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Some useful references

Source material for this talk:

• The paper “The sphere packing problem
in dimension 8” by Maryna Viazovska
(Ann. Math. (2017), 991–1015).

• My paper “On Viazovska’s modular form
inequalities” (PNAS, 2023).

• Chapter 6 + Appendix of my book
“Topics in Complex Analysis”
https://www.math.ucdavis.edu/

~romik/topics-in-complex-analysis/
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Background: sphere packings in Rd

The sphere packing problem in Rd asks: what is the densest
way to pack unit spheres in d-dimensional space?

• Trivial case: d = 1.

• (Relatively) easy case: d = 2. The optimal circle packing is
the hexagonal lattice packing, with packing density π

2
√
3
.

Proved by Gauss (1831), Thue (1890), Tóth (1941).

• Famous case: d = 3. Kepler’s conjecture from 1611 stated
that the optimal density for sphere packing is π

3
√
2
, achieved

by the cubic close packing and the hexagonal close
packing. Proved by Thomas Hales in 1998.

• The case d = 8. Maryna Viazovska proved in 2016 that for
d = 8, the densest packing is the E8 lattice packing, with
packing density π4

384 .

• The case d = 24. Viazovska with Cohn, Kumar, Miller, and
Radchenko then proved that for d = 24, the densest packing
is the Leech lattice packing, with packing density π12

12! .
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Background: sphere packings in Rd (continued)

In other dimensions the problem remains open.
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Background: sphere packings in Rd (continued)

The optimal lattices for sphere packing in dimensions 2, 3, 8
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Viazovska’s proof in dimension 8

• It had previously been conjectured that the E8 lattice packing,
with packing density π4

384 , is optimal. This gives a lower bound
on the optimal packing density; Viazovska proved a matching
upper bound, solving the problem.

• Viazovska made use of a remarkable theorem from 2001, the
Cohn-Elkies linear programming bounds. It reduced the
problem to finding a magic function, an analytic object with
certain properties.

• Viazovska’s proof is complex-analytic. She used modular
forms to construct the magic function for dimension 8. An
extension of the method works for dimension 24.

• One component of the proof makes extensive use of computer
calculations.
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The Cohn-Elkies linear programming bounds

Theorem (Cohn-Elkies, 2001)

Let f : Rd → R be a function and ρ > 0 a number. Assume that
the following conditions are satisfied:

1 f is a Schwartz function

2 f (0) = f̂ (0) > 0 (f̂ = the Fourier transform of f )

3 f (x) ≤ 0 for all x ∈ Rd such that ∥x∥ ≥ ρ

4 f̂ (x) ≥ 0 for all x ∈ Rd

Then the optimal packing density δd in Rd satisfies

δd ≤ vol(Bρ/2(0)) =
ρd

2d
× [vol. of unit ball]

• The proof is an application of the Poisson summation
formula from harmonic analysis; see the appendix of my book.

• For the case d = 8, the sharp bound π4

384 is obtained when

ρ =
√
2. A function satisfying the conditions of the theorem

for that ρ is called a magic function.
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Applying the Cohn-Elkies bounds in practice

Cohn and Elkies applied their bound to numerically optimized
bounding functions f , obtaining the best known (at the time)
upper bounds for the sphere packing density in dimensions 4–36.

dimension

lo
g
(d
en
si
ty
)

linear programming bound

best packing known

4 8 12 16 20 24 28 32 361

0

−14

Image source: Henry Cohn, A conceptual breakthrough in sphere packing (Notices of AMS, 2017)
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Applying the Cohn-Elkies bounds in practice (continued)

In dimensions 2, 8 and 24, their bounds came extremely close to
matching the known lower bounds.
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−14

They conjectured that in those dimensions there exists a “magic
function” f certifying a sharp bound.
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Viazovska’s magic function

Viazovska’s function φ : R8 → R is defined by

(the analytic continuation of)

φ(x) = −4 sin2
(
π∥x∥2

2

)
×
∫ ∞

0
e−πt∥x∥2

[
108

(itE ′
4(it) + 4E4(it))

2

E4(it)3 − E6(it)2

+ 128

(
θ3(it)

4 + θ4(it)
4

θ2(it)8
+

θ4(it)
4 − θ2(it)

4

θ3(it)8

)]
dt,

where E4, E6 are the Eisenstein series and θ2, θ3, θ4 are the
Jacobi thetanull functions, defined by

E4(z) = 1 + 240
∑∞

n=1 σ3(n)q
2n, θ2(z) =

∑∞
n=−∞ q(n+1/2)2 ,

E6(z) = 1− 504
∑∞

n=1 σ5(n)q
2n, θ3(z) =

∑∞
n=−∞ qn

2
,

θ4(z) =
∑∞

n=−∞(−1)nqn
2
,

(with the standard notation q = eπiz , σα(n) =
∑

d | n d
α).
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Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π

(φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.

(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



Viazovska’s magic function (continued)

Theorem (Viazovska)

φ is a magic function for dimension 8. More precisely, it has the
following properties:

1 φ is a Schwartz function

2 φ(0) = φ̂(0) = 240π (φ̂ = the Fourier transform of φ)

3 φ̂(x) ≥ 0 for all x ∈ R8

4 φ(x) ≤ 0 for all x ∈ R8 with ∥x∥ ≥
√
2

Using the Cohn-Elkies linear programming bound, the above
properties imply that φ certifies an upper bound of π4

384 for sphere
packing density in R8. This matches the packing density of the E8

lattice packing.

It remains to prove the claimed properties. This is not trivial.
(Related, and much more nontrivial: the reasoning that led to the
strange formula for φ.)

12/28



The modular forms in the definition of φ

The problem boils down to understanding the properties of the
modular forms in the definition of φ. Let H denote the upper half
plane. Define functions U : H → C, V : H → C by

U(z) = 108
(zE ′

4(z) + 4E4(z))
2

E4(z)3 − E6(z)2

V (z) = 128

(
θ3(z)

4 + θ4(z)
4

θ2(z)8
+

θ4(z)
4 − θ2(z)

4

θ3(z)8

)
.

Define functions φ± : R8 → R by (the analytic continuation of)

φ+(x) = −4 sin2
(
π∥x∥2

2

)∫ ∞

0
e−πt∥x∥2U(it) dt

φ−(x) = −4 sin2
(
π∥x∥2

2

)∫ ∞

0
e−πt∥x∥2V (it) dt,

so that φ = φ+ + φ−.
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Viazovska’s modular form inequalities

The definitions of U(z), V (z) were carefully chosen to satisfy
several conditions, including, crucially,

φ̂+ = φ+, φ̂− = −φ−.

(That is, φ± are eigenfunctions of the Fourier transform with resp.
eigenvalues ±1.)

Thus, we have the relations

φ = φ+ + φ− = −4 sin2
(
π∥x∥2

2

) ∫∞
0 e−πt∥x∥2 (U(it) + V (it)) dt,

φ̂ = φ+ − φ− = −4 sin2
(
π∥x∥2

2

) ∫∞
0 e−πt∥x∥2 (U(it)− V (it)) dt.

The inequalities for φ and φ̂ will therefore follow from the
following result:

Theorem (Viazovska)

The functions U,V satisfy the inequalities

U(it) + V (it) ≥ 0 (t > 0) (V1)

U(it)− V (it) ≤ 0 (t > 0) (V2)
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Viazovska’s modular form inequalities (continued)

Theorem (Viazovska)

The functions U,V satisfy the inequalities

U(it) + V (it) ≥ 0 (t > 0) (V1)

U(it)− V (it) ≤ 0 (t > 0) (V2)

• The inequalities (V1)–(V2) seem
unnatural, because they relate
modular forms that belong to
different modular form spaces.
This makes it difficult to think of a
conceptual reason why they should
be true.

• Viazovska proved them using
(rigorously supported) numerical
calculations.

U (t )
V (t )

1.1 1.2 1.3 1.4 1.5

2000

4000

6000

8000

10000

12000
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A new proof

I will now show a new proof of (V1)–(V2) that does not rely on
computer calculations.

Recall a few facts about modular forms:

Reminder (1). E4,E6, θ2, θ3, θ4 are modular forms satisfying the
modular transformation properties

E4(z + 1) = E4(z), E4(−1/z) = z4E4(z),

E6(z + 1) = E6(z), E6(−1/z) = z6E6(z),

θ2(z + 1)4 = −θ2(z)
4, θ2(−1/z)4 = −z2 θ4(z)

4,

θ3(z + 1)4 = θ4(z)
4, θ3(−1/z)4 = −z2 θ3(z)

4,

θ4(z + 1)4 = θ3(z)
4, θ4(−1/z)4 = −z2 θ2(z)

4.

Reminder (2). E 3
4 − E 2

6 is a scaling of the modular discriminant:

E 3
4 − E 2

6 =
1728

(2π)12
∆(z) = 1728q2

∞∏
n=1

(1− q2n)24 =
27

4
(θ2θ3θ4)

8.

Reminder (3). The modular lambda function is

λ =
θ42
θ43

= 1− θ44
θ43
. For t > 0, λ(it) ∈ (0, 1).
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E4(z + 1) = E4(z), E4(−1/z) = z4E4(z),

E6(z + 1) = E6(z), E6(−1/z) = z6E6(z),

θ2(z + 1)4 = −θ2(z)
4, θ2(−1/z)4 = −z2 θ4(z)

4,

θ3(z + 1)4 = θ4(z)
4, θ3(−1/z)4 = −z2 θ3(z)

4,

θ4(z + 1)4 = θ3(z)
4, θ4(−1/z)4 = −z2 θ2(z)

4.

Reminder (2). E 3
4 − E 2

6 is a scaling of the modular discriminant:

E 3
4 − E 2

6 =
1728

(2π)12
∆(z) = 1728q2

∞∏
n=1

(1− q2n)24 =
27

4
(θ2θ3θ4)

8.

Reminder (3). The modular lambda function is

λ =
θ42
θ43

= 1− θ44
θ43
. For t > 0, λ(it) ∈ (0, 1).
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A new proof of (V1)–(V2), part I: proof of (V1)

First, observe that U(it) ≥ 0 for all t > 0 since, by inspection of
the relevant Fourier series, we have itE ′

4(it) + 4E4(it) ∈ R, and
separately we have E4(z)

3 − E6(z)
2 > 0 for t > 0 by the infinite

product formula from the previous slide.

Similarly, it also holds that V (it) ≥ 0 for t > 0. To see this,
rewrite V (z) in terms of θ3 and the modular lambda function as

V = 128

(
θ43 + θ44

θ82
+

θ44 − θ42
θ83

)
= ... =

128

θ43

(1− λ)(2 + λ+ 2λ2)

λ2
.

Then use the facts that θ3(it) > 0 (trivially), that λ(it) ∈ (0, 1) for

t > 0, and that the map x 7→ (1−x)(2+x+2x2)
x2

takes positive values
for x ∈ (0, 1).
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A new proof of (V1)–(V2), part II: proof of (V2)

Step 1: A bit of cleanup
Define functions

F (z) =
1

108
(E 3

4 − E 2
6 )U(z) = (E ′

4)
2z2 + 8E4E

′
4z + 16E 2

4 ,

F̃ (z) =
1

108
(E 3

4 − E 2
6 )z

2U(−1/z) = (E ′
4)

2,

G (z) =
1

108
(E 3

4 − E 2
6 )V (z) = 8θ84(θ

12
3 + θ44θ

8
3 + θ82θ

4
4 − θ122 ),

G̃ (z) =
1

108
(E 3

4 − E 2
6 )z

2V (−1/z) = −8θ82(θ
12
3 + θ42θ

8
3 + θ42θ

8
4 − θ124 )

(making use of the modular transformation properties).

Trivially, the inequality (V2) is equivalent to the pair of inequalities

−F̃ (it) < −G̃ (it) (t ≥ 1), (V2-I)

F (it) < G (it) (t ≥ 1). (V2-II)
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Step 2: Understanding the behavior at t = 1

Theorem (Gauss, Ramanujan, folklore)

We have the explicit evaluations

E4(i) =
3Γ(1/4)8

64π6
, θ2(i) =

Γ(1/4)

(2π)3/4
,

E ′
4(i) =

3Γ(1/4)8

32π6
i , θ3(i) =

Γ(1/4)√
2π3/4

,

θ4(i) =
Γ(1/4)

(2π)3/4
,

(where Γ(·) denotes the Euler gamma function).

See p. 257 of my book for a proof sketch and references.
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Step 3: Leveraging monotonicity

Proof of (V2-I). Observe that

−F̃ (z) = 230400π2q4 + 8294400π2q6 + 113356800π2q8

+ 831283200π2q10 + 4337971200π2q12 + . . . ,

−G̃ (z) = 163840q3 + 16121856q5 + 333250560q7+

+ 3199467520q9 + 19472547840q11 + . . . .

Note that q4 = e−4πt ≪ e−3πt = q3 for t large, so the inequality
−F̃ (it) < −G̃ (it) holds asymptotically. To prove the stronger
claim that it holds for t ≥ 1, note that the Fourier coefficients in
both series are positive.∗

∗This is easy to prove from the definitions.

In particular, the function t 7→ −q−3F̃ (it)
is a decreasing function of t, so that for t ≥ 1,

−e3πt F̃ (it) ≤ e3πF̃ (i) = −e3πE ′
4(i)

2 = e3π
9Γ(1/4)16

1024π12
≈ 105043.78.

This in turn is < 163840, which is a lower bound for −e3πtG̃ (it).
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Summarizing this argument:

1.2 1.4 1.6 1.8 2.0
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Plots of −F̃ (it), −G̃ (it)
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Proof of (V2-II). Imitating the approach for (V2-I), note that

F (it) = 16 + (−3840πt + 7680)q2

+ (230400π2t2 − 990720πt + 990720)q4

+ (8294400π2t2 − 25205760πt + 16803840)q6 + . . . ,

G (it) = 16 + 1920q2 − 81920q3 + 1077120q4 − 8060928q5

+ 41725440q6 − 166625280q7 + 553054080q8 + . . . ,

Define renormalized functions

K (z) = −F (z)− 16

q2
= −q−2(E ′

4)
2z2 − 8q−2E ′

4E4z − 16q−2(E 2
4 − 1),

L(z) = −G (z)− 16

q2
= −8q−2

[
θ84(θ

12
3 + θ44θ

8
3 + θ82θ

4
4 − θ122 )− 2

]
,

The inequality (V2-II) is thus equivalent to the inequality

K (it) > L(it) (t ≥ 1).
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

As in the earlier proof, we will bound each of K (it) and L(it)
separately, obtaining the inequality (V2-II) from the combination
of the following two lemmas:

Lemma (1)

L(it) ≤ 2297 for t ≥ 1.

Lemma (2)

K (it) ≥ 3747 for t ≥ 1.
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Proof of Lemma (1). Again the idea is to leverage monotonicity.

Define

H(z) =
L(z + 1)− L(z)

2
= ... = 4q−2

(
θ82(θ

12
3 − θ124 ) + θ122 (θ83 + θ84)

)
= 81920q + 8060928q3 + 166625280q5 + 1599733760q7 + . . . .

Then for t ≥ 1,

L(it) = −1920 + 81920q − 1077120q2 + 8060928q3

−41725440q4 + 166625280q5 − 553054080q6 + . . .

≤ −1920 + 81920q + 8060928q3 + 166625280q5 + . . .

= −1920 +
L(it + 1)− L(it)

2
= −1920 + H(it)

≤ −1920 + H(i) = ... = −1920 + 3e2π
Γ(1/4)20

2048π15
≈ 2296.16

≤ 2297, which is what we wanted.
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2048π15
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Justification of the assumption about alternating
coefficients: define

W (z) = θ123 θ82 + θ83θ
12
2 + θ123 θ84 + θ83θ

12
4 .

By simple algebra, −L(z + 1) = 8q−2(W (z)− 2), so the claim is
equivalent to the statement that the Fourier expansion of W (z)
has nonnegative coefficients.∗ This follows from the identity∗∗

W =
1

16
(6X 5 + 15X 4Y + 10X 3Y 2 + Y 5),

where X := θ42 and Y := 2θ43 − θ42 = θ3(z)
4 + θ3(z + 1)4 are both

easily seen to have nonnegative Fourier coefficients.

∗ This nonnegativity result was first proved by Slipper (2018), with a

more complicated proof. See also https://mathoverflow.net/q/441749/78525.

∗∗ I discovered this identity using computer algebra + a linear program solver.
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Proof of Lemma (2).

The asymptotic expansion of K (it) is

K (it) = (3840πt − 7680) + (−230400π2t2 + 990720πt − 990720)q2

+ (−8294400π2t2 + 25205760πt − 16803840)q4 + . . . .

With this motivation in mind, define

K1(t) = 3840πt + (−230400π2t2 + 990720πt − 990720)q2,

K2(t) = q−2E ′
4(it)

2t2 − 16q−2(E4(it)
2 − 1)

+ (230400π2t2 + 990720)q2,

K3(t) = −8iq−2E ′
4(it)E4(it)t − (3840πt + 990720πtq2),

so that we have
K (it) = K1(t) + K2(t) + K3(t).

The following claims are easy to check:

1 The function K1(t) is monotone increasing on [1,∞),

2 The function K2(t) is monotone increasing on [1,∞).

3 K3(t) ≥ 0 for all t > 0.
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A new proof of (V1)–(V2), part II: proof of (V2) (cont’d)

Therefore, assuming t ≥ 1,

K (it) = K1(t) + K2(t) + K3(t) ≥ K1(t) + K2(t) ≥ K1(1) + K2(1)

= −e2π
(
−E ′

4(i)
2 + 16E4(i)

2 − 16
)
+ 3840π + 990720πe−2π

= −e2π
(
45 Γ(1/4)16

1024π12
− 16

)
+ 3840π + 990720πe−2π

≈ 3747.1,

as claimed.
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+ 3840π + 990720πe−2π

= −e2π
(
45 Γ(1/4)16

1024π12
− 16

)
+ 3840π + 990720πe−2π

≈ 3747.1,

as claimed.
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Final thoughts and open problems

• Viazovska’s magic function φ is a mathematical object of
remarkable beauty and mystery.

• We now understand it a bit better than before. But there
seems more to understand still.

• Open problems:
• Find a human proof of the analogous inequalities for the case

of dimension 24.
• Prove the analogous inequalities for dimensions that are

multiples of 4. (Might require computer assistance?)

• A philosophical lesson:

Human analysis and insights can still triumph over
computer-assisted mathematics

(...in 2023).

That’s all — thank you!
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