A_{1}, A_{2}\right]$ with $\operatorname{ord}\left(A_{1}\right)=4, \operatorname{ord}\left(A_{2}\right)=5$.
Using differential resultants we compute

$$
f_{1}=-\mu^{3}+(\lambda-h)^{4}, f_{2}=-\gamma^{3}+(\lambda-h)^{5}, f_{3}=\gamma^{4}-\mu^{5} .
$$

$\operatorname{BC}(L)=\left(f_{1}, f_{2}, f_{3}\right)$ is a prime ideal.
First explicit example of a non-planar spectral curve.
The curve defined by $\operatorname{BC}(L)$ is a non-planar curve Γ parametrized by

$$
\aleph(\tau)=\left(h-\tau^{3}, \tau^{4},-\tau^{5}\right), \tau \in \mathbb{C} .
$$

$$
\begin{gathered}
\Sigma=\mathbb{C}\left(z=e^{x}\right), \partial=d / d x \\
L=\partial^{3}+\frac{24 z}{(z+1)^{2}} \partial+\frac{-48 z(z-1)}{(z+1)^{3}}, \quad \operatorname{ord}\left(A_{1}\right)=4, \operatorname{ord}\left(A_{2}\right)=5
\end{gathered}
$$

Non-planar spectral curve Γ defined by the prime ideal

$$
\operatorname{BC}(L)=\left(f_{1}, f_{2}, f_{3}\right)
$$

$$
\begin{aligned}
f_{1}= & \partial \operatorname{Res}\left(L-\lambda, A_{1}-\mu_{1}\right)=1+\lambda^{4}+\frac{44}{27} \lambda^{2}-\mu_{1}^{3}-4 \lambda^{2} \mu_{1}+3 \mu_{1}^{2}-3 \mu_{1} \\
f_{2}= & \partial \operatorname{Res}\left(L-\lambda, A_{2}-\mu_{2}\right)= \\
& \lambda^{5}+16\left(\mu_{2}-1\right) \lambda^{2} / 3+(4096 \lambda) / 729-\left(\mu_{2}-1\right)^{3} \\
f_{3}= & \partial \operatorname{Res}\left(A_{1}-\mu_{1}, A_{2}-\mu_{2}\right)=\ldots
\end{aligned}
$$

New coefficient field

$P, Q \in \Sigma[\partial]$

$$
[P, Q]=0 \Rightarrow \partial \operatorname{Res}(P-\lambda, Q-\mu)=f(\lambda, \mu)^{r} \in C[\lambda, \mu] .
$$

As differential operators in $\Sigma[\lambda, \mu][\partial]$,

$$
\partial \operatorname{Res}(P-\lambda, Q-\mu) \neq 0 \Rightarrow \operatorname{gcrd}(P-\lambda, Q-\mu)=1 .
$$

$$
\begin{gathered}
\Gamma_{P, Q}:=\left\{(\lambda, \mu) \in C^{2} \mid f(\lambda, \mu)=0\right\} \\
\Sigma\left(\Gamma_{P, Q}\right)=\operatorname{Fr}\left(\frac{\Sigma[\lambda, \mu]}{[f]}\right)
\end{gathered}
$$

As differential operators in $\sum\left(\Gamma_{P, Q}\right)[\partial]$,

$$
\partial \operatorname{Res}(P-\lambda, Q-\mu)=0 \Rightarrow \operatorname{gcrd}(P-\lambda, Q-\mu) \neq 1 .
$$

New coefficient field

$[\mathrm{BC}(L)]$ is a prime differential ideal of $\Sigma\left[\lambda, \mu_{1}, \mu_{2}\right]$

Differential domain

$$
\Sigma[\Gamma]=\frac{\Sigma\left[\lambda, \mu_{1}, \mu_{2}\right]}{[\operatorname{BC}(L)]}
$$

Its fraction field

$$
\Sigma(\Gamma)
$$

is a differential field with the extended derivation.

Intrinsic right factor

$\operatorname{ord}(L)=3$ in $\Sigma[\partial], \mathcal{Z}(L)=C\left[L, A_{1}, A_{2}\right]$
The greatest common right divisor in $\Sigma(\Gamma)[\partial]$

$$
\partial+\phi=\operatorname{gcrd}\left(L-\lambda, A_{1}-\mu_{1}, A_{2}-\mu_{2}\right)
$$

equals

$$
\operatorname{gcrd}\left(L-\lambda, A_{1}-\mu_{1}\right)=\operatorname{gcrd}\left(L-\lambda, A_{2}-\mu_{2}\right)
$$

Spectral Picard-Vessiot fields

(MRZ 2021) for Schrödinger operators
Definition, existence and computation of spectral Picard-Vessiot fields

- Differential field extension of $\Sigma(\Gamma)$, the minimal extension containing all the solutions.
- Requires a full factorization of $L-\lambda$ over $\Sigma(\Gamma)$
- (MRZ 2020) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro. Factorization of KdV Schrödinger operators using differential subresultants. Adv. Appl. Math., 120:102065, 2020.
- (MRZ 2021) J.J. Morales-Ruiz. S.L. Rueda, and M.A. Zurro. Spectral Picard-Vessiot fields for algebro-geometric Schrödinger operators . Annales de l'Institut Fourier, Vol. 71, No. 3, pp. 1287-1324, 2021.
- (PRZ 2019) E. Previato, S.L. Rueda, and M.A. Zurro. Commuting Ordinary Differential Operators and the Dixmier Test. SIGMA Symmetry Integrability Geom. Methods Appl., 15(101):23 pp., 2019.
- (RZ 2021) S.L. Rueda and M.A. Zurro. Factoring Third Order Ordinary Differential Operators over Spectral Curves. See arXiv:2102.04733v1, 2021.

