Quadratizations of differential equations

Gleb Pogudin, MAX team, LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, joint work with A. Bychkov, O. Issan, and B. Kramer

Computer Algebra for Functional Equations in Combinatorics and Physics Institute Henri Poincaré, Paris, December 5

Plan

- $1. \ \mbox{Quadratization: what, why, and how?}$
- 2. Quadratizing systems of varying (sic!) dimension
- 3. Open problems

Part I Quadratization: what, why, and how?

Consider one-dimensional ODE system:

$$x' = x^4$$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg $\leqslant 2$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg $\leqslant 2$

$$\begin{cases} x' = x^4 \\ \end{cases}$$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg $\leqslant 2$

$$\begin{cases} x' = \underline{xy} \\ \end{cases}$$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg \leqslant 2

$$\begin{cases} x' = \underline{xy} \\ y' = 3x'x^2 \end{cases}$$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg \leqslant 2

$$\begin{cases} x' = \underline{xy} \\ y' = 3x'x^2 = 3x^6 \end{cases}$$

Consider one-dimensional ODE system:

$$x' = x^4$$
 (degree = 4)

Goal: add new variables \implies deg \leqslant 2

Solution: introduce $y := x^3$:

$$\begin{cases} x' = \underline{xy} \\ y' = 3x'x^2 = 3x^6 = \underline{3y^2} \end{cases}$$

DONE!

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \dots, y_m = g_m(\bar{x})$ are called **quadratization** if

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \ldots, y_m = g_m(\bar{x})$ are called **quadratization** if there exist $h_1, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}]$, deg h_1, \ldots , deg $h_{m+n} \leq 2$ such that

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \ldots, y_m = g_m(\bar{x})$ are called **quadratization** if there exist $h_1, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}]$, deg h_1, \ldots , deg $h_{m+n} \leq 2$ such that

$$\begin{cases} x'_{1} = h_{1}(\bar{x}, \bar{y}), & \\ \dots & \\ x'_{n} = h_{n}(\bar{x}, \bar{y}) & \\ \end{cases} \text{ and } \begin{cases} y'_{1} = h_{n+1}(\bar{x}, \bar{y}), \\ \dots \\ y'_{m} = h_{n+m}(\bar{x}, \bar{y}). \end{cases}$$

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \ldots, y_m = g_m(\bar{x})$ are called **quadratization** if there exist $h_1, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}]$, deg h_1, \ldots , deg $h_{m+n} \leq 2$ such that

$$\begin{cases} x'_{1} = h_{1}(\bar{x}, \bar{y}), & \\ \dots & \\ x'_{n} = h_{n}(\bar{x}, \bar{y}) & \\ \end{cases} \text{ and } \begin{cases} y'_{1} = h_{n+1}(\bar{x}, \bar{y}), \\ \dots \\ y'_{m} = h_{n+m}(\bar{x}, \bar{y}). \end{cases}$$

In the example for $x' = x^4$ we had

 $n = 1 \& f_1(x) = x^4$

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \ldots, y_m = g_m(\bar{x})$ are called **quadratization** if there exist $h_1, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}]$, deg h_1, \ldots , deg $h_{m+n} \leq 2$ such that

$$\begin{cases} x'_{1} = h_{1}(\bar{x}, \bar{y}), & \\ \dots & \\ x'_{n} = h_{n}(\bar{x}, \bar{y}) & \\ \end{cases} \text{ and } \begin{cases} y'_{1} = h_{n+1}(\bar{x}, \bar{y}), \\ \dots \\ y'_{m} = h_{n+m}(\bar{x}, \bar{y}). \end{cases}$$

In the example for $x' = x^4$ we had

$$n = 1 \& f_1(x) = x^4 \implies m = 1 \& g_1(x) = x^3$$

Formal definition. Consider a system in $\bar{x} = (x_1, \ldots, x_n)$:

$$\begin{cases} x'_1 = f_1(\bar{x}), \\ \dots & \text{where } f_1, \dots, f_n \in \mathbb{C}[\bar{x}]. \\ x'_n = f_n(\bar{x}), \end{cases}$$
(1)

New variables $y_1 = g_1(\bar{x}), \ldots, y_m = g_m(\bar{x})$ are called **quadratization** if there exist $h_1, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}]$, deg h_1, \ldots , deg $h_{m+n} \leq 2$ such that

$$\begin{cases} x'_1 = h_1(\bar{x}, \bar{y}), & \\ \dots & \\ x'_n = h_n(\bar{x}, \bar{y}) & \end{cases} \quad \text{and} \quad \begin{cases} y'_1 = h_{n+1}(\bar{x}, \bar{y}), \\ \dots \\ y'_m = h_{n+m}(\bar{x}, \bar{y}). \end{cases}$$

In the example for $x' = x^4$ we had

$$n = 1 \& f_1(x) = x^4 \implies m = 1 \& g_1(x) = x^3 \implies \begin{cases} x' = xy = h_1(x, y), \\ y' = 3y^2 = h_2(x, y) \end{cases}$$

Quadratization: why? Part 1

• Synthesis of chemical reaction networks:

 $\mathsf{deg} \leqslant 2 \iff \mathsf{bimolecular} \ \mathsf{network}$

(Hemery, Fages, Soliman'2020)

• Synthesis of chemical reaction networks:

 $\mathsf{deg} \leqslant 2 \iff \mathsf{bimolecular} \ \mathsf{network}$

(Hemery, Fages, Soliman'2020)

• Reachability analysis: explicit error bounds for Carleman linearization in the quadratic case (Forets, Schilling ' 2021) • Synthesis of chemical reaction networks:

 $\mathsf{deg} \leqslant 2 \iff \mathsf{bimolecular} \ \mathsf{network}$

(Hemery, Fages, Soliman'2020)

- Reachability analysis: explicit error bounds for Carleman linearization in the quadratic case (Forets, Schilling ' 2021)
- Solving differential equations numerically (Cochelin& Vergez'2009, Guillot, Cochelin, Vergez'2019)

Main target application in this talk: Model Order Reduction.

Given:

- Learning quadratic reductions is well-understood
- Quadratic reductions are especially natural for quadratic systems (*in particular projection of a quadratic model is quadratic*)

Main target application in this talk: Model Order Reduction. Given:

- Learning quadratic reductions is well-understood
- Quadratic reductions are especially natural for quadratic systems (*in particular projection of a quadratic model is quadratic*)

Ergo: Quadratize and then Reduce

- Projection-based MOR (Gu'2011, Brenner & Breiten'2015, Kramer & Willcox' 2019)
- Lift & Learn (Qian, Kramer, Peherstorfer, Willcox'2020)

Theorem (e.g., Appelroth'1902, Lagutinskii'1911)

Every ODE system has a quadratization.

Theorem (e.g., Appelroth'1902, Lagutinskii'1911)

Every ODE system has a quadratization.

The proof is constructive and the new variables can be chosen to be monomials.

Theorem (e.g., Appelroth'1902, Lagutinskii'1911)

Every ODE system has a quadratization.

The proof is constructive and the new variables can be chosen to be monomials.

BUT:

Theorem (Hemery, Fages, Soliman' 2020)

Computing optimal quadratization is an NP-hard problem.

Existing software (monomial quadratizations)

Existing software (monomial quadratizations)

• BIOCHAM (*Hemery, Fages, Soliman, 2020*) Via encoding as a MAX-SAT problem. Often optimal but not always.

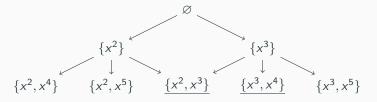
Existing software (monomial quadratizations)

- BIOCHAM (*Hemery, Fages, Soliman, 2020*) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

Existing software (monomial quadratizations)

- BIOCHAM (Hemery, Fages, Soliman, 2020)
 Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

Example for QBEE: equation $x' = x^4 + x^3$



Existing software (monomial quadratizations)

- BIOCHAM (Hemery, Fages, Soliman, 2020) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

How far can one go?

Existing software (monomial quadratizations)

- BIOCHAM (Hemery, Fages, Soliman, 2020) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

How far can one go?

$$\begin{cases} x_1' = x_2^3 + x_7^3, \\ x_2' = x_1^3 + x_3^3, \\ x_3' = x_2^3 + x_4^3, \\ x_4' = x_3^3 + x_5^3, \\ x_5' = x_4^3 + x_6^3, \\ x_6' = x_5^3 + x_7^3, \\ x_7' = x_6^3 + x_1^3. \end{cases}$$

30 sec.

Existing software (monomial quadratizations)

- BIOCHAM (Hemery, Fages, Soliman, 2020) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

How far can one go?

$$\begin{cases} x_1' = x_2^3 + x_7^3, \\ x_2' = x_1^3 + x_3^3, \\ x_3' = x_2^3 + x_4^3, \\ x_4' = x_3^3 + x_5^3, \\ x_5' = x_4^3 + x_6^3, \\ x_6' = x_5^3 + x_7^3, \\ x_7' = x_6^3 + x_1^3. \end{cases}$$

$\begin{array}{rl} \textbf{30 sec.} \\ \textbf{8 vars} \implies \textbf{70 sec.} \end{array}$

Existing software (monomial quadratizations)

- BIOCHAM (*Hemery, Fages, Soliman, 2020*) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

How far can one go?

$$\begin{cases} x_1' = x_2^3 + x_7^3, \\ x_2' = x_1^3 + x_3^3, \\ x_3' = x_2^3 + x_4^3, \\ x_4' = x_3^3 + x_5^3, \\ x_5' = x_4^3 + x_6^3, \\ x_6' = x_5^3 + x_7^3, \\ x_7' = x_6^3 + x_1^3. \end{cases}$$

$$\begin{cases} x_1' = x_2^2 + (x_1 x_2 x_3)^2, \\ x_2' = x_3^2 + (x_1 x_2 x_3)^2, \\ x_3' = x_1^2 + (x_1 x_2 x_3)^2. \end{cases}$$

100 sec.

$\begin{array}{rl} \textbf{30 sec.} \\ \textbf{8 vars} \implies \textbf{70 sec.} \end{array}$

Existing software (monomial quadratizations)

- BIOCHAM (*Hemery, Fages, Soliman, 2020*) Via encoding as a MAX-SAT problem. Often optimal but not always.
- QBEE (Bychkov, P., 2021) Branch & Bound search. Optimality guaranteed.

How far can one go?

$$\begin{cases} x_1' = x_2^3 + x_7^3, \\ x_2' = x_1^3 + x_3^3, \\ x_3' = x_2^3 + x_4^3, \\ x_4' = x_3^3 + x_5^3, \\ x_5' = x_4^3 + x_6^3, \\ x_6' = x_5^3 + x_7^3, \\ x_7' = x_6^3 + x_1^3. \end{cases}$$

$$\begin{cases} x_1' = x_2^2 + (x_1 x_2 x_3)^2, \\ x_2' = x_3^2 + (x_1 x_2 x_3)^2, \\ x_3' = x_1^2 + (x_1 x_2 x_3)^2. \end{cases}$$

100 sec. 4 vars $\implies \infty$

 $\begin{array}{rcl} \textbf{30 sec.} \\ \textbf{8 vars} \implies \textbf{70 sec.} \end{array}$

Part II Quadratizing systems of varying dimension

Recipy

Running example

Take one small PDE system and one large integer *N*

Recipy

Running example

Take one small PDE system and one large integer N

$$\frac{\partial v}{\partial t} = v + v^2 \frac{\partial v}{\partial \xi}, \quad \text{where } v = v(t,\xi)$$
$$v(t,0) = \frac{\partial v}{\partial \xi}(t,1) = 0, \quad N = 100$$

Recipy

Running example

Take one small PDE system and one large integer N

$$\frac{\partial v}{\partial t} = v + v^2 \frac{\partial v}{\partial \xi}, \quad \text{where } v = v(t,\xi)$$
$$v(t,0) = \frac{\partial v}{\partial \xi}(t,1) = 0, \quad N = 100$$

Semidiscretize the system

Recipy

Running example

Take one small PDE system and one large integer N

$$rac{\partial v}{\partial t} = v + v^2 rac{\partial v}{\partial \xi}, \quad \text{where } v = v(t,\xi)$$

 $v(t,0) = rac{\partial v}{\partial \xi}(t,1) = 0, \quad N = 100$

Semidiscretize the system

$$egin{aligned} x_i(t) &= v(t,i/N), \ rac{\partial v}{\partial \xi}(t,i/N) &pprox rac{x_i(t) - x_{i-1}(t)}{1/N} \end{aligned}$$

Recipy

Running example

Take one small PDE system and one large integer N

$$rac{\partial v}{\partial t} = v + v^2 rac{\partial v}{\partial \xi}, \quad \text{where } v = v(t,\xi)$$

 $v(t,0) = rac{\partial v}{\partial \xi}(t,1) = 0, \quad N = 100$

Semidiscretize the system

$$x_{i}(t) = v(t, i/N),$$

$$\frac{\partial v}{\partial \xi}(t, i/N) \approx \frac{x_{i}(t) - x_{i-1}(t)}{1/N}$$

$$\bigcup$$

$$x'_{i} = x_{i} + Nx_{i}^{2}(x_{i} - x_{i-1}) \quad i = 1, ..., N$$
N-dimensional system

Goal: Quadratize efficiently systems appearing as discretizations

Goal: Quadratize efficiently systems appearing as discretizations

Challenges

- The dimension is large (infeasible for QBEE);
- Changing $N \implies$ changing the dimension (varying dimension)

Goal: Quadratize efficiently systems appearing as discretizations

Challenges

- The dimension is large (infeasible for QBEE);
- Changing $N \implies$ changing the dimension (varying dimension)

Idea: equations are abundant but not so different!

Running example restated

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} + \mathbf{v}^2 \frac{\partial \mathbf{v}}{\partial \xi} \implies x'_i = x_i + N x_i^2 (x_i - x_{i-1}), \ i = 1, \dots, N$$

Running example restated

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} + \mathbf{v}^2 \frac{\partial \mathbf{v}}{\partial \xi} \implies \mathbf{x}' = \mathbf{x} + \mathbf{x}^2 \odot (\mathbf{D}\mathbf{x})$$

Running example restated

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} + \mathbf{v}^2 \frac{\partial \mathbf{v}}{\partial \xi} \implies \mathbf{x}' = \mathbf{x} + \mathbf{x}^2 \odot (\mathbf{D}\mathbf{x})$$

Where:

•
$$\mathbf{x} = [x_1, \dots, x_N]^T$$
; $[a_1, a_2, \dots]^T \odot [b_1, b_2, \dots]^T = [a1b_1, a_2b_2, \dots]$;
• $\mathbf{D} \in \mathbb{R}^{N \times N}$ is a matrix with $\mathbf{D}_{i,j} = \begin{cases} N, \text{ if } i = j, \\ -N, \text{ if } i = j + 1, \\ 0, \text{ otherwise.} \end{cases}$

Running example restated

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} + \mathbf{v}^2 \frac{\partial \mathbf{v}}{\partial \xi} \implies \mathbf{x}' = \mathbf{x} + \mathbf{x}^2 \odot (\mathbf{D}\mathbf{x})$$

Where:

•
$$\mathbf{x} = [x_1, \dots, x_N]^T$$
; $[a_1, a_2, \dots]^T \odot [b_1, b_2, \dots]^T = [a1b_1, a_2b_2, \dots]$;
• $\mathbf{D} \in \mathbb{R}^{N \times N}$ is a matrix with $\mathbf{D}_{i,j} = \begin{cases} N, \text{ if } i = j, \\ -N, \text{ if } i = j + 1, \\ 0, \text{ otherwise.} \end{cases}$

Quadratization

The following works for every N:

$$\mathbf{w}_1 = \mathbf{x}^2$$
 and $\mathbf{w}_2 = \mathbf{x} \odot \mathbf{S} \mathbf{x}$

where **S** is a shift operator: $\mathbf{S}\mathbf{x} = [0, x_1, \dots, x_{N-1}]^T$.

Running example restated

$$\frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} + \mathbf{v}^2 \frac{\partial \mathbf{v}}{\partial \xi} \implies \mathbf{x}' = \mathbf{x} + \mathbf{x}^2 \odot (\mathbf{D}\mathbf{x})$$

Where:

•
$$\mathbf{x} = [x_1, \dots, x_N]^T$$
; $[a_1, a_2, \dots]^T \odot [b_1, b_2, \dots]^T = [a1b_1, a_2b_2, \dots]$;
• $\mathbf{D} \in \mathbb{R}^{N \times N}$ is a matrix with $\mathbf{D}_{i,j} = \begin{cases} N, \text{ if } i = j, \\ -N, \text{ if } i = j + 1, \\ 0, \text{ otherwise.} \end{cases}$

Quadratization

The following works for every N:

$$\mathbf{w}_1 = \underbrace{\mathbf{x}^2}_{uncoupled}$$
 and $\mathbf{w}_2 = \underbrace{\mathbf{x} \odot \mathbf{Sx}}_{coupled}$

where **S** is a shift operator: $\mathbf{S}\mathbf{x} = [0, x_1, \dots, x_{N-1}]^T$.

Input family of ODE systems indexed by number N and matrix $\mathbf{D} \in \mathbb{C}^{N \times N}$:

$$\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$$

where $\mathbf{x} = [x_1, \dots, x_N]^T$ and $p_0, p_1 \in \mathbb{C}[x]$ are polynomials.

Input family of ODE systems indexed by number N and matrix $\mathbf{D} \in \mathbb{C}^{N \times N}$:

$$\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$$

where $\mathbf{x} = [x_1, \dots, x_N]^T$ and $p_0, p_1 \in \mathbb{C}[x]$ are polynomials.

Output family of quadratizations valid of all N and D consisting of

• *uncoupled*: blocks of new variables of the form $\{q(x_1), \ldots, q(x_N)\}$ (like \mathbf{x}^2)

Input family of ODE systems indexed by number N and matrix $\mathbf{D} \in \mathbb{C}^{N \times N}$:

$$\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$$

where $\mathbf{x} = [x_1, \dots, x_N]^T$ and $p_0, p_1 \in \mathbb{C}[x]$ are polynomials.

Output family of quadratizations valid of all N and D consisting of

- *uncoupled*: blocks of new variables of the form $\{q(x_1), \ldots, q(x_N)\}$ (like \mathbf{x}^2)
- coupled: blocks of new variables of the form $\{q(x_i, x_j) \mid x_j \text{ appears in } x_i'\}$ (like $\mathbf{x} \odot \mathbf{Sx}$).

Input family of ODE systems indexed by number N and matrix $\mathbf{D} \in \mathbb{C}^{N \times N}$:

$$\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$$

where $\mathbf{x} = [x_1, \dots, x_N]^T$ and $p_0, p_1 \in \mathbb{C}[x]$ are polynomials.

Output family of quadratizations valid of all N and D consisting of

- *uncoupled*: blocks of new variables of the form $\{q(x_1), \ldots, q(x_N)\}$ (like x^2)
- *coupled*: blocks of new variables of the form $\{q(x_i, x_j) \mid x_j \text{ appears in } x_i'\}$ (like $\mathbf{x} \odot \mathbf{Sx}$).

We will call this dimension-agnostic quadratization.

One quadratization to rule them all ... too much to ask?

One quadratization to rule them all ... too much to ask? **Theorem (Bychkov, Issan, P., Kramer, 2023) No, it's okay**

One quadratization to rule them all ... too much to ask? **Theorem (Bychkov, Issan, P., Kramer, 2023)** Every family of the form $\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$ has a (monomial) dimension-agnostic quadratization.

One quadratization to rule them all ... too much to ask? **Theorem (Bychkov, Issan, P., Kramer, 2023)** Every family of the form $\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$ has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and **D** and use QBEE to search for a quadratization of such *uncoupled+coupled* form.

One quadratization to rule them all ... too much to ask? **Theorem (Bychkov, Issan, P., Kramer, 2023)** Every family of the form $\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$ has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and **D** and use QBEE to search for a quadratization of such *uncoupled+coupled* form.

Wanted: N_0 and D_0 such that

quadratization for $N_0, \mathbf{D}_0 \implies$ quadratization for any N, \mathbf{D}

One quadratization to rule them all ... too much to ask? **Theorem (Bychkov, Issan, P., Kramer, 2023)** Every family of the form $\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$ has a (monomial) dimension-agnostic quadratization.

Idea

Fix N and **D** and use QBEE to search for a quadratization of such *uncoupled+coupled* form.

Wanted: N_0 and D_0 such that

quadratization for $N_0, \mathbf{D}_0 \implies$ quadratization for **any** N, \mathbf{D}

Theorem (Bychkov, Issan, P., Kramer, 2023)

$$N_0 = 4,$$
 $\mathbf{D}_0 = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Algorithm

Summary

Input Family of the form $\mathbf{x}' = p_0(\mathbf{x}) + p_1(\mathbf{x}) \odot (\mathbf{D}\mathbf{x})$ (not necessarily a single x!)

Output dimension-agnostic quadratization

- 1. Consider a specific ODE system in the family using N_0, \mathbf{D}_0
- 2. Find a quadratization matching the <code>uncoupled+coupled</code> pattern (using $\ensuremath{\mathrm{QBEE}}\xspace$)
- 3. Return the corresponding dimension-agnostic quadratization

Example: Tubular reactor

Model

$$\begin{split} \boldsymbol{\psi}' &= \mathbf{b}_{\psi} - \mathcal{D}\boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\psi} \boldsymbol{\psi}, \\ \boldsymbol{\theta}' &= \mathbf{b}_{\theta} + \mathbf{b} u + \mathcal{B} \mathcal{D} \boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\theta} \boldsymbol{\theta} \end{split}$$

where

- heta, ψ *N*-dimensional vectors of variables;
- $\mathbf{A}_{\psi}, \mathbf{A}_{\theta} N \times N$ matrices;
- u external input;
- the rest are constant parameters.

Example: Tubular reactor

Model

$$\begin{split} \boldsymbol{\psi}' &= \mathbf{b}_{\psi} - \mathcal{D}\boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\psi} \boldsymbol{\psi}, \\ \boldsymbol{\theta}' &= \mathbf{b}_{\theta} + \mathbf{b} u + \mathcal{B} \mathcal{D} \boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\theta} \boldsymbol{\theta} \end{split}$$

where

- θ , ψ *N*-dimensional vectors of variables;
- A_ψ, A_θ N × N matrices;
- u external input;
- the rest are constant parameters.

Previous work: 7N-dimensional quadratization found by hand.

Example: Tubular reactor

Model

$$\begin{split} \boldsymbol{\psi}' &= \mathbf{b}_{\psi} - \mathcal{D}\boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\psi} \boldsymbol{\psi}, \\ \boldsymbol{\theta}' &= \mathbf{b}_{\theta} + \mathbf{b} u + \mathcal{B} \mathcal{D} \boldsymbol{\psi} \odot (\mathbf{c}_0 + \mathbf{c}_1 \odot \boldsymbol{\theta} + \mathbf{c}_2 \odot \boldsymbol{\theta}^2 + \mathbf{c}_3 \odot \boldsymbol{\theta}^3) + \mathbf{A}_{\theta} \boldsymbol{\theta} \end{split}$$

where

- heta, ψ *N*-dimensional vectors of variables;
- $\mathbf{A}_{\psi}, \mathbf{A}_{\theta} N \times N$ matrices;
- u external input;
- the rest are constant parameters.

Previous work: 7N-dimensional quadratization found by hand.

We find 6N-dimensional automatically.

New variables: θ^2 , θ^3 , $\psi \odot \theta$, $\psi \odot \theta$.

Model

$$\frac{\mathrm{d}\mathbf{v}(r)}{\mathrm{d}r} = \mathbf{D}\ln(\mathbf{v}(r)) - c\mathbf{D}\mathbf{v}(r)$$

Model

$$\frac{\mathrm{d}\mathbf{v}(r)}{\mathrm{d}r} = \mathbf{D}\ln(\mathbf{v}(r)) - c\mathbf{D}\mathbf{v}(r) \implies \mathbf{w} := \ln(\mathbf{v}) \implies \begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}r} = \mathbf{D}\mathbf{w} - C_1\mathbf{D}\mathbf{v}, \\ \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}r} = \frac{1}{\mathbf{v}}\mathbf{D}\mathbf{w} - \frac{C_1}{\mathbf{v}}\mathbf{D}\mathbf{v}. \end{cases}$$

Model

$$\frac{\mathrm{d}\mathbf{v}(r)}{\mathrm{d}r} = \mathbf{D}\ln(\mathbf{v}(r)) - c\mathbf{D}\mathbf{v}(r) \implies \mathbf{w} := \ln(\mathbf{v}) \implies \begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}r} = \mathbf{D}\mathbf{w} - C_1\mathbf{D}\mathbf{v}, \\ \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}r} = \frac{1}{\mathbf{v}}\mathbf{D}\mathbf{w} - \frac{C_1}{\mathbf{v}}\mathbf{D}\mathbf{v}. \end{cases}$$

Result

• Uncoupled:
$$\frac{1}{v}$$
, $\frac{w}{v}$;

• Coupled: $\{\frac{v_j}{v_i}, \frac{w_j}{v_i} \mid (i, j) \in \mathbf{D}\}$

Model

$$\frac{\mathrm{d}\mathbf{v}(r)}{\mathrm{d}r} = \mathbf{D}\ln(\mathbf{v}(r)) - c\mathbf{D}\mathbf{v}(r) \implies \mathbf{w} := \ln(\mathbf{v}) \implies \begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}r} = \mathbf{D}\mathbf{w} - C_1\mathbf{D}\mathbf{v}, \\ \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}r} = \frac{1}{\mathbf{v}}\mathbf{D}\mathbf{w} - \frac{C_1}{\mathbf{v}}\mathbf{D}\mathbf{v}. \end{cases}$$

Result

• Uncoupled:
$$\frac{1}{v}$$
, $\frac{w}{v}$;

• Coupled:
$$\{\frac{v_j}{v_i}, \frac{w_j}{v_i} \mid (i,j) \in \mathbf{D}\}$$

Using extra observation + specific form of $D \implies 3N$ -dimensional guadratization

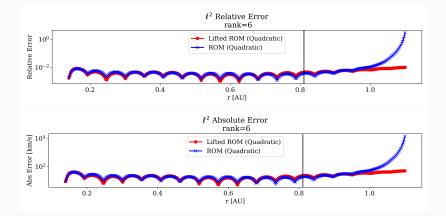
Case study: Solar wind model (order reduction)

Reduction

- *N* = 129;
- reduced to $\ell = 6$.

Learned models

- Blue: learn from original data;
- Red: learn from quadratized data.



Part III Quadratizing systems of varying dimension

Computing optimal quadratization is an NP-hard problem.

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman' 2020)

Minimal number of new variables may be exponential in the size of input. (particular proposed system $x'_i = x^2_{i+1} + \prod_{j=1}^n x^2_j$; values: 3, 10, \leq 25)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman' 2020)

Minimal number of new variables may be exponential in the size of input. (particular proposed system $x'_i = x^2_{i+1} + \prod_{j=1}^n x^2_j$; values: 3, 10, \leq 25)

Proposition (Bychkov, P.' 2021)

Conjecture is false if new variables can be Laurent monomials. (the size is in fact linear in this case)

Computing optimal quadratization is an NP-hard problem.

Conjecture (Hemery, Fages, Soliman' 2020)

Minimal number of new variables may be exponential in the size of input. (particular proposed system $x'_i = x^2_{i+1} + \prod_{j=1}^n x^2_j$; values: 3, 10, \leq 25)

Proposition (Bychkov, P.' 2021)

Conjecture is false if new variables can be Laurent monomials. (the size is in fact linear in this case)

Problem

Find algorithm for finding optimal Laurent monomial quadratizations.

Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs (good news — always exists!).

Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs (good news — always exists!).

Inspired open problem

Input differential polynomials $p(x, x', x'', ...), q_1(x, x', ...), q_n(x, x', ...)$ and integer *d*; **Ouptut** TRUE if *p* can be written as a differential polynomial in $q_1, ..., q_n$ of degree at most *d*, otherwise FALSE.

Quadratizing PDEs directly

Work in progress to find quadratizations on the level of PDEs (good news — always exists!).

Inspired open problem

Input differential polynomials $p(x, x', x'', ...), q_1(x, x', ...), q_n(x, x', ...)$ and integer *d*; **Ouptut** TRUE if *p* can be written as a differential polynomial in $q_1, ..., q_n$ of degree at most *d*, otherwise FALSE.

Remarks

- I think I can solve d = 1;
- For quadratization, d = 2 is needed.

 Quadratization is a symbolic transformation appearing in many situations;

- Quadratization is a symbolic transformation appearing in many situations;
- Was relatively understood in the simplest finite-dimensional case.

- Quadratization is a symbolic transformation appearing in many situations;
- Was relatively understood in the simplest finite-dimensional case.
- And now settled for coupled families of systems.

- Quadratization is a symbolic transformation appearing in many situations;
- Was relatively understood in the simplest finite-dimensional case.
- And now settled for coupled families of systems.
- Many things left: PDEs, Laurent monomials, arbitrary polynomials, etc.

Thank you!

Partially supported by the PANTOMIME project (AAP INS2I CNRS) and Paris Ile-de-France region.