
Quadratizations of differential equations

Gleb Pogudin,
MAX team, LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,

joint work with A. Bychkov, O. Issan, and B. Kramer

Computer Algebra for Functional Equations in Combinatorics and Physics

Institute Henri Poincaré, Paris, December 5



In this talk

Plan

1. Quadratization: what, why, and how?

2. Quadratizing systems of varying (sic!) dimension

3. Open problems

1



Part I

Quadratization: what, why, and how?

2



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4

(degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ =

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ =

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ =

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ = x4

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ = xy

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ = xy

y ′ = 3x ′x2

= 3x6 = 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ = xy

y ′ = 3x ′x2 = 3x6

= 3y2

DONE!

3



Quadratization: what?

Toy example

Consider one-dimensional ODE system:

x ′ = x4 (degree = 4)

Goal: add new variables =⇒ deg ⩽ 2

Solution: introduce y := x3:{
x ′ = xy

y ′ = 3x ′x2 = 3x6 = 3y2

DONE!

3



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that


x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

In the example for x ′ = x4 we had

n = 1 & f1(x) = x4

=⇒ m = 1 & g1(x) = x3 =⇒

{
x ′ = xy = h1(x , y),

y ′ = 3y2 = h2(x , y)

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

In the example for x ′ = x4 we had

n = 1 & f1(x) = x4 =⇒ m = 1 & g1(x) = x3

=⇒

{
x ′ = xy = h1(x , y),

y ′ = 3y2 = h2(x , y)

4



Quadratization: what?

Formal definition. Consider a system in x̄ = (x1, . . . , xn):
x ′1 = f1(x̄),

. . .

x ′n = fn(x̄),

where f1, . . . , fn ∈ C[x̄ ]. (1)

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄ , ȳ ], deg h1, . . . , deg hm+n ⩽ 2 such that
x ′1 = h1(x̄ , ȳ),

. . .

x ′n = hn(x̄ , ȳ)

and


y ′
1 = hn+1(x̄ , ȳ),

. . .

y ′
m = hn+m(x̄ , ȳ).

In the example for x ′ = x4 we had

n = 1 & f1(x) = x4 =⇒ m = 1 & g1(x) = x3 =⇒

{
x ′ = xy = h1(x , y),

y ′ = 3y2 = h2(x , y)
4



Quadratization: why? Part 1

• Synthesis of chemical reaction networks:

deg ⩽ 2 ⇐⇒ bimolecular network

(Hemery,Fages,Soliman’2020)

• Reachability analysis: explicit error bounds for Carleman linearization

in the quadratic case

(Forets, Schilling ’ 2021)

• Solving differential equations numerically

(Cochelin& Vergez’2009, Guillot, Cochelin, Vergez’2019)

5



Quadratization: why? Part 1

• Synthesis of chemical reaction networks:

deg ⩽ 2 ⇐⇒ bimolecular network

(Hemery,Fages,Soliman’2020)

• Reachability analysis: explicit error bounds for Carleman linearization

in the quadratic case

(Forets, Schilling ’ 2021)

• Solving differential equations numerically

(Cochelin& Vergez’2009, Guillot, Cochelin, Vergez’2019)

5



Quadratization: why? Part 1

• Synthesis of chemical reaction networks:

deg ⩽ 2 ⇐⇒ bimolecular network

(Hemery,Fages,Soliman’2020)

• Reachability analysis: explicit error bounds for Carleman linearization

in the quadratic case

(Forets, Schilling ’ 2021)

• Solving differential equations numerically

(Cochelin& Vergez’2009, Guillot, Cochelin, Vergez’2019)

5



Quadratization: why? Part 1

• Synthesis of chemical reaction networks:

deg ⩽ 2 ⇐⇒ bimolecular network

(Hemery,Fages,Soliman’2020)

• Reachability analysis: explicit error bounds for Carleman linearization

in the quadratic case

(Forets, Schilling ’ 2021)

• Solving differential equations numerically

(Cochelin& Vergez’2009, Guillot, Cochelin, Vergez’2019)

5



Quadratization: why? Part 2

Main target application in this talk: Model Order Reduction.

Given:

• Learning quadratic reductions is well-understood

• Quadratic reductions are especially natural for quadratic systems

(in particular projection of a quadratic model is quadratic)

Ergo: Quadratize and then Reduce

• Projection-based MOR

(Gu’2011, Brenner & Breiten’2015, Kramer & Willcox’ 2019)

• Lift & Learn (Qian, Kramer, Peherstorfer, Willcox’2020)

6



Quadratization: why? Part 2

Main target application in this talk: Model Order Reduction.

Given:

• Learning quadratic reductions is well-understood

• Quadratic reductions are especially natural for quadratic systems

(in particular projection of a quadratic model is quadratic)

Ergo: Quadratize and then Reduce

• Projection-based MOR

(Gu’2011, Brenner & Breiten’2015, Kramer & Willcox’ 2019)

• Lift & Learn (Qian, Kramer, Peherstorfer, Willcox’2020)

6



What do we know about quadratizations?

Theorem (e.g., Appelroth’1902, Lagutinskii’1911)

Every ODE system has a quadratization.

The proof is constructive and the new variables can be chosen to be

monomials.

BUT:

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

7



What do we know about quadratizations?

Theorem (e.g., Appelroth’1902, Lagutinskii’1911)

Every ODE system has a quadratization.

The proof is constructive and the new variables can be chosen to be

monomials.

BUT:

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

7



What do we know about quadratizations?

Theorem (e.g., Appelroth’1902, Lagutinskii’1911)

Every ODE system has a quadratization.

The proof is constructive and the new variables can be chosen to be

monomials.

BUT:

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

7



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

Example for QBee: equation x ′ = x4 + x3

∅

{x2} {x3}

{x2, x3}{x2, x4} {x2, x5} {x3, x4} {x3, x5}

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

How far can one go?



x ′1 = x32 + x37 ,

x ′2 = x31 + x33 ,

x ′3 = x32 + x34 ,

x ′4 = x33 + x35 ,

x ′5 = x34 + x36 ,

x ′6 = x35 + x37 ,

x ′7 = x36 + x31 .

30 sec.

8 vars =⇒ 70 sec.


x ′1 = x22 + (x1x2x3)

2,

x ′2 = x23 + (x1x2x3)
2,

x ′3 = x21 + (x1x2x3)
2.

100 sec.

4 vars =⇒ ∞

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

How far can one go?

x ′1 = x32 + x37 ,

x ′2 = x31 + x33 ,

x ′3 = x32 + x34 ,

x ′4 = x33 + x35 ,

x ′5 = x34 + x36 ,

x ′6 = x35 + x37 ,

x ′7 = x36 + x31 .

30 sec.

8 vars =⇒ 70 sec.


x ′1 = x22 + (x1x2x3)

2,

x ′2 = x23 + (x1x2x3)
2,

x ′3 = x21 + (x1x2x3)
2.

100 sec.

4 vars =⇒ ∞

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

How far can one go?

x ′1 = x32 + x37 ,

x ′2 = x31 + x33 ,

x ′3 = x32 + x34 ,

x ′4 = x33 + x35 ,

x ′5 = x34 + x36 ,

x ′6 = x35 + x37 ,

x ′7 = x36 + x31 .

30 sec.

8 vars =⇒ 70 sec.


x ′1 = x22 + (x1x2x3)

2,

x ′2 = x23 + (x1x2x3)
2,

x ′3 = x21 + (x1x2x3)
2.

100 sec.

4 vars =⇒ ∞

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

How far can one go?

x ′1 = x32 + x37 ,

x ′2 = x31 + x33 ,

x ′3 = x32 + x34 ,

x ′4 = x33 + x35 ,

x ′5 = x34 + x36 ,

x ′6 = x35 + x37 ,

x ′7 = x36 + x31 .

30 sec.

8 vars =⇒ 70 sec.


x ′1 = x22 + (x1x2x3)

2,

x ′2 = x23 + (x1x2x3)
2,

x ′3 = x21 + (x1x2x3)
2.

100 sec.

4 vars =⇒ ∞

8



Can we find quadratizations?

Existing software (monomial quadratizations)

• Biocham (Hemery, Fages, Soliman, 2020)

Via encoding as a MAX-SAT problem. Often optimal but not always.

• QBee (Bychkov, P., 2021)

Branch & Bound search. Optimality guaranteed.

How far can one go?

x ′1 = x32 + x37 ,

x ′2 = x31 + x33 ,

x ′3 = x32 + x34 ,

x ′4 = x33 + x35 ,

x ′5 = x34 + x36 ,

x ′6 = x35 + x37 ,

x ′7 = x36 + x31 .

30 sec.

8 vars =⇒ 70 sec.


x ′1 = x22 + (x1x2x3)

2,

x ′2 = x23 + (x1x2x3)
2,

x ′3 = x21 + (x1x2x3)
2.

100 sec.

4 vars =⇒ ∞

8



Part II

Quadratizing systems of varying dimension

9



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system

10



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system

10



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system

10



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system

10



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system

10



Where can I get a high-dimensional ODE system?

Recipy

Take one small PDE system and

one large integer N

Semidiscretize the system

Running example

∂v

∂t
= v + v2 ∂v

∂ξ
, where v = v(t, ξ)

v(t, 0) =
∂v

∂ξ
(t, 1) = 0, N = 100

xi (t) = v(t, i/N),

∂v

∂ξ
(t, i/N) ≈ xi (t)− xi−1(t)

1/N

⇓
x ′i = xi + Nx2i (xi − xi−1) i = 1, ...,N︸ ︷︷ ︸

N-dimensional system
10



The Problem

Goal: Quadratize efficiently systems

appearing as discretizations

Challenges

• The dimension is large (infeasible for QBee);

• Changing N =⇒ changing the dimension

(varying dimension)

Idea: equations are abundant but not so different!

11



The Problem

Goal: Quadratize efficiently systems

appearing as discretizations

Challenges

• The dimension is large (infeasible for QBee);

• Changing N =⇒ changing the dimension

(varying dimension)

Idea: equations are abundant but not so different!

11



The Problem

Goal: Quadratize efficiently systems

appearing as discretizations

Challenges

• The dimension is large (infeasible for QBee);

• Changing N =⇒ changing the dimension

(varying dimension)

Idea: equations are abundant but not so different!

11



Approach: Motivating example

Running example restated

∂v

∂t
= v + v2 ∂v

∂ξ
=⇒ x ′i = xi + Nx2i (xi − xi−1), i = 1, . . . ,N

Where:

• x = [x1, . . . , xN ]
T ; [a1, a2, . . .]

T ⊙ [b1, b2, . . .]
T = [a1b1, a2b2, . . .];

• D ∈ RN×N is a matrix with Di,j =


N, if i = j ,

−N, if i = j + 1,

0, otherwise.

Quadratization

The following works for every N:

w1 = x2 and w2 = x⊙ Sx

where S is a shift operator: Sx = [0, x1, . . . , xN−1]
T .

12



Approach: Motivating example

Running example restated

∂v

∂t
= v + v2 ∂v

∂ξ
=⇒ x′ = x+ x2 ⊙ (Dx)

Where:

• x = [x1, . . . , xN ]
T ; [a1, a2, . . .]

T ⊙ [b1, b2, . . .]
T = [a1b1, a2b2, . . .];

• D ∈ RN×N is a matrix with Di,j =


N, if i = j ,

−N, if i = j + 1,

0, otherwise.

Quadratization

The following works for every N:

w1 = x2 and w2 = x⊙ Sx

where S is a shift operator: Sx = [0, x1, . . . , xN−1]
T .

12



Approach: Motivating example

Running example restated

∂v

∂t
= v + v2 ∂v

∂ξ
=⇒ x′ = x+ x2 ⊙ (Dx)

Where:

• x = [x1, . . . , xN ]
T ; [a1, a2, . . .]

T ⊙ [b1, b2, . . .]
T = [a1b1, a2b2, . . .];

• D ∈ RN×N is a matrix with Di,j =


N, if i = j ,

−N, if i = j + 1,

0, otherwise.

Quadratization

The following works for every N:

w1 = x2 and w2 = x⊙ Sx

where S is a shift operator: Sx = [0, x1, . . . , xN−1]
T .

12



Approach: Motivating example

Running example restated

∂v

∂t
= v + v2 ∂v

∂ξ
=⇒ x′ = x+ x2 ⊙ (Dx)

Where:

• x = [x1, . . . , xN ]
T ; [a1, a2, . . .]

T ⊙ [b1, b2, . . .]
T = [a1b1, a2b2, . . .];

• D ∈ RN×N is a matrix with Di,j =


N, if i = j ,

−N, if i = j + 1,

0, otherwise.

Quadratization

The following works for every N:

w1 = x2 and w2 = x⊙ Sx

where S is a shift operator: Sx = [0, x1, . . . , xN−1]
T .

12



Approach: Motivating example

Running example restated

∂v

∂t
= v + v2 ∂v

∂ξ
=⇒ x′ = x+ x2 ⊙ (Dx)

Where:

• x = [x1, . . . , xN ]
T ; [a1, a2, . . .]

T ⊙ [b1, b2, . . .]
T = [a1b1, a2b2, . . .];

• D ∈ RN×N is a matrix with Di,j =


N, if i = j ,

−N, if i = j + 1,

0, otherwise.

Quadratization

The following works for every N:

w1 = x2︸︷︷︸
uncoupled

and w2 = x⊙ Sx︸ ︷︷ ︸
coupled

where S is a shift operator: Sx = [0, x1, . . . , xN−1]
T .

12



Approach: Formal statement

Consider scalar case only to keep notation simple

Input family of ODE systems indexed by number N and matrix D ∈ CN×N :

x′ = p0(x) + p1(x)⊙ (Dx)

where x = [x1, . . . , xN ]
T and p0, p1 ∈ C[x ] are polynomials.

Output family of quadratizations valid of all N and D consisting of

• uncoupled: blocks of new variables of the form

{q(x1), . . . , q(xN)} (like x2)

• coupled: blocks of new variables of the form

{q(xi , xj) | xj appears in x ′
i } (like x⊙ Sx).

We will call this dimension-agnostic quadratization.

13



Approach: Formal statement

Consider scalar case only to keep notation simple

Input family of ODE systems indexed by number N and matrix D ∈ CN×N :

x′ = p0(x) + p1(x)⊙ (Dx)

where x = [x1, . . . , xN ]
T and p0, p1 ∈ C[x ] are polynomials.

Output family of quadratizations valid of all N and D consisting of

• uncoupled: blocks of new variables of the form

{q(x1), . . . , q(xN)} (like x2)

• coupled: blocks of new variables of the form

{q(xi , xj) | xj appears in x ′
i } (like x⊙ Sx).

We will call this dimension-agnostic quadratization.

13



Approach: Formal statement

Consider scalar case only to keep notation simple

Input family of ODE systems indexed by number N and matrix D ∈ CN×N :

x′ = p0(x) + p1(x)⊙ (Dx)

where x = [x1, . . . , xN ]
T and p0, p1 ∈ C[x ] are polynomials.

Output family of quadratizations valid of all N and D consisting of

• uncoupled: blocks of new variables of the form

{q(x1), . . . , q(xN)} (like x2)

• coupled: blocks of new variables of the form

{q(xi , xj) | xj appears in x ′
i } (like x⊙ Sx).

We will call this dimension-agnostic quadratization.

13



Approach: Formal statement

Consider scalar case only to keep notation simple

Input family of ODE systems indexed by number N and matrix D ∈ CN×N :

x′ = p0(x) + p1(x)⊙ (Dx)

where x = [x1, . . . , xN ]
T and p0, p1 ∈ C[x ] are polynomials.

Output family of quadratizations valid of all N and D consisting of

• uncoupled: blocks of new variables of the form

{q(x1), . . . , q(xN)} (like x2)

• coupled: blocks of new variables of the form

{q(xi , xj) | xj appears in x ′
i } (like x⊙ Sx).

We will call this dimension-agnostic quadratization.

13



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0



14



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

No, it’s okay

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0



14



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

Every family of the form x′ = p0(x) + p1(x)⊙ (Dx)

has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0



14



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

Every family of the form x′ = p0(x) + p1(x)⊙ (Dx)

has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0



14



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

Every family of the form x′ = p0(x) + p1(x)⊙ (Dx)

has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0



14



Approach: Underlying theory

One quadratization to rule them all . . . too much to ask?

Theorem (Bychkov, Issan, P., Kramer, 2023)

Every family of the form x′ = p0(x) + p1(x)⊙ (Dx)

has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and D and use QBee to search for

a quadratization of such uncoupled+coupled form.

Wanted: N0 and D0 such that

quadratization for N0,D0 =⇒ quadratization for any N,D

Theorem (Bychkov, Issan, P., Kramer, 2023)

N0 = 4, D0 =


1 1 0 1

0 1 1 0

0 0 1 0

0 0 0 0


14



Algorithm

Summary

Input Family of the form x′ = p0(x) + p1(x)⊙ (Dx)

(not necessarily a single x!)

Output dimension-agnostic quadratization

1. Consider a specific ODE system in the family using N0,D0

2. Find a quadratization matching the uncoupled+coupled pattern

(using QBee)

3. Return the corresponding dimension-agnostic quadratization

15



Example: Tubular reactor

Model

ψ′ = bψ −Dψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aψψ,

θ′ = bθ + bu + BDψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aθθ

where
• θ, ψ — N-dimensional vectors of variables;

• Aψ,Aθ — N × N matrices;

• u — external input;

• the rest are constant parameters.

Previous work: 7N-dimensional quadratization found by hand.

We find 6N-dimensional automatically.

New variables: θ2, θ3, ψ ⊙ θ, ψ ⊙ θ.

16



Example: Tubular reactor

Model

ψ′ = bψ −Dψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aψψ,

θ′ = bθ + bu + BDψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aθθ

where
• θ, ψ — N-dimensional vectors of variables;

• Aψ,Aθ — N × N matrices;

• u — external input;

• the rest are constant parameters.

Previous work: 7N-dimensional quadratization found by hand.

We find 6N-dimensional automatically.

New variables: θ2, θ3, ψ ⊙ θ, ψ ⊙ θ.

16



Example: Tubular reactor

Model

ψ′ = bψ −Dψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aψψ,

θ′ = bθ + bu + BDψ ⊙ (c0 + c1 ⊙ θ + c2 ⊙ θ2 + c3 ⊙ θ3) + Aθθ

where
• θ, ψ — N-dimensional vectors of variables;

• Aψ,Aθ — N × N matrices;

• u — external input;

• the rest are constant parameters.

Previous work: 7N-dimensional quadratization found by hand.

We find 6N-dimensional automatically.

New variables: θ2, θ3, ψ ⊙ θ, ψ ⊙ θ.

16



Case study: Solar wind model (quadratization)

Model

dv(r)

dr
= D ln(v(r))−cDv(r)

=⇒ w := ln(v) =⇒

{
dv
dr = Dw − C1Dv,
dw
dr = 1

vDw − C1

v Dv.

Result

• Uncoupled: 1
v ,

w
v ;

• Coupled: { vj
vi
,
wj

vi
| (i , j) ∈ D}

Using extra observation + specific form of D

=⇒ 3N-dimensional quadratization

17



Case study: Solar wind model (quadratization)

Model

dv(r)

dr
= D ln(v(r))−cDv(r) =⇒ w := ln(v) =⇒

{
dv
dr = Dw − C1Dv,
dw
dr = 1

vDw − C1

v Dv.

Result

• Uncoupled: 1
v ,

w
v ;

• Coupled: { vj
vi
,
wj

vi
| (i , j) ∈ D}

Using extra observation + specific form of D

=⇒ 3N-dimensional quadratization

17



Case study: Solar wind model (quadratization)

Model

dv(r)

dr
= D ln(v(r))−cDv(r) =⇒ w := ln(v) =⇒

{
dv
dr = Dw − C1Dv,
dw
dr = 1

vDw − C1

v Dv.

Result

• Uncoupled: 1
v ,

w
v ;

• Coupled: { vj
vi
,
wj

vi
| (i , j) ∈ D}

Using extra observation + specific form of D

=⇒ 3N-dimensional quadratization

17



Case study: Solar wind model (quadratization)

Model

dv(r)

dr
= D ln(v(r))−cDv(r) =⇒ w := ln(v) =⇒

{
dv
dr = Dw − C1Dv,
dw
dr = 1

vDw − C1

v Dv.

Result

• Uncoupled: 1
v ,

w
v ;

• Coupled: { vj
vi
,
wj

vi
| (i , j) ∈ D}

Using extra observation + specific form of D

=⇒ 3N-dimensional quadratization

17



Case study: Solar wind model (order reduction)

Reduction

• N = 129;

• reduced to ℓ = 6.

Learned models

• Blue: learn from original data;

• Red: learn from quadratized data.

Figure 1: Relative and absolute error of the learned quadratic ROMs in both

lifted variables and original variables.

18



Part III

Quadratizing systems of varying dimension

19



Size of the output

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman’ 2020)

Minimal number of new variables may be exponential in the size of input.

(particular proposed system x ′i = x2i+1 +
∏n

j=1 x
2
j ; values: 3, 10,⩽ 25)

Proposition (Bychkov, P.’ 2021)

Conjecture is false if new variables can be Laurent monomials.

(the size is in fact linear in this case)

Problem

Find algorithm for finding optimal Laurent monomial quadratizations.

20



Size of the output

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman’ 2020)

Minimal number of new variables may be exponential in the size of input.

(particular proposed system x ′i = x2i+1 +
∏n

j=1 x
2
j ; values: 3, 10,⩽ 25)

Proposition (Bychkov, P.’ 2021)

Conjecture is false if new variables can be Laurent monomials.

(the size is in fact linear in this case)

Problem

Find algorithm for finding optimal Laurent monomial quadratizations.

20



Size of the output

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman’ 2020)

Minimal number of new variables may be exponential in the size of input.

(particular proposed system x ′i = x2i+1 +
∏n

j=1 x
2
j ; values: 3, 10,⩽ 25)

Proposition (Bychkov, P.’ 2021)

Conjecture is false if new variables can be Laurent monomials.

(the size is in fact linear in this case)

Problem

Find algorithm for finding optimal Laurent monomial quadratizations.

20



Size of the output

Theorem (Hemery, Fages, Soliman’ 2020)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman’ 2020)

Minimal number of new variables may be exponential in the size of input.

(particular proposed system x ′i = x2i+1 +
∏n

j=1 x
2
j ; values: 3, 10,⩽ 25)

Proposition (Bychkov, P.’ 2021)

Conjecture is false if new variables can be Laurent monomials.

(the size is in fact linear in this case)

Problem

Find algorithm for finding optimal Laurent monomial quadratizations.

20



Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs

(good news — always exists!).

Inspired open problem

Input differential polynomials

p(x , x ′, x ′′, . . .), q1(x , x
′, . . .), qn(x , x

′, . . .) and integer d ;

Ouptut True if p can be written as a differential polynomial

in q1, . . . , qn of degree at most d , otherwise False.

Remarks

• I think I can solve d = 1;

• For quadratization, d = 2 is needed.

21



Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs

(good news — always exists!).

Inspired open problem

Input differential polynomials

p(x , x ′, x ′′, . . .), q1(x , x
′, . . .), qn(x , x

′, . . .) and integer d ;

Ouptut True if p can be written as a differential polynomial

in q1, . . . , qn of degree at most d , otherwise False.

Remarks

• I think I can solve d = 1;

• For quadratization, d = 2 is needed.

21



Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs

(good news — always exists!).

Inspired open problem

Input differential polynomials

p(x , x ′, x ′′, . . .), q1(x , x
′, . . .), qn(x , x

′, . . .) and integer d ;

Ouptut True if p can be written as a differential polynomial

in q1, . . . , qn of degree at most d , otherwise False.

Remarks

• I think I can solve d = 1;

• For quadratization, d = 2 is needed.

21



Conclusions

• Quadratization is a symbolic transformation

appearing in many situations;

• Was relatively understood in the simplest finite-dimensional case.

• And now settled for coupled families of systems.

• Many things left: PDEs, Laurent monomials, arbitrary polynomials,

etc.

22



Conclusions

• Quadratization is a symbolic transformation

appearing in many situations;

• Was relatively understood in the simplest finite-dimensional case.

• And now settled for coupled families of systems.

• Many things left: PDEs, Laurent monomials, arbitrary polynomials,

etc.

22



Conclusions

• Quadratization is a symbolic transformation

appearing in many situations;

• Was relatively understood in the simplest finite-dimensional case.

• And now settled for coupled families of systems.

• Many things left: PDEs, Laurent monomials, arbitrary polynomials,

etc.

22



Conclusions

• Quadratization is a symbolic transformation

appearing in many situations;

• Was relatively understood in the simplest finite-dimensional case.

• And now settled for coupled families of systems.

• Many things left: PDEs, Laurent monomials, arbitrary polynomials,

etc.

22



Thank you!

Partially supported by the PANTOMIME project (AAP INS2I CNRS) and Paris

Ile-de-France region.

23


