A new proof of Viazovska's modular form inequalities for sphere packing in dimension 8

Dan Romik
UC Davis

Computer Algebra Workshop + Séminaire Philippe Flajolet Institut Henri Poincaré

December 7, 2023

Talk outline

Talk outline

(1) Background: sphere packings in \mathbb{R}^{d}

Talk outline

(1) Background: sphere packings in \mathbb{R}^{d}
(2) Viazovska's solution of the sphere packing problem in dimension 8

Talk outline

(1) Background: sphere packings in \mathbb{R}^{d}
(2) Viazovska's solution of the sphere packing problem in dimension 8
(3) Viazovska's modular form inequalities

Talk outline

(1) Background: sphere packings in \mathbb{R}^{d}
(2) Viazovska's solution of the sphere packing problem in dimension 8
(3) Viazovska's modular form inequalities
(4) A new proof

Some useful references

Source material for this talk:

Some useful references

Source material for this talk:

- The paper "The sphere packing problem in dimension 8" by Maryna Viazovska (Ann. Math. (2017), 991-1015).

Some useful references

Source material for this talk:

- The paper "The sphere packing problem in dimension 8" by Maryna Viazovska (Ann. Math. (2017), 991-1015).
- My paper "On Viazovska's modular form inequalities" (PNAS, 2023).

Some useful references

Source material for this talk:

- The paper "The sphere packing problem in dimension 8" by Maryna Viazovska (Ann. Math. (2017), 991-1015).
- My paper "On Viazovska's modular form inequalities" (PNAS, 2023).
- Chapter $6+$ Appendix of my book "Topics in Complex Analysis"
https://www.math.ucdavis.edu/
~romik/topics-in-complex-analysis/

Background: sphere packings in \mathbb{R}^{d}

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$. Kepler's conjecture from 1611 stated that the optimal density for sphere packing is $\frac{\pi}{3 \sqrt{2}}$, achieved by the cubic close packing and the hexagonal close packing. Proved by Thomas Hales in 1998.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$. Kepler's conjecture from 1611 stated that the optimal density for sphere packing is $\frac{\pi}{3 \sqrt{2}}$, achieved by the cubic close packing and the hexagonal close packing. Proved by Thomas Hales in 1998.
- The case $d=8$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$. Kepler's conjecture from 1611 stated that the optimal density for sphere packing is $\frac{\pi}{3 \sqrt{2}}$, achieved by the cubic close packing and the hexagonal close packing. Proved by Thomas Hales in 1998.
- The case $d=8$. Maryna Viazovska proved in 2016 that for $d=8$, the densest packing is the \boldsymbol{E}_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$. Kepler's conjecture from 1611 stated that the optimal density for sphere packing is $\frac{\pi}{3 \sqrt{2}}$, achieved by the cubic close packing and the hexagonal close packing. Proved by Thomas Hales in 1998.
- The case $d=8$. Maryna Viazovska proved in 2016 that for $d=8$, the densest packing is the \boldsymbol{E}_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$.
- The case $d=24$.

Background: sphere packings in \mathbb{R}^{d}

The sphere packing problem in \mathbb{R}^{d} asks: what is the densest way to pack unit spheres in d-dimensional space?

- Trivial case: $d=1$.
- (Relatively) easy case: $d=2$. The optimal circle packing is the hexagonal lattice packing, with packing density $\frac{\pi}{2 \sqrt{3}}$. Proved by Gauss (1831), Thue (1890), Tóth (1941).
- Famous case: $d=3$. Kepler's conjecture from 1611 stated that the optimal density for sphere packing is $\frac{\pi}{3 \sqrt{2}}$, achieved by the cubic close packing and the hexagonal close packing. Proved by Thomas Hales in 1998.
- The case $d=8$. Maryna Viazovska proved in 2016 that for $d=8$, the densest packing is the $\boldsymbol{E}_{\mathbf{8}}$ lattice packing, with packing density $\frac{\pi^{4}}{384}$.
- The case $d=24$. Viazovska with Cohn, Kumar, Miller, and Radchenko then proved that for $d=24$, the densest packing is the Leech lattice packing, with packing density $\frac{\pi^{12}}{12!}$.

Background: sphere packings in \mathbb{R}^{d} (continued)

In other dimensions the problem remains open.

Background: sphere packings in \mathbb{R}^{d} (continued)

The optimal lattices for sphere packing in dimensions 2, 3, 8

Viazovska's proof in dimension 8

Viazovska's proof in dimension 8

- It had previously been conjectured that the E_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$, is optimal. This gives a lower bound on the optimal packing density; Viazovska proved a matching upper bound, solving the problem.

Viazovska's proof in dimension 8

- It had previously been conjectured that the E_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$, is optimal. This gives a lower bound on the optimal packing density; Viazovska proved a matching upper bound, solving the problem.
- Viazovska made use of a remarkable theorem from 2001, the Cohn-Elkies linear programming bounds. It reduced the problem to finding a magic function, an analytic object with certain properties.

Viazovska's proof in dimension 8

- It had previously been conjectured that the E_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$, is optimal. This gives a lower bound on the optimal packing density; Viazovska proved a matching upper bound, solving the problem.
- Viazovska made use of a remarkable theorem from 2001, the Cohn-Elkies linear programming bounds. It reduced the problem to finding a magic function, an analytic object with certain properties.
- Viazovska's proof is complex-analytic. She used modular forms to construct the magic function for dimension 8. An extension of the method works for dimension 24.

Viazovska's proof in dimension 8

- It had previously been conjectured that the E_{8} lattice packing, with packing density $\frac{\pi^{4}}{384}$, is optimal. This gives a lower bound on the optimal packing density; Viazovska proved a matching upper bound, solving the problem.
- Viazovska made use of a remarkable theorem from 2001, the Cohn-Elkies linear programming bounds. It reduced the problem to finding a magic function, an analytic object with certain properties.
- Viazovska's proof is complex-analytic. She used modular forms to construct the magic function for dimension 8. An extension of the method works for dimension 24.
- One component of the proof makes extensive use of computer calculations.

The Cohn-Elkies linear programming bounds

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0$

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0$
$(\widehat{f}=$ the Fourier transform of f)

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$
(4) $\widehat{f}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$
(4) $\widehat{f}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$

Then the optimal packing density δ_{d} in \mathbb{R}^{d} satisfies

$$
\delta_{d} \leq \operatorname{vol}\left(B_{\rho / 2}(0)\right)
$$

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$
(4) $\widehat{f}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$

Then the optimal packing density δ_{d} in \mathbb{R}^{d} satisfies

$$
\delta_{d} \leq \operatorname{vol}\left(B_{\rho / 2}(0)\right)=\frac{\rho^{d}}{2^{d}} \times[\text { vol. of unit ball }]
$$

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$
(4) $\widehat{f}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$

Then the optimal packing density δ_{d} in \mathbb{R}^{d} satisfies

$$
\delta_{d} \leq \operatorname{vol}\left(B_{\rho / 2}(0)\right)=\frac{\rho^{d}}{2^{d}} \times[\text { vol. of unit ball }]
$$

- The proof is an application of the Poisson summation formula from harmonic analysis; see the appendix of my book.

The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function and $\rho>0$ a number. Assume that the following conditions are satisfied:
(1) f is a Schwartz function
(2) $f(0)=\widehat{f}(0)>0 \quad(\widehat{f}=$ the Fourier transform of $f)$
(3) $f(x) \leq 0$ for all $x \in \mathbb{R}^{d}$ such that $\|x\| \geq \rho$
(4) $\widehat{f}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$

Then the optimal packing density δ_{d} in \mathbb{R}^{d} satisfies

$$
\delta_{d} \leq \operatorname{vol}\left(B_{\rho / 2}(0)\right)=\frac{\rho^{d}}{2^{d}} \times[\text { vol. of unit ball }]
$$

- The proof is an application of the Poisson summation formula from harmonic analysis; see the appendix of my book.
- For the case $d=8$, the sharp bound $\frac{\pi^{4}}{384}$ is obtained when $\rho=\sqrt{2}$. A function satisfying the conditions of the theorem for that ρ is called a magic function.

Applying the Cohn-Elkies bounds in practice

Applying the Cohn-Elkies bounds in practice

Cohn and Elkies applied their bound to numerically optimized bounding functions f, obtaining the best known (at the time) upper bounds for the sphere packing density in dimensions 4-36.

Applying the Cohn-Elkies bounds in practice

Cohn and Elkies applied their bound to numerically optimized bounding functions f, obtaining the best known (at the time) upper bounds for the sphere packing density in dimensions 4-36.

[^0]
Applying the Cohn-Elkies bounds in practice (continued)

In dimensions 2, 8 and 24, their bounds came extremely close to matching the known lower bounds.

Applying the Cohn-Elkies bounds in practice (continued)

In dimensions 2, 8 and 24, their bounds came extremely close to matching the known lower bounds.

Applying the Cohn-Elkies bounds in practice (continued)

In dimensions 2, 8 and 24, their bounds came extremely close to matching the known lower bounds.

They conjectured that in those dimensions there exists a "magic function" f certifying a sharp bound.

Viazovska's magic function

Viazovska's function $\varphi: \mathbb{R}^{8} \rightarrow \mathbb{R}$ is defined by

Viazovska's magic function

Viazovska's function $\varphi: \mathbb{R}^{8} \rightarrow \mathbb{R}$ is defined by (the analytic continuation of)

$$
\begin{aligned}
& \varphi(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \\
& \times \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}\left[108 \frac{\left(i t E_{4}^{\prime}(i t)+4 E_{4}(i t)\right)^{2}}{E_{4}(i t)^{3}-E_{6}(i t)^{2}}\right. \\
&\left.+128\left(\frac{\theta_{3}(i t)^{4}+\theta_{4}(i t)^{4}}{\theta_{2}(i t)^{8}}+\frac{\theta_{4}(i t)^{4}-\theta_{2}(i t)^{4}}{\theta_{3}(i t)^{8}}\right)\right] d t
\end{aligned}
$$

Viazovska's magic function

Viazovska's function $\varphi: \mathbb{R}^{8} \rightarrow \mathbb{R}$ is defined by (the analytic continuation of)

$$
\begin{aligned}
& \varphi(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \\
& \times \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}\left[108 \frac{\left(i t E_{4}^{\prime}(i t)+4 E_{4}(i t)\right)^{2}}{E_{4}(i t)^{3}-E_{6}(i t)^{2}}\right. \\
&\left.+128\left(\frac{\theta_{3}(i t)^{4}+\theta_{4}(i t)^{4}}{\theta_{2}(i t)^{8}}+\frac{\theta_{4}(i t)^{4}-\theta_{2}(i t)^{4}}{\theta_{3}(i t)^{8}}\right)\right] d t
\end{aligned}
$$

where E_{4}, E_{6} are the Eisenstein series and $\theta_{2}, \theta_{3}, \theta_{4}$ are the Jacobi thetanull functions, defined by

$$
\begin{array}{ll}
E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{2 n}, & \theta_{2}(z)=\sum_{n=-\infty}^{\infty} q^{(n+1 / 2)^{2}} \\
E_{6}(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{2 n}, & \theta_{3}(z)=\sum_{n=-\infty}^{\infty} q^{n^{2}} \\
& \theta_{4}(z)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}
\end{array}
$$

(with the standard notation $q=e^{\pi i z}, \sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}$).

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8 . More precisely, it has the following properties:

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi$

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi$
$(\widehat{\varphi}=$ the Fourier transform of $\varphi)$

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi$
$(\widehat{\varphi}=$ the Fourier transform of $\varphi)$
(3) $\widehat{\varphi}(x) \geq 0$ for all $x \in \mathbb{R}^{8}$

Viazovska's magic function (continued)

Theorem (Viazovska)
φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi$
$(\widehat{\varphi}=$ the Fourier transform of $\varphi)$
(3) $\widehat{\varphi}(x) \geq 0$ for all $x \in \mathbb{R}^{8}$
(4) $\varphi(x) \leq 0$ for all $x \in \mathbb{R}^{8}$ with $\|x\| \geq \sqrt{2}$

Viazovska's magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi \quad(\hat{\varphi}=$ the Fourier transform of $\varphi)$
(3) $\widehat{\varphi}(x) \geq 0$ for all $x \in \mathbb{R}^{8}$
(4) $\varphi(x) \leq 0$ for all $x \in \mathbb{R}^{8}$ with $\|x\| \geq \sqrt{2}$

Using the Cohn-Elkies linear programming bound, the above properties imply that φ certifies an upper bound of $\frac{\pi^{4}}{384}$ for sphere packing density in \mathbb{R}^{8}. This matches the packing density of the E_{8} lattice packing.

Viazovska's magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi \quad(\hat{\varphi}=$ the Fourier transform of $\varphi)$
(3) $\widehat{\varphi}(x) \geq 0$ for all $x \in \mathbb{R}^{8}$
(4) $\varphi(x) \leq 0$ for all $x \in \mathbb{R}^{8}$ with $\|x\| \geq \sqrt{2}$

Using the Cohn-Elkies linear programming bound, the above properties imply that φ certifies an upper bound of $\frac{\pi^{4}}{384}$ for sphere packing density in \mathbb{R}^{8}. This matches the packing density of the E_{8} lattice packing.

It remains to prove the claimed properties. This is not trivial.

Viazovska's magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the following properties:
(1) φ is a Schwartz function
(2) $\varphi(0)=\widehat{\varphi}(0)=240 \pi \quad(\hat{\varphi}=$ the Fourier transform of $\varphi)$
(3) $\widehat{\varphi}(x) \geq 0$ for all $x \in \mathbb{R}^{8}$
(4) $\varphi(x) \leq 0$ for all $x \in \mathbb{R}^{8}$ with $\|x\| \geq \sqrt{2}$

Using the Cohn-Elkies linear programming bound, the above properties imply that φ certifies an upper bound of $\frac{\pi^{4}}{384}$ for sphere packing density in \mathbb{R}^{8}. This matches the packing density of the E_{8} lattice packing.

It remains to prove the claimed properties. This is not trivial. (Related, and much more nontrivial: the reasoning that led to the strange formula for φ.)

The modular forms in the definition of φ

The problem boils down to understanding the properties of the modular forms in the definition of φ. Let \mathbb{H} denote the upper half plane. Define functions $U: \mathbb{H} \rightarrow \mathbb{C}, V: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& U(z)=108 \frac{\left(z E_{4}^{\prime}(z)+4 E_{4}(z)\right)^{2}}{E_{4}(z)^{3}-E_{6}(z)^{2}} \\
& V(z)=128\left(\frac{\theta_{3}(z)^{4}+\theta_{4}(z)^{4}}{\theta_{2}(z)^{8}}+\frac{\theta_{4}(z)^{4}-\theta_{2}(z)^{4}}{\theta_{3}(z)^{8}}\right)
\end{aligned}
$$

The modular forms in the definition of φ

The problem boils down to understanding the properties of the modular forms in the definition of φ. Let \mathbb{H} denote the upper half plane. Define functions $U: \mathbb{H} \rightarrow \mathbb{C}, V: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& U(z)=108 \frac{\left(z E_{4}^{\prime}(z)+4 E_{4}(z)\right)^{2}}{E_{4}(z)^{3}-E_{6}(z)^{2}} \\
& V(z)=128\left(\frac{\theta_{3}(z)^{4}+\theta_{4}(z)^{4}}{\theta_{2}(z)^{8}}+\frac{\theta_{4}(z)^{4}-\theta_{2}(z)^{4}}{\theta_{3}(z)^{8}}\right)
\end{aligned}
$$

Define functions $\varphi_{ \pm}: \mathbb{R}^{8} \rightarrow \mathbb{R}$ by (the analytic continuation of)

$$
\begin{aligned}
& \varphi_{+}(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}} U(i t) d t \\
& \varphi_{-}(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}} V(i t) d t
\end{aligned}
$$

The modular forms in the definition of φ

The problem boils down to understanding the properties of the modular forms in the definition of φ. Let \mathbb{H} denote the upper half plane. Define functions $U: \mathbb{H} \rightarrow \mathbb{C}, V: \mathbb{H} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& U(z)=108 \frac{\left(z E_{4}^{\prime}(z)+4 E_{4}(z)\right)^{2}}{E_{4}(z)^{3}-E_{6}(z)^{2}} \\
& V(z)=128\left(\frac{\theta_{3}(z)^{4}+\theta_{4}(z)^{4}}{\theta_{2}(z)^{8}}+\frac{\theta_{4}(z)^{4}-\theta_{2}(z)^{4}}{\theta_{3}(z)^{8}}\right)
\end{aligned}
$$

Define functions $\varphi_{ \pm}: \mathbb{R}^{8} \rightarrow \mathbb{R}$ by (the analytic continuation of)

$$
\begin{aligned}
& \varphi_{+}(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}} U(i t) d t \\
& \varphi_{-}(x)=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}} V(i t) d t
\end{aligned}
$$

so that $\varphi=\varphi_{+}+\varphi_{-}$.

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.)

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations
$\varphi=\varphi_{+}+\varphi_{-}$

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations
$\varphi=\varphi_{+}+\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)+V(i t)) d t$,

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations
$\varphi=\varphi_{+}+\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)+V(i t)) d t$,
$\widehat{\varphi}=\varphi_{+}-\varphi_{-}$

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations

$$
\begin{aligned}
& \varphi=\varphi_{+}+\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)+V(i t)) d t \\
& \widehat{\varphi}=\varphi_{+}-\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)-V(i t)) d t .
\end{aligned}
$$

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-} .
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations

$$
\begin{aligned}
& \varphi=\varphi_{+}+\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)+V(i t)) d t \\
& \widehat{\varphi}=\varphi_{+}-\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)-V(i t)) d t .
\end{aligned}
$$

The inequalities for φ and $\widehat{\varphi}$ will therefore follow from the following result:

Viazovska's modular form inequalities

The definitions of $U(z), V(z)$ were carefully chosen to satisfy several conditions, including, crucially,

$$
\widehat{\varphi_{+}}=\varphi_{+}, \quad \widehat{\varphi_{-}}=-\varphi_{-}
$$

(That is, $\varphi_{ \pm}$are eigenfunctions of the Fourier transform with resp. eigenvalues ± 1.) Thus, we have the relations

$$
\begin{aligned}
& \varphi=\varphi_{+}+\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)+V(i t)) d t \\
& \widehat{\varphi}=\varphi_{+}-\varphi_{-}=-4 \sin ^{2}\left(\frac{\pi\|x\|^{2}}{2}\right) \int_{0}^{\infty} e^{-\pi t\|x\|^{2}}(U(i t)-V(i t)) d t .
\end{aligned}
$$

The inequalities for φ and $\widehat{\varphi}$ will therefore follow from the following result:
Theorem (Viazovska)
The functions U, V satisfy the inequalities

$$
\begin{array}{ll}
U(i t)+V(i t) \geq 0 & (t>0) \\
U(i t)-V(i t) \leq 0 & (t>0) \tag{V2}
\end{array}
$$

Viazovska's modular form inequalities (continued)

Theorem (Viazovska)
The functions U, V satisfy the inequalities

$$
\begin{array}{ll}
U(i t)+V(i t) \geq 0 & (t>0) \\
U(i t)-V(i t) \leq 0 & (t>0) \tag{V2}
\end{array}
$$

Viazovska's modular form inequalities (continued)

Theorem (Viazovska)
The functions U, V satisfy the inequalities

$$
\begin{array}{ll}
U(i t)+V(i t) \geq 0 & (t>0) \\
U(i t)-V(i t) \leq 0 & (t>0) \tag{V2}
\end{array}
$$

- The inequalities (V1)-(V2) seem unnatural, because they relate modular forms that belong to different modular form spaces. This makes it difficult to think of a conceptual reason why they should be true.

Viazovska's modular form inequalities (continued)

Theorem (Viazovska)

The functions U, V satisfy the inequalities

$$
\begin{array}{ll}
U(i t)+V(i t) \geq 0 & (t>0) \\
U(i t)-V(i t) \leq 0 & (t>0) \tag{V2}
\end{array}
$$

- The inequalities (V1)-(V2) seem unnatural, because they relate modular forms that belong to different modular form spaces. This makes it difficult to think of a conceptual reason why they should be true.
- Viazovska proved them using (rigorously supported) numerical calculations.

Viazovska's modular form inequalities (continued)

Theorem (Viazovska)

The functions U, V satisfy the inequalities

$$
\begin{array}{ll}
U(i t)+V(i t) \geq 0 & (t>0) \\
U(i t)-V(i t) \leq 0 & (t>0) \tag{V2}
\end{array}
$$

- The inequalities (V1)-(V2) seem unnatural, because they relate modular forms that belong to different modular form spaces. This makes it difficult to think of a conceptual reason why they should be true.
- Viazovska proved them using (rigorously supported) numerical calculations.

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations.

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

Reminder (2). $E_{4}^{3}-E_{6}^{2}$ is a scaling of the modular discriminant:
$E_{4}^{3}-E_{6}^{2}=\frac{1728}{(2 \pi)^{12}} \Delta(z)$

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

Reminder (2). $E_{4}^{3}-E_{6}^{2}$ is a scaling of the modular discriminant:
$E_{4}^{3}-E_{6}^{2}=\frac{1728}{(2 \pi)^{12}} \Delta(z)=1728 q^{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{24}$

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

Reminder (2). $E_{4}^{3}-E_{6}^{2}$ is a scaling of the modular discriminant:
$E_{4}^{3}-E_{6}^{2}=\frac{1728}{(2 \pi)^{12}} \Delta(z)=1728 q^{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{24}=\frac{27}{4}\left(\theta_{2} \theta_{3} \theta_{4}\right)^{8}$.

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

Reminder (2). $E_{4}^{3}-E_{6}^{2}$ is a scaling of the modular discriminant:
$E_{4}^{3}-E_{6}^{2}=\frac{1728}{(2 \pi)^{12}} \Delta(z)=1728 q^{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{24}=\frac{27}{4}\left(\theta_{2} \theta_{3} \theta_{4}\right)^{8}$.
Reminder (3). The modular lambda function is
$\lambda=\frac{\theta_{2}^{4}}{\theta_{3}^{4}}=1-\frac{\theta_{4}^{4}}{\theta_{3}^{4}}$.

A new proof

I will now show a new proof of (V1)-(V2) that does not rely on computer calculations. Recall a few facts about modular forms:

Reminder (1). $E_{4}, E_{6}, \theta_{2}, \theta_{3}, \theta_{4}$ are modular forms satisfying the modular transformation properties

$$
\begin{aligned}
E_{4}(z+1) & =E_{4}(z), & E_{4}(-1 / z) & =z^{4} E_{4}(z), \\
E_{6}(z+1) & =E_{6}(z), & E_{6}(-1 / z) & =z^{6} E_{6}(z), \\
\theta_{2}(z+1)^{4} & =-\theta_{2}(z)^{4}, & \theta_{2}(-1 / z)^{4} & =-z^{2} \theta_{4}(z)^{4}, \\
\theta_{3}(z+1)^{4} & =\theta_{4}(z)^{4}, & \theta_{3}(-1 / z)^{4} & =-z^{2} \theta_{3}(z)^{4}, \\
\theta_{4}(z+1)^{4} & =\theta_{3}(z)^{4}, & \theta_{4}(-1 / z)^{4} & =-z^{2} \theta_{2}(z)^{4} .
\end{aligned}
$$

Reminder (2). $E_{4}^{3}-E_{6}^{2}$ is a scaling of the modular discriminant:
$E_{4}^{3}-E_{6}^{2}=\frac{1728}{(2 \pi)^{12}} \Delta(z)=1728 q^{2} \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{24}=\frac{27}{4}\left(\theta_{2} \theta_{3} \theta_{4}\right)^{8}$.
Reminder (3). The modular lambda function is
$\lambda=\frac{\theta_{2}^{4}}{\theta_{3}^{4}}=1-\frac{\theta_{4}^{4}}{\theta_{3}^{4}}$. For $t>0, \lambda(i t) \in(0,1)$.

A new proof of (V1)-(V2), part I: proof of (V1)

A new proof of (V1)-(V2), part I: proof of (V1)

First, observe that $U(i t) \geq 0$ for all $t>0$ since, by inspection of the relevant Fourier series, we have it $E_{4}^{\prime}(i t)+4 E_{4}(i t) \in \mathbb{R}$, and separately we have $E_{4}(z)^{3}-E_{6}(z)^{2}>0$ for $t>0$ by the infinite product formula from the previous slide.

A new proof of (V1)-(V2), part I: proof of (V1)

First, observe that $U(i t) \geq 0$ for all $t>0$ since, by inspection of the relevant Fourier series, we have it $E_{4}^{\prime}(i t)+4 E_{4}(i t) \in \mathbb{R}$, and separately we have $E_{4}(z)^{3}-E_{6}(z)^{2}>0$ for $t>0$ by the infinite product formula from the previous slide.

Similarly, it also holds that $V(i t) \geq 0$ for $t>0$. To see this, rewrite $V(z)$ in terms of θ_{3} and the modular lambda function as

A new proof of (V1)-(V2), part I: proof of (V1)

First, observe that $U(i t) \geq 0$ for all $t>0$ since, by inspection of the relevant Fourier series, we have it $E_{4}^{\prime}(i t)+4 E_{4}(i t) \in \mathbb{R}$, and separately we have $E_{4}(z)^{3}-E_{6}(z)^{2}>0$ for $t>0$ by the infinite product formula from the previous slide.
Similarly, it also holds that $V(i t) \geq 0$ for $t>0$. To see this, rewrite $V(z)$ in terms of θ_{3} and the modular lambda function as

$$
V=128\left(\frac{\theta_{3}^{4}+\theta_{4}^{4}}{\theta_{2}^{8}}+\frac{\theta_{4}^{4}-\theta_{2}^{4}}{\theta_{3}^{8}}\right)=\ldots=\frac{128}{\theta_{3}^{4}} \frac{(1-\lambda)\left(2+\lambda+2 \lambda^{2}\right)}{\lambda^{2}} .
$$

A new proof of (V1)-(V2), part I: proof of (V1)

First, observe that $U(i t) \geq 0$ for all $t>0$ since, by inspection of the relevant Fourier series, we have it $E_{4}^{\prime}(i t)+4 E_{4}(i t) \in \mathbb{R}$, and separately we have $E_{4}(z)^{3}-E_{6}(z)^{2}>0$ for $t>0$ by the infinite product formula from the previous slide.
Similarly, it also holds that $V(i t) \geq 0$ for $t>0$. To see this, rewrite $V(z)$ in terms of θ_{3} and the modular lambda function as

$$
V=128\left(\frac{\theta_{3}^{4}+\theta_{4}^{4}}{\theta_{2}^{8}}+\frac{\theta_{4}^{4}-\theta_{2}^{4}}{\theta_{3}^{8}}\right)=\ldots=\frac{128}{\theta_{3}^{4}} \frac{(1-\lambda)\left(2+\lambda+2 \lambda^{2}\right)}{\lambda^{2}} .
$$

Then use the facts that $\theta_{3}(i t)>0$ (trivially), that $\lambda(i t) \in(0,1)$ for $t>0$, and that the map $x \mapsto \frac{(1-x)\left(2+x+2 x^{2}\right)}{x^{2}}$ takes positive values for $x \in(0,1)$.

A new proof of (V1)-(V2), part II: proof of (V2)

A new proof of (V1)-(V2), part II: proof of (V2)

Step 1: A bit of cleanup

A new proof of (V1)-(V2), part II: proof of (V2)

Step 1: A bit of cleanup

Define functions

$$
\begin{aligned}
& F(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) U(z)=\left(E_{4}^{\prime}\right)^{2} z^{2}+8 E_{4} E_{4}^{\prime} z+16 E_{4}^{2} \\
& \widetilde{F}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} U(-1 / z)=\left(E_{4}^{\prime}\right)^{2} \\
& G(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) V(z)=8 \theta_{4}^{8}\left(\theta_{3}^{12}+\theta_{4}^{4} \theta_{3}^{8}+\theta_{2}^{8} \theta_{4}^{4}-\theta_{2}^{12}\right), \\
& \widetilde{G}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} V(-1 / z)=-8 \theta_{2}^{8}\left(\theta_{3}^{12}+\theta_{2}^{4} \theta_{3}^{8}+\theta_{2}^{4} \theta_{4}^{8}-\theta_{4}^{12}\right)
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2)

Step 1: A bit of cleanup

Define functions

$$
\begin{aligned}
& F(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) U(z)=\left(E_{4}^{\prime}\right)^{2} z^{2}+8 E_{4} E_{4}^{\prime} z+16 E_{4}^{2} \\
& \widetilde{F}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} U(-1 / z)=\left(E_{4}^{\prime}\right)^{2} \\
& G(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) V(z)=8 \theta_{4}^{8}\left(\theta_{3}^{12}+\theta_{4}^{4} \theta_{3}^{8}+\theta_{2}^{8} \theta_{4}^{4}-\theta_{2}^{12}\right), \\
& \widetilde{G}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} V(-1 / z)=-8 \theta_{2}^{8}\left(\theta_{3}^{12}+\theta_{2}^{4} \theta_{3}^{8}+\theta_{2}^{4} \theta_{4}^{8}-\theta_{4}^{12}\right)
\end{aligned}
$$

(making use of the modular transformation properties).

A new proof of (V1)-(V2), part II: proof of (V2)

Step 1: A bit of cleanup

Define functions

$$
\begin{aligned}
& F(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) U(z)=\left(E_{4}^{\prime}\right)^{2} z^{2}+8 E_{4} E_{4}^{\prime} z+16 E_{4}^{2} \\
& \widetilde{F}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} U(-1 / z)=\left(E_{4}^{\prime}\right)^{2} \\
& G(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) V(z)=8 \theta_{4}^{8}\left(\theta_{3}^{12}+\theta_{4}^{4} \theta_{3}^{8}+\theta_{2}^{8} \theta_{4}^{4}-\theta_{2}^{12}\right), \\
& \widetilde{G}(z)=\frac{1}{108}\left(E_{4}^{3}-E_{6}^{2}\right) z^{2} V(-1 / z)=-8 \theta_{2}^{8}\left(\theta_{3}^{12}+\theta_{2}^{4} \theta_{3}^{8}+\theta_{2}^{4} \theta_{4}^{8}-\theta_{4}^{12}\right)
\end{aligned}
$$

(making use of the modular transformation properties).
Trivially, the inequality (V 2) is equivalent to the pair of inequalities

$$
\begin{align*}
&-\widetilde{F}(i t)<-\widetilde{G}(i t)(t \geq 1), \tag{V2-I}\\
& F(i t)<G(i t) \tag{V2-II}\\
&(t \geq 1)
\end{align*}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 2: Understanding the behavior at $t=1$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 2: Understanding the behavior at $t=1$
Theorem (Gauss, Ramanujan, folklore)
We have the explicit evaluations

$$
\begin{aligned}
E_{4}(i)=\frac{3 \Gamma(1 / 4)^{8}}{64 \pi^{6}}, & \theta_{2}(i) & =\frac{\Gamma(1 / 4)}{(2 \pi)^{3 / 4}}, \\
E_{4}^{\prime}(i)=\frac{3 \Gamma(1 / 4)^{8}}{32 \pi^{6}} i, & \theta_{3}(i) & =\frac{\Gamma(1 / 4)}{\sqrt{2} \pi^{3 / 4}}, \\
& \theta_{4}(i) & =\frac{\Gamma(1 / 4)}{(2 \pi)^{3 / 4}},
\end{aligned}
$$

(where $\Gamma(\cdot)$ denotes the Euler gamma function).

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 2: Understanding the behavior at $t=1$
Theorem (Gauss, Ramanujan, folklore)
We have the explicit evaluations

$$
\begin{aligned}
E_{4}(i)=\frac{3 \Gamma(1 / 4)^{8}}{64 \pi^{6}}, & \theta_{2}(i) & =\frac{\Gamma(1 / 4)}{(2 \pi)^{3 / 4}}, \\
E_{4}^{\prime}(i)=\frac{3 \Gamma(1 / 4)^{8}}{32 \pi^{6}} i, & \theta_{3}(i) & =\frac{\Gamma(1 / 4)}{\sqrt{2} \pi^{3 / 4}}, \\
& \theta_{4}(i) & =\frac{\Gamma(1 / 4)}{(2 \pi)^{3 / 4}},
\end{aligned}
$$

(where $\Gamma(\cdot)$ denotes the Euler gamma function).
See p. 257 of my book for a proof sketch and references.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots, \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots, \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
\\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.*

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.*
*This is easy to prove from the definitions.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t)$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t) \leq e^{3 \pi} \widetilde{F}(i)$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t) \leq e^{3 \pi} \widetilde{F}(i)=-e^{3 \pi} E_{4}^{\prime}(i)^{2}$
*This is easy to prove from the definitions.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t) \leq e^{3 \pi} \widetilde{F}(i)=-e^{3 \pi} E_{4}^{\prime}(i)^{2}=e^{3 \pi} \frac{9 \Gamma(1 / 4)^{16}}{1024 \pi^{12}}$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t) \leq e^{3 \pi} \widetilde{F}(i)=-e^{3 \pi} E_{4}^{\prime}(i)^{2}=e^{3 \pi} \frac{9 \Gamma(1 / 4)^{16}}{1024 \pi^{12}} \approx 105043.78$.
*This is easy to prove from the definitions.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

$$
\begin{gathered}
-\widetilde{F}(z)=230400 \pi^{2} q^{4}+8294400 \pi^{2} q^{6}+113356800 \pi^{2} q^{8} \\
+831283200 \pi^{2} q^{10}+4337971200 \pi^{2} q^{12}+\ldots \\
-\widetilde{G}(z)=163840 q^{3}+16121856 q^{5}+333250560 q^{7}+ \\
+3199467520 q^{9}+19472547840 q^{11}+\ldots
\end{gathered}
$$

Note that $q^{4}=e^{-4 \pi t} \ll e^{-3 \pi t}=q^{3}$ for t large, so the inequality $-\widetilde{F}(i t)<-\widetilde{G}(i t)$ holds asymptotically. To prove the stronger claim that it holds for $t \geq 1$, note that the Fourier coefficients in both series are positive.* In particular, the function $t \mapsto-q^{-3} \widetilde{F}(i t)$ is a decreasing function of t, so that for $t \geq 1$,
$-e^{3 \pi t} \widetilde{F}(i t) \leq e^{3 \pi} \widetilde{F}(i)=-e^{3 \pi} E_{4}^{\prime}(i)^{2}=e^{3 \pi} \frac{9 \Gamma(1 / 4)^{16}}{1024 \pi^{12}} \approx 105043.78$.
This in turn is <163840, which is a lower bound for $-e^{3 \pi t} \widetilde{G}(i t)$.
*This is easy to prove from the definitions.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Summarizing this argument:

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Summarizing this argument:

Plots of $-\widetilde{F}(i t),-\widetilde{G}(i t)$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Summarizing this argument:

Plots of $-\widetilde{F}(i t),-\widetilde{G}(i t)$

Plots of $-e^{3 \pi t} \widetilde{F}(i t),-e^{3 \pi t} \widetilde{G}(i t)$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of (V2-II). Imitating the approach for (V2-I), note that

$$
\begin{aligned}
F(i t)=16 & +(-3840 \pi t+7680) q^{2} \\
& +\left(230400 \pi^{2} t^{2}-990720 \pi t+990720\right) q^{4} \\
& +\left(8294400 \pi^{2} t^{2}-25205760 \pi t+16803840\right) q^{6}+\ldots \\
G(i t)=16 & +1920 q^{2}-81920 q^{3}+1077120 q^{4}-8060928 q^{5} \\
& +41725440 q^{6}-166625280 q^{7}+553054080 q^{8}+\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of (V2-II). Imitating the approach for (V2-I), note that

$$
\begin{aligned}
F(i t)=16 & +(-3840 \pi t+7680) q^{2} \\
& +\left(230400 \pi^{2} t^{2}-990720 \pi t+990720\right) q^{4} \\
& +\left(8294400 \pi^{2} t^{2}-25205760 \pi t+16803840\right) q^{6}+\ldots, \\
G(i t)=16 & +1920 q^{2}-81920 q^{3}+1077120 q^{4}-8060928 q^{5} \\
& +41725440 q^{6}-166625280 q^{7}+553054080 q^{8}+\ldots,
\end{aligned}
$$

Define renormalized functions

$$
\begin{aligned}
& K(z)=-\frac{F(z)-16}{q^{2}}=-q^{-2}\left(E_{4}^{\prime}\right)^{2} z^{2}-8 q^{-2} E_{4}^{\prime} E_{4} z-16 q^{-2}\left(E_{4}^{2}-1\right), \\
& L(z)=-\frac{G(z)-16}{q^{2}}=-8 q^{-2}\left[\theta_{4}^{8}\left(\theta_{3}^{12}+\theta_{4}^{4} \theta_{3}^{8}+\theta_{2}^{8} \theta_{4}^{4}-\theta_{2}^{12}\right)-2\right],
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of (V2-II). Imitating the approach for (V2-I), note that

$$
\begin{aligned}
F(i t)=16 & +(-3840 \pi t+7680) q^{2} \\
& +\left(230400 \pi^{2} t^{2}-990720 \pi t+990720\right) q^{4} \\
& +\left(8294400 \pi^{2} t^{2}-25205760 \pi t+16803840\right) q^{6}+\ldots, \\
G(i t)=16 & +1920 q^{2}-81920 q^{3}+1077120 q^{4}-8060928 q^{5} \\
& +41725440 q^{6}-166625280 q^{7}+553054080 q^{8}+\ldots,
\end{aligned}
$$

Define renormalized functions

$$
\begin{aligned}
& K(z)=-\frac{F(z)-16}{q^{2}}=-q^{-2}\left(E_{4}^{\prime}\right)^{2} z^{2}-8 q^{-2} E_{4}^{\prime} E_{4} z-16 q^{-2}\left(E_{4}^{2}-1\right), \\
& L(z)=-\frac{G(z)-16}{q^{2}}=-8 q^{-2}\left[\theta_{4}^{8}\left(\theta_{3}^{12}+\theta_{4}^{4} \theta_{3}^{8}+\theta_{2}^{8} \theta_{4}^{4}-\theta_{2}^{12}\right)-2\right],
\end{aligned}
$$

The inequality (V2-II) is thus equivalent to the inequality

$$
K(i t)>L(i t) \quad(t \geq 1) .
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

As in the earlier proof, we will bound each of $K(i t)$ and $L(i t)$ separately, obtaining the inequality (V2-II) from the combination of the following two lemmas:

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

As in the earlier proof, we will bound each of $K(i t)$ and $L(i t)$ separately, obtaining the inequality (V2-II) from the combination of the following two lemmas:

Lemma (1)
$L(i t) \leq 2297$ for $t \geq 1$.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

As in the earlier proof, we will bound each of $K(i t)$ and $L(i t)$ separately, obtaining the inequality (V2-II) from the combination of the following two lemmas:

Lemma (1)
$L(i t) \leq 2297$ for $t \geq 1$.
Lemma (2)
$K(i t) \geq 3747$ for $t \geq 1$.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
& L(i t)=-1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
&-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
& L(i t)=-1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
&-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots
\end{aligned}
$$

$$
\leq-1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
L(i t)= & -1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
& \quad-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots \\
& \downarrow \text { (assuming alternating coefficients }- \text { need to justify) } \\
\leq & -1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
L(i t)= & -1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
& \quad-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots \\
& \downarrow \quad \text { (assuming alternating coefficients }- \text { need to justify) } \\
\leq & -1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots \\
= & -1920+\frac{L(i t+1)-L(i t)}{2}
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
L(i t)= & -1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
& \quad-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots \\
& \sqrt{ } \quad \text { (assuming alternating coefficients }- \text { need to justify) } \\
\leq & -1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots \\
= & -1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t)
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
L(i t)= & -1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
& \quad-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots \\
& \downarrow \quad \text { (assuming alternating coefficients }- \text { need to justify) } \\
\leq & -1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots \\
= & -1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t) \\
\leq & -1920+H(i)
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
L(i t)= & -1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
& \quad-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots \\
& \downarrow \quad \text { (assuming alternating coefficients }- \text { need to justify) } \\
\leq & -1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots \\
= & -1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t) \\
\leq & -1920+H(i)=\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
& L(i t)=-1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
&-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots
\end{aligned}
$$

\downarrow (assuming alternating coefficients - need to justify)

$$
\leq-1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots
$$

$$
=-1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t)
$$

$$
\leq-1920+H(i)=\ldots=-1920+3 e^{2 \pi} \frac{\Gamma(1 / 4)^{20}}{2048 \pi^{15}}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
& L(i t)=-1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
&-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots
\end{aligned}
$$

\downarrow (assuming alternating coefficients - need to justify)

$$
\leq-1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots
$$

$$
=-1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t)
$$

$$
\leq-1920+H(i)=\ldots=-1920+3 e^{2 \pi} \frac{\Gamma(1 / 4)^{20}}{2048 \pi^{15}} \approx 2296.16
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (1). Again the idea is to leverage monotonicity. Define

$$
\begin{aligned}
H(z) & =\frac{L(z+1)-L(z)}{2}=\ldots=4 q^{-2}\left(\theta_{2}^{8}\left(\theta_{3}^{12}-\theta_{4}^{12}\right)+\theta_{2}^{12}\left(\theta_{3}^{8}+\theta_{4}^{8}\right)\right) \\
& =81920 q+8060928 q^{3}+166625280 q^{5}+1599733760 q^{7}+\ldots
\end{aligned}
$$

Then for $t \geq 1$,

$$
\begin{aligned}
& L(i t)=-1920+81920 q-1077120 q^{2}+8060928 q^{3} \\
&-41725440 q^{4}+166625280 q^{5}-553054080 q^{6}+\ldots
\end{aligned}
$$

\downarrow (assuming alternating coefficients - need to justify)
$\leq-1920+81920 q+8060928 q^{3}+166625280 q^{5}+\ldots$
$=-1920+\frac{L(i t+1)-L(i t)}{2}=-1920+H(i t)$
$\leq-1920+H(i)=\ldots=-1920+3 e^{2 \pi} \frac{\Gamma(1 / 4)^{20}}{2048 \pi^{15}} \approx 2296.16$
≤ 2297, which is what we wanted.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating coefficients: define

$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating coefficients: define

$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.*

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating

 coefficients: define$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.* This follows from the identity**

$$
W=\frac{1}{16}\left(6 X^{5}+15 X^{4} Y+10 X^{3} Y^{2}+Y^{5}\right)
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating

 coefficients: define$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.* This follows from the identity**

$$
W=\frac{1}{16}\left(6 X^{5}+15 X^{4} Y+10 X^{3} Y^{2}+Y^{5}\right)
$$

where $X:=\theta_{2}^{4}$ and $Y:=2 \theta_{3}^{4}-\theta_{2}^{4}=\theta_{3}(z)^{4}+\theta_{3}(z+1)^{4}$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating

 coefficients: define$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.* This follows from the identity**

$$
W=\frac{1}{16}\left(6 X^{5}+15 X^{4} Y+10 X^{3} Y^{2}+Y^{5}\right)
$$

where $X:=\theta_{2}^{4}$ and $Y:=2 \theta_{3}^{4}-\theta_{2}^{4}=\theta_{3}(z)^{4}+\theta_{3}(z+1)^{4}$ are both easily seen to have nonnegative Fourier coefficients.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating coefficients: define

$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.* This follows from the identity**

$$
W=\frac{1}{16}\left(6 X^{5}+15 X^{4} Y+10 X^{3} Y^{2}+Y^{5}\right)
$$

where $X:=\theta_{2}^{4}$ and $Y:=2 \theta_{3}^{4}-\theta_{2}^{4}=\theta_{3}(z)^{4}+\theta_{3}(z+1)^{4}$ are both easily seen to have nonnegative Fourier coefficients.

* This nonnegativity result was first proved by Slipper (2018), with a more complicated proof. See also https://mathoverflow.net/q/441749/78525.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Justification of the assumption about alternating coefficients: define

$$
W(z)=\theta_{3}^{12} \theta_{2}^{8}+\theta_{3}^{8} \theta_{2}^{12}+\theta_{3}^{12} \theta_{4}^{8}+\theta_{3}^{8} \theta_{4}^{12}
$$

By simple algebra, $-L(z+1)=8 q^{-2}(W(z)-2)$, so the claim is equivalent to the statement that the Fourier expansion of $W(z)$ has nonnegative coefficients.* This follows from the identity**

$$
W=\frac{1}{16}\left(6 X^{5}+15 X^{4} Y+10 X^{3} Y^{2}+Y^{5}\right)
$$

where $X:=\theta_{2}^{4}$ and $Y:=2 \theta_{3}^{4}-\theta_{2}^{4}=\theta_{3}(z)^{4}+\theta_{3}(z+1)^{4}$ are both easily seen to have nonnegative Fourier coefficients.

* This nonnegativity result was first proved by Slipper (2018), with a more complicated proof. See also https://mathoverflow.net/q/441749/78525.
** I discovered this identity using computer algebra + a linear program solver.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2).

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots
\end{aligned}
$$

With this motivation in mind, define

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

so that we have

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) .
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

so that we have

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) .
$$

The following claims are easy to check:

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

so that we have

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) .
$$

The following claims are easy to check:
(1) The function $K_{1}(t)$ is monotone increasing on $[1, \infty)$,

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

so that we have

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) .
$$

The following claims are easy to check:
(1) The function $K_{1}(t)$ is monotone increasing on $[1, \infty)$,
(2) The function $K_{2}(t)$ is monotone increasing on $[1, \infty)$.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Proof of Lemma (2). The asymptotic expansion of $K(i t)$ is

$$
\begin{aligned}
K(i t)= & (3840 \pi t-7680)+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2} \\
& +\left(-8294400 \pi^{2} t^{2}+25205760 \pi t-16803840\right) q^{4}+\ldots .
\end{aligned}
$$

With this motivation in mind, define

$$
\begin{aligned}
K_{1}(t)= & 3840 \pi t+\left(-230400 \pi^{2} t^{2}+990720 \pi t-990720\right) q^{2}, \\
K_{2}(t)= & q^{-2} E_{4}^{\prime}(i t)^{2} t^{2}-16 q^{-2}\left(E_{4}(i t)^{2}-1\right) \\
& +\left(230400 \pi^{2} t^{2}+990720\right) q^{2}, \\
K_{3}(t)= & -8 i q^{-2} E_{4}^{\prime}(i t) E_{4}(i t) t-\left(3840 \pi t+990720 \pi t q^{2}\right),
\end{aligned}
$$

so that we have

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) .
$$

The following claims are easy to check:
(1) The function $K_{1}(t)$ is monotone increasing on $[1, \infty)$,
(2) The function $K_{2}(t)$ is monotone increasing on $[1, \infty)$.
(3) $K_{3}(t) \geq 0$ for all $t>0$.

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,
$K(i t)$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t)
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t)
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
K(i t)=K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t) \geq K_{1}(1)+K_{2}(1)
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
\begin{aligned}
K(i t) & =K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t) \geq K_{1}(1)+K_{2}(1) \\
& =-e^{2 \pi}\left(-E_{4}^{\prime}(i)^{2}+16 E_{4}(i)^{2}-16\right)+3840 \pi+990720 \pi e^{-2 \pi}
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
\begin{aligned}
K(i t) & =K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t) \geq K_{1}(1)+K_{2}(1) \\
& =-e^{2 \pi}\left(-E_{4}^{\prime}(i)^{2}+16 E_{4}(i)^{2}-16\right)+3840 \pi+990720 \pi e^{-2 \pi} \\
& =-e^{2 \pi}\left(\frac{45 \Gamma(1 / 4)^{16}}{1024 \pi^{12}}-16\right)+3840 \pi+990720 \pi e^{-2 \pi}
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
\begin{aligned}
K(i t) & =K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t) \geq K_{1}(1)+K_{2}(1) \\
& =-e^{2 \pi}\left(-E_{4}^{\prime}(i)^{2}+16 E_{4}(i)^{2}-16\right)+3840 \pi+990720 \pi e^{-2 \pi} \\
& =-e^{2 \pi}\left(\frac{45 \Gamma(1 / 4)^{16}}{1024 \pi^{12}}-16\right)+3840 \pi+990720 \pi e^{-2 \pi} \\
& \approx 3747.1,
\end{aligned}
$$

A new proof of (V1)-(V2), part II: proof of (V2) (cont'd)

Therefore, assuming $t \geq 1$,

$$
\begin{aligned}
K(i t) & =K_{1}(t)+K_{2}(t)+K_{3}(t) \geq K_{1}(t)+K_{2}(t) \geq K_{1}(1)+K_{2}(1) \\
& =-e^{2 \pi}\left(-E_{4}^{\prime}(i)^{2}+16 E_{4}(i)^{2}-16\right)+3840 \pi+990720 \pi e^{-2 \pi} \\
& =-e^{2 \pi}\left(\frac{45 \Gamma(1 / 4)^{16}}{1024 \pi^{12}}-16\right)+3840 \pi+990720 \pi e^{-2 \pi} \\
& \approx 3747.1
\end{aligned}
$$

as claimed.

Final thoughts and open problems

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4.

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4. (Might require computer assistance?)

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4. (Might require computer assistance?)
- A philosophical lesson:

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4. (Might require computer assistance?)
- A philosophical lesson:

Human analysis and insights can still triumph over computer-assisted mathematics

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4. (Might require computer assistance?)
- A philosophical lesson:

Human analysis and insights can still triumph over computer-assisted mathematics
(...in 2023).

Final thoughts and open problems

- Viazovska's magic function φ is a mathematical object of remarkable beauty and mystery.
- We now understand it a bit better than before. But there seems more to understand still.
- Open problems:
- Find a human proof of the analogous inequalities for the case of dimension 24.
- Prove the analogous inequalities for dimensions that are multiples of 4. (Might require computer assistance?)
- A philosophical lesson:

Human analysis and insights can still triumph over computer-assisted mathematics
(...in 2023).

That's all - thank you!

[^0]: Image source: Henry Cohn, A conceptual breakthrough in sphere packing (Notices of AMS, 2017)

