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Which type of equations are we looking at?

rooted planar maps

F (t, u) = 1 + tu

(
uF (t, u)2 + uF (t,u)−F (t,1)

u−1

)
[Tutte ′68]

an := # {planar maps with n edges}

↓ refinement

an,d := #{planar maps with n edges,

d of them on the external face}

∞∑
n=0

antn generating function

↓ refinement

F (t, u) :=
∞∑
n=0

n∑
d=0

an,du
d tn complete generating function

1 tu2F (t, u)2 tu uF (t,u)−F (t,1)
u−1

F (t, 1) =
∞∑
n=0

ant
n
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Solving functional equations

In this talk

Solving = Classifying the initial series F (t, 1)

+ Computing a witness of this classification

(e.g. R ∈ Q[z , t] s.t. R(F (t, 1), t) = 0)

Going back to our planar maps...

F (t, 1) = 1 + 2t + 9t2 + 54t3 + 378t4 + · · · ∈ Q[[t]]

annihilated by R = 27t2z2 + (1− 18t)z + 16t − 1 ∈ Q[z , t]

From R:

• (Recurrence) a0 = 1 and (n+ 3)an+1 − 6(2n+ 1)an = 0,

• (Closed-form) an = 2 3n(2n)!
n(n+2)!

,

• (Asymptotics) an ∼ 2 12n√
πn5

, when n → +∞.

2/11



Solving functional equations

In this talk

Solving = Classifying the initial series F (t, 1)

+ Computing a witness of this classification

(e.g. R ∈ Q[z , t] s.t. R(F (t, 1), t) = 0)

Going back to our planar maps...

F (t, 1) = 1 + 2t + 9t2 + 54t3 + 378t4 + · · · ∈ Q[[t]]

annihilated by R = 27t2z2 + (1− 18t)z + 16t − 1 ∈ Q[z , t]

From R:

• (Recurrence) a0 = 1 and (n+ 3)an+1 − 6(2n+ 1)an = 0,

• (Closed-form) an = 2 3n(2n)!
n(n+2)!

,

• (Asymptotics) an ∼ 2 12n√
πn5

, when n → +∞.

2/11



Solving functional equations

In this talk

Solving = Classifying the initial series F (t, 1)

+ Computing a witness of this classification

(e.g. R ∈ Q[z , t] s.t. R(F (t, 1), t) = 0)

Going back to our planar maps...

F (t, 1) = 1 + 2t + 9t2 + 54t3 + 378t4 + · · · ∈ Q[[t]]

annihilated by R = 27t2z2 + (1− 18t)z + 16t − 1 ∈ Q[z , t]

From R:

• (Recurrence) a0 = 1 and (n+ 3)an+1 − 6(2n+ 1)an = 0,

• (Closed-form) an = 2 3n(2n)!
n(n+2)!

,

• (Asymptotics) an ∼ 2 12n√
πn5

, when n → +∞.

2/11



Solving functional equations

In this talk

Solving = Classifying the initial series F (t, 1)

+ Computing a witness of this classification

(e.g. R ∈ Q[z , t] s.t. R(F (t, 1), t) = 0)

Going back to our planar maps...

F (t, 1) = 1 + 2t + 9t2 + 54t3 + 378t4 + · · · ∈ Q[[t]]

annihilated by R = 27t2z2 + (1− 18t)z + 16t − 1 ∈ Q[z , t]

From R:

• (Recurrence) a0 = 1 and (n+ 3)an+1 − 6(2n+ 1)an = 0,

• (Closed-form) an = 2 3n(2n)!
n(n+2)!

,

• (Asymptotics) an ∼ 2 12n√
πn5

, when n → +∞.

2/11



Content of the talk

Objectives

• Introduce so-called Discrete Differential Equations (DDEs),

• Determine the nature of the solutions of DDEs,

• Provide an efficient algorithm for computing a witness,

• Implementation in action ⇝ Solving a problem previously out of reach.

3/11



Objects of interest: Discrete Differential Equations

Definition

Given f ∈ Q[u], k ≥ 1, and Q ∈ Q[y0, . . . , yk , t, u],

F = f + t · Q(F ,∆F , . . . ,∆kF , t, u) (DDE)

is a Discrete Differential Equation, where ∆ : F ∈ Q[u][[t]] 7→ F (t,u)−F (t,1)
u−1

∈ Q[u][[t]], and

where for ℓ ≥ 1 we define ∆ℓ+1 = ∆ℓ ◦∆.

Bicolored planar maps: 3-constellations

F (t, u) = 1 + tu

(
F (t, u)3 + (2F (t, u) + F (t, 1))

F (t, u)− F (t, 1)

u − 1

+
F (t, u)− F (t, 1)− (u − 1)∂uF (t, 1)

(u − 1)2

)
Theorem

[Bousquet-Mélou, Jehanne ′06]

The unique solution in Q[u][[t]]

of (DDE) is algebraic over Q(t, u).

⇝⇝⇝ Constructive proof =⇒ algorithm
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Bousquet-Mélou and Jehanne’s algorithm

Input: F (t, u) = 1 + tu

(
F (t, u)3 + (2F (t, u) + F (t, 1)) F (t,u)−F (t,1)

u−1
+ F (t,u)−F (t,1)−(u−1)∂uF (t,1)

(u−1)2

)
,

Output: 81t2F (t, 1)3 − 9t(9t − 2)F (t, 1)2 + (27t2 − 66t + 1)F (t, 1)− 3t2 + 47t − 1 = 0.

• Compute P ∈ Q(t)[x , u, z0, z1] such that P(F (t, u), u,F (t, 1), ∂uF (t, 1)) = 0,

• Consider

∂uF (t, u) · ∂xP(F (t, u), u,F (t, 1), ∂uF (t, 1)) + ∂uP(F (t, u), u,F (t, 1), ∂uF (t, 1)) = 0,

• Show that there exist distinct U1,U2 ∈
⋃
d≥1

Q[[t
1
d ]] s.t. ∂xP(F (t,Ui ),Ui ,F (t, 1), ∂uF (t, 1)) = 0,

• Set up

For 1 ≤ i ≤ 2,


P(F (t,Ui ),Ui ,F (t, 1), ∂uF (t, 1)) = 0,

∂xP(F (t,Ui ),Ui ,F (t, 1), ∂uF (t, 1)) = 0,

∂uP(F (t,Ui ),Ui ,F (t, 1), ∂uF (t, 1)) = 0,

m · (U1 − U2)− 1 = 0.

Elimination theory

• Eliminate all series but F (t, 1)

→ Resultants

→ Gröbner bases
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Quantitative estimates with A. Bostan and M. Safey El Din

S : For 1 ≤ i ≤ 2,


P(F (t,Ui ),F (t, 1), ∂uF (t, 1), t,Ui ) = 0,

∂xP(F (t,Ui ),F (t, 1), ∂uF (t, 1), t,Ui ) = 0, U1 − U2 ̸= 0.

∂uP(F (t,Ui ),F (t, 1), ∂uF (t, 1), t,Ui ) = 0,

Assumptions

• U1,U2 are distinct series,

• S has finitely many solutions in Q(t)
6
,

• S generates a radical ideal over Q(t).

Useful properties

• S2 acts on V (S) by permuting U1,U2,

• #V (S) ≤ Bézout bound associated with S,
• Allows to forget U1 −U2 ̸= 0 in the Bézout bound.

[Bostan, N., Safey El Din ′23]

Under the above assumptions: δ := deg(P)

• There exists some nonzero polynomial R ∈ Q[z0, t] whose partial degrees

are upper bounded by δ2(δ − 1)4/2, such that R(F (t, 1), t) = 0.

• There exists an algorithm computing this R in Olog(δ
17) ops. in Q.

(We proved a general version of this result)

6/11
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Some preliminaries on Gröbner bases

A := Q[x , y ] polynomial ring, where y = y1, . . . , ys .

Monomial orders

• x4y 3
1 y

2
2 ≻lex x3y 4

1 y
2
2 for a lexicographic order,

• x4y 2
1 y

3
2 ≻bmon x4y 3

1 y2 for a block monomial order.

Leading terms for some order ≻
For Q ∈ A, the leading term LT≻(Q) of Q

is the monomial of highest weight for ≻.

Definition

Fix a monomial order ≻ on A. A finite sub-

set G = {g1, . . . , gt} of an ideal I ⊂ A dif-

ferent from 0 is said to be a Gröbner basis

if ⟨LT≻(g1), . . . , LT≻(gt)⟩ = ⟨LT≻(I)⟩.

Properties

• Such bases always exist and generate I,
• Computing Gröbner bases is NP-hard,

• Gröbner bases are a powerful tool in elim-

ination theory.
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• Computing Gröbner bases is NP-hard,

• Gröbner bases are a powerful tool in elim-

ination theory.

7/11



Some preliminaries on Gröbner bases
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New geometric modelling of the problem with A. Bostan and M. Safey El Din

There exist 2 solutions (x , u) ∈ Q(t)
2
with distinct u-coordinates to

P(x, u,F(t, 0), ∂uF(t, 0)) = 0,

∂xP(x, u,F(t, 0), ∂uF(t, 0)) = 0, u ̸= 0,

∂uP(x, u,F(t, 0), ∂uF(t, 0)) = 0.

πx : (x , u, z0, z1) ∈ Q(t)
4
7→ (u, z0, z1) ∈ Q(t)

3
,

W := πx(V (P, ∂xP, ∂uP) \ V (u))

πu : (u, z0, z1) ∈ Q(t)
3
7→ (z0, z1) ∈ Q(t)

2
,

Characterize with polynomial constraints

F2 := {αz ∈ Q(t)
2
| # π−1

u (αz) ∩W ≥ 2}
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Solving a toy example... with A. Bostan and M. Safey El Din

Input: F (t, u) = 1 + t

(
uF (t, u) + F (t,u)−F (t,0)−u∂uF (t,0)

u2

)
, k = 2

Output: t3F (t, 0)3 − F (t, 0) + 1 = 0.

• Compute P ∈ Q(t)[x , u, z0, z1] such that P(F (t, u), u,F (t, 0), ∂uF (t, 0)) = 0,

• Compute Gu Gröbner basis of ⟨P, ∂1P, ∂2P,m · u − 1⟩ ∩Q(t)[u, z0, z1] for {u} ≻lex {z0, z1}:
B0 : γ0

B1 :


β1 · u + γ1

...

βr · u + γr

,γi ,βj ∈ Q(t)[z0, z1]

B2 : g2 := u2 + βr+1 · u + γr+1

“At α ∈ πu(V (Gu)) ⊂ Q(t)
2
,

there exist two distinct solutions in u”

At α ∈ V (Gu ∩K[t, z0, z1]) fixed,

there exist two solutions in u

=⇒ βi ,γj = 0 (equations)

[Extension theorem]

α ∈ πu(V (Gu)) =⇒ LeadingCoeffu(g2) ̸= 0

Distinct solutions in u =⇒ discu(g2) ̸= 0 (inequations)
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... yields an algorithm based on elimination theory (ISSAC′23)

Projecting =⇒ Elimination theorem

Lifting points of the projections =⇒ Extension theorem

[Proposition] Let g ∈ (Q(t)[z0, z1])[u]. Then g has at least i distinct solutions

at α ∈ Q(t)
2
if and only if the (i× i)-minors of the Hermite quadratic form associated

with g do not vanish simultaneously at α.

⇝⇝⇝ Reduces to studying the multiplication maps (Muℓ : q 7→ q · uℓ)ℓ≥1 in (Q[t, z0, z1])[u]/⟨g⟩

[Bostan, N., Safey El Din ′23]

Disjunction of conjunctions of polynomial

equations and inequations whose zero set is F2

(Our strategy works in the general case)

[5−constellations k = 4]

Strategy Timing (dz0 , dt)

Duplication > 5d ?

Elimination 2d21h (9, 3)
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Conclusion and perspectives

• Decidability: geometry-driven algorithm computing R ∈ Q[z , t] \ {0} s.t. R(F (t, 1), t) = 0,

• Resolution of the DDE of 5-constellations in an automatic fashion,

• Implementing the algorithm in a Maple package?

Available in 3 weeks!

• Work in progress with S. Yurkevich for systems of DDEs.

• More nested catalytic variables?

(Work in progress with M. Bousquet-Mélou)
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