Solving combinatorial equations via computer algebra

RTCA Topical Day: Elimination for Functional Equations, 11 December 2023

Hadrien Notarantonio (Inria Saclay – Sorbonne Université)

Joint work with:

Alin Bostan (Inria Saclay)

Mohab Safey El Din (Sorbonne Université)

rooted planar maps

$$F(t, u) = 1 + tu \left(uF(t, u)^2 + \frac{uF(t, u) - F(t, 1)}{u - 1} \right)$$
 [Tutte '68]

$$F(t, u) = 1 + tu\left(uF(t, u)^{2} + \frac{uF(t, u) - F(t, 1)}{u - 1}\right)$$
 [Tutte '68]

 $a_n := \# \{ planar maps with n edges \}$ \downarrow refinement $a_{n,d} := \# \{ planar maps with n edges,$ d of them on the external face $\}$

 $tu^2 F(t, u)^2$

$$F(t, u) = 1 + tu \left(uF(t, u)^2 + \frac{uF(t, u) - F(t, 1)}{u - 1} \right)$$
 [Tutte '68]

 $a_n := \# \{ \text{planar maps with } n \text{ edges} \}$ $\downarrow \text{ refinement}$ $a_{n,d} := \# \{ \text{planar maps with } n \text{ edges},$ $d \text{ of them on the external face} \}$

1/11

-

1

$$F(t, u) = 1 + tu \left(uF(t, u)^2 + \frac{uF(t, u) - F(t, 1)}{u - 1} \right)$$
 [Tutte '68]

 $a_n := \# \{ \text{planar maps with } n \text{ edges} \}$ $\downarrow \text{ refinement}$ $a_{n,d} := \# \{ \text{planar maps with } n \text{ edges},$ $d \text{ of them on the external face} \}$

$$F(t,1) = \sum_{n=0}^{\infty} a_n t^n$$

 $tu^2F(t,u)^2$

1/11

1

In this talk Solving = Classifying the initial series F(t, 1)+ Computing a witness of this classification (e.g. $R \in \mathbb{Q}[z, t]$ s.t. R(F(t, 1), t) = 0)

Going back to our planar maps...

 $F(t,1) = 1 + 2t + 9t^{2} + 54t^{3} + 378t^{4} + \dots \in \mathbb{Q}[[t]]$ annihilated by $R = 27t^{2}z^{2} + (1-18t)z + 16t - 1 \in \mathbb{Q}[z,t]$

In this talk Solving = Classifying the initial series F(t, 1)+ Computing a witness of this classification (e.g. $R \in \mathbb{Q}[z, t]$ s.t. R(F(t, 1), t) = 0)

Going back to our planar maps...

 $F(t,1) = 1 + 2t + 9t^{2} + 54t^{3} + 378t^{4} + \dots \in \mathbb{Q}[[t]]$ annihilated by $R = 27t^{2}z^{2} + (1-18t)z + 16t - 1 \in \mathbb{Q}[z,t]$

From R:

• (Recurrence) $a_0 = 1$ and $(n+3)a_{n+1} - 6(2n+1)a_n = 0$,

• (Closed-form)
$$a_n = 2 \frac{3^n (2n)!}{n(n+2)!}$$
,

• (Asymptotics) $a_n \sim 2 \frac{12^n}{\sqrt{\pi n^5}}$, when $n \to +\infty$.

Objectives

- Introduce so-called Discrete Differential Equations (DDEs),
- Determine the nature of the solutions of DDEs,
- Provide an efficient algorithm for computing a witness,
- Implementation in action ~> Solving a problem previously out of reach.

Objects of interest: Discrete Differential Equations

 $\begin{array}{l} \text{Definition}\\ \text{Given } f \in \mathbb{Q}[u], \ k \geq 1, \ \text{and} \ Q \in \mathbb{Q}[y_0, \ldots, y_k, t, u],\\ F = f + t \cdot Q(F, \Delta F, \ldots, \Delta^k F, t, u) \qquad \qquad (\text{DDE})\\ \text{is a Discrete Differential Equation, where } \Delta \ : \ F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t,u) - F(t,1)}{u-1} \in \mathbb{Q}[u][[t]], \ \text{and}\\ \text{where for } \ell \geq 1 \ \text{we define } \Delta^{\ell+1} = \Delta^\ell \circ \Delta. \end{array}$

Objects of interest: Discrete Differential Equations

$$\begin{array}{l} \text{Definition}\\ \text{Given } f \in \mathbb{Q}[u], \ k \geq 1, \ \text{and} \ Q \in \mathbb{Q}[y_0, \ldots, y_k, t, u],\\ F = f + t \cdot Q(F, \Delta F, \ldots, \Delta^k F, t, u) \qquad (\text{DDE})\\ \text{is a Discrete Differential Equation, where } \Delta : F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t,u) - F(t,1)}{u-1} \in \mathbb{Q}[u][[t]], \ \text{and}\\ \text{where for } \ell \geq 1 \ \text{we define } \Delta^{\ell+1} = \Delta^\ell \circ \Delta. \end{array}$$

Bicolored planar maps: 3-constellations

$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$

$$\begin{array}{l} \text{Definition}\\ \text{Given } f \in \mathbb{Q}[u], \ k \geq 1, \ \text{and} \ Q \in \mathbb{Q}[y_0, \dots, y_k, t, u],\\ F = f + t \cdot Q(F, \Delta F, \dots, \Delta^k F, t, u) \qquad (\text{DDE})\\ \text{is a Discrete Differential Equation, where } \Delta \ : \ F \in \mathbb{Q}[u][[t]] \mapsto \frac{F(t, u) - F(t, 1)}{u - 1} \in \mathbb{Q}[u][[t]], \ \text{and}\\ \text{where for } \ell \geq 1 \ \text{we define } \Delta^{\ell + 1} = \Delta^\ell \circ \Delta. \end{array}$$

Bicolored planar maps: 3-constellations $F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$

Theorem[Bousquet-Mélou, Jehanne '06]The unique solution in $\mathbb{Q}[u][[t]]$ of (DDE) is algebraic over $\mathbb{Q}(t, u)$.

 \rightsquigarrow Constructive proof \implies algorithm

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u-1} + \frac{F(t, u) - F(t, 1) - (u-1)\partial_u F(t, 1)}{(u-1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t-2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

• Show that there exist distinct $U_1, U_2 \in \bigcup_{d \ge 1} \overline{\mathbb{Q}}[[t^{\frac{1}{d}}]]$ s.t. $\partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0$,

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

- Show that there exist distinct $U_1, U_2 \in \bigcup_{d \ge 1} \overline{\mathbb{Q}}[[t^{\frac{1}{d}}]]$ s.t. $\partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0$,
- Set up

For
$$1 \le i \le 2$$
,
$$\begin{cases} P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_u P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ m \cdot (U_1 - U_2) - 1 = 0. \end{cases}$$

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

• Show that there exist distinct $U_1, U_2 \in \bigcup_{d \ge 1} \overline{\mathbb{Q}}[[t^{\frac{1}{d}}]]$ s.t. $\partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0$,

• Set up

For
$$1 \le i \le 2$$
,
$$\begin{cases} P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_u P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ m \cdot (U_1 - U_2) - 1 = 0. \end{cases}$$

Elimination theory

• Eliminate all series but F(t, 1)

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

• Show that there exist distinct $U_1, U_2 \in \bigcup_{d \ge 1} \overline{\mathbb{Q}}[[t^{\frac{1}{d}}]]$ s.t. $\partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0$,

• Set up

For
$$1 \le i \le 2$$
,
$$\begin{cases} P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_u P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ m \cdot (U_1 - U_2) - 1 = 0. \end{cases}$$

Elimination theory

• Eliminate all series but
$$F(t, 1)$$

 \rightarrow Resultants

Input:
$$F(t, u) = 1 + tu \left(F(t, u)^3 + (2F(t, u) + F(t, 1)) \frac{F(t, u) - F(t, 1)}{u - 1} + \frac{F(t, u) - F(t, 1) - (u - 1)\partial_u F(t, 1)}{(u - 1)^2} \right)$$
,
Output: $81t^2F(t, 1)^3 - 9t(9t - 2)F(t, 1)^2 + (27t^2 - 66t + 1)F(t, 1) - 3t^2 + 47t - 1 = 0$.

- Compute $P \in \mathbb{Q}(t)[x, u, z_0, z_1]$ such that $P(F(t, u), u, F(t, 1), \partial_u F(t, 1)) = 0$,
- Consider

• Show that there exist distinct $U_1, U_2 \in \bigcup_{d \ge 1} \overline{\mathbb{Q}}[[t^{\frac{1}{d}}]]$ s.t. $\partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0$,

• Set up

For
$$1 \le i \le 2$$
,
$$\begin{cases} P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_x P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ \partial_u P(F(t, U_i), U_i, F(t, 1), \partial_u F(t, 1)) = 0, \\ m \cdot (U_1 - U_2) - 1 = 0. \end{cases}$$

Elimination theory

- Eliminate all series but F(t, 1)
- \rightarrow Resultants
- \rightarrow Gröbner bases

$$S: \qquad \text{For } 1 \leq i \leq 2, \begin{cases} P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_x P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_u P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \end{cases} \qquad \qquad U_1 - U_2 \neq 0.$$

$$S: \quad \text{For } 1 \le i \le 2, \begin{cases} P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_x P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_u P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \end{cases} \qquad U_1 - U_2 \ne 0.$$

Assumptions

- U_1, U_2 are distinct series,
- S has finitely many solutions in $\overline{\mathbb{Q}(t)}^6$,
- S generates a radical ideal over $\mathbb{Q}(t)$.

Quantitative estimates

$$S: \quad \text{For } 1 \leq i \leq 2, \begin{cases} P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_x P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_u P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \end{cases} \qquad U_1 - U_2 \neq 0.$$

Assumptions

- U_1, U_2 are distinct series,
- S has finitely many solutions in $\overline{\mathbb{Q}(t)}^{\circ}$,
- S generates a radical ideal over $\mathbb{Q}(t)$.

Useful properties

- \mathfrak{S}_2 acts on $V(\mathcal{S})$ by permuting U_1, U_2 ,
- $\#V(S) \leq \text{Bézout bound}$ associated with S,
- Allows to forget $U_1 U_2 \neq 0$ in the Bézout bound.

$$S: \qquad \text{For } 1 \leq i \leq 2, \begin{cases} P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_x P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \\ \partial_u P(F(t, U_i), F(t, 1), \partial_u F(t, 1), t, U_i) = 0, \end{cases} \qquad \qquad U_1 - U_2 \neq 0.$$

Assumptions

- U_1, U_2 are distinct series,
- S has finitely many solutions in $\overline{\mathbb{Q}(t)}^{\circ}$,
- S generates a radical ideal over $\mathbb{Q}(t)$.

Useful properties

- \mathfrak{S}_2 acts on $V(\mathcal{S})$ by permuting U_1, U_2 ,
- $\#V(S) \leq \text{Bézout bound}$ associated with S,
- Allows to forget $U_1 U_2 \neq 0$ in the Bézout bound.

[Bostan, N., Safey El Din '23]

Under the above assumptions:

- $\delta := \mathsf{deg}(P)$
- ullet There exists some nonzero polynomial $R\in \mathbb{Q}[z_0,t]$ whose partial degrees

are upper bounded by $\delta^2(\delta-1)^4/2$, such that R(F(t,1),t)=0.

• There exists an algorithm computing this R in $O_{\log}(\delta^{17})$ ops. in \mathbb{Q} .

(We proved a general version of this result)

Monomial orders

• $x^4 y_1^3 y_2^2 \succ_{lex} x^3 y_1^4 y_2^2$ for a **lexicographic order**, • $x^4 y_1^2 y_2^3 \succ_{bmon} x^4 y_1^3 y_2$ for a **block monomial order**.

Monomial orders

• $x^4 y_1^3 y_2^2 \succ_{lex} x^3 y_1^4 y_2^2$ for a lexicographic order, • $x^4 y_1^2 y_2^3 \succ_{bmon} x^4 y_1^3 y_2$ for a block monomial order. Leading terms for some order \succ

For $Q \in A$, the leading term $LT_{\succ}(Q)$ of Q is the monomial of **highest weight** for \succ .

Monomial orders

• $x^4 y_1^3 y_2^2 \succ_{lex} x^3 y_1^4 y_2^2$ for a lexicographic order, • $x^4 y_1^2 y_2^3 \succ_{bmon} x^4 y_1^3 y_2$ for a block monomial order.

Definition

Fix a monomial order \succ on \mathcal{A} . A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal $\mathcal{I} \subset \mathcal{A}$ different from 0 is said to be a Gröbner basis if $\langle LT_{\succ}(g_1), \ldots, LT_{\succ}(g_t) \rangle = \langle LT_{\succ}(\mathcal{I}) \rangle$.

Leading terms for some order \succ

For $Q \in A$, the leading term $LT_{\succ}(Q)$ of Q is the monomial of **highest weight** for \succ .

Monomial orders

• $x^4 y_1^3 y_2^2 \succ_{lex} x^3 y_1^4 y_2^2$ for a lexicographic order, • $x^4 y_1^2 y_2^3 \succ_{bmon} x^4 y_1^3 y_2$ for a block monomial order.

Definition

Fix a monomial order \succ on \mathcal{A} . A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal $\mathcal{I} \subset \mathcal{A}$ different from 0 is said to be a Gröbner basis if $\langle LT_{\succ}(g_1), \ldots, LT_{\succ}(g_t) \rangle = \langle LT_{\succ}(\mathcal{I}) \rangle$.

Leading terms for some order \succ

For $Q \in A$, the leading term $LT_{\succ}(Q)$ of Q is the monomial of **highest weight** for \succ .

Properties

- Such bases always exist and generate *I*,
- Computing Gröbner bases is NP-hard,
- Gröbner bases are a **powerful tool** in elimination theory.

There exist 2 solutions $(x, \mathbf{u}) \in \overline{\mathbb{Q}(t)}^2$ with distinct **u**-coordinates to

 $\begin{cases} \mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0,\\ \partial_{\mathsf{x}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0, \quad \mathsf{u}\neq 0,\\ \partial_{\mathsf{u}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0. \end{cases}$

There exist 2 solutions $(x, \mathbf{u}) \in \overline{\mathbb{Q}(t)}^2$ with distinct **u**-coordinates to

 $\begin{cases} \mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0,\\ \partial_{\mathsf{x}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0, \quad \mathsf{u}\neq 0,\\ \partial_{\mathsf{u}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0))=0. \end{cases}$

 $\begin{aligned} \pi_{x} &: (x, \mathbf{u}, \mathbf{z}_{0}, \mathbf{z}_{1}) \in \overline{\mathbb{Q}(t)}^{4} \mapsto (\mathbf{u}, \mathbf{z}_{0}, \mathbf{z}_{1}) \in \overline{\mathbb{Q}(t)}^{3}, \\ \mathbf{W} &:= \pi_{x}(V(\mathbf{P}, \partial_{x}\mathbf{P}, \partial_{u}\mathbf{P}) \setminus V(\mathbf{u})) \\ \pi_{u} &: (\mathbf{u}, \mathbf{z}_{0}, \mathbf{z}_{1}) \in \overline{\mathbb{Q}(t)}^{3} \mapsto (\mathbf{z}_{0}, \mathbf{z}_{1}) \in \overline{\mathbb{Q}(t)}^{2}, \end{aligned}$

There exist 2 solutions $(x, \mathbf{u}) \in \overline{\mathbb{Q}(t)}^2$ with distinct **u**-coordinates to

 $\begin{cases} \mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0},\\ \partial_{\mathsf{x}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0}, \quad \mathsf{u} \neq \mathsf{0},\\ \partial_{\mathsf{u}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0}. \end{cases}$

$$\begin{aligned} \pi_{x} &: (x, \mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{4} \mapsto (\mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{3}, \\ \mathbf{W} &:= \pi_{x}(V(\mathbf{P}, \partial_{x}\mathbf{P}, \partial_{u}\mathbf{P}) \setminus V(\mathbf{u})) \\ \pi_{u} &: (\mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{3} \mapsto (z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{2}, \end{aligned}$$

Characterize with polynomial constraints $\mathcal{F}_2 := \{ \alpha_{\underline{z}} \in \overline{\mathbb{Q}(t)}^2 | \ \# \ \pi_u^{-1}(\alpha_{\underline{z}}) \cap \mathbf{W} \ge 2 \}$

There exist 2 solutions $(x, \mathbf{u}) \in \overline{\mathbb{Q}(t)}^2$ with distinct u-coordinates to

 $\begin{cases} \mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0},\\ \partial_{\mathsf{x}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0}, \quad \mathsf{u} \neq \mathsf{0},\\ \partial_{\mathsf{u}}\mathsf{P}(\mathsf{x},\mathsf{u},\mathsf{F}(\mathsf{t},0),\partial_{\mathsf{u}}\mathsf{F}(\mathsf{t},0)) = \mathsf{0}. \end{cases}$

$$\begin{aligned} \pi_{x} &: (x, \mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{4} \mapsto (\mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{3}, \\ \mathbf{W} &:= \pi_{x}(V(\mathbf{P}, \partial_{x}\mathbf{P}, \partial_{u}\mathbf{P}) \setminus V(\mathbf{u})) \\ \pi_{u} &: (\mathbf{u}, z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{3} \mapsto (z_{0}, z_{1}) \in \overline{\mathbb{Q}(t)}^{2}, \end{aligned}$$

Characterize with polynomial constraints $\mathcal{F}_2 := \{ \alpha_{\underline{z}} \in \overline{\mathbb{Q}(t)}^2 | \ \# \ \pi_u^{-1}(\alpha_{\underline{z}}) \cap \mathbf{W} \ge 2 \}$

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u \partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u\partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u\partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

• Compute G_u Gröbner basis of $\langle P, \partial_1 P, \partial_2 P, m \cdot u - 1 \rangle \cap \mathbb{Q}(t)[u, z_0, z_1]$ for $\{u\} \succ_{lex} \{z_0, z_1\}$:

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u \partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

• Compute G_u Gröbner basis of $\langle P, \partial_1 P, \partial_2 P, m \cdot u - 1 \rangle \cap \mathbb{Q}(t)[u, z_0, z_1]$ for $\{u\} \succ_{lex} \{z_0, z_1\}$: $B_0: \qquad \gamma_0$ $B_1: \begin{cases} \beta_1 \cdot u + \gamma_1 \\ \vdots & ,\gamma_i, \beta_j \in \mathbb{Q}(t)[z_0, z_1] \\ \beta_r \cdot u + \gamma_r \end{cases}$ "At $\alpha \in \pi_u(V(G_u)) \subset \overline{\mathbb{Q}(t)}^2$, there exist two distinct solutions in u" $B_2: g_2 := u^2 + \beta_{r+1} \cdot u + \gamma_{r+1}$

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u \partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

• **Compute** G_u Gröbner basis of $\langle P, \partial_1 P, \partial_2 P, m \cdot u - 1 \rangle \cap \mathbb{Q}(t)[u, z_0, z_1]$ for $\{u\} \succ_{lex} \{z_0, z_1\}$: B_0 : $\mathbf{B}_{1}: \begin{cases} \boldsymbol{\beta}_{1} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{1} \\ \vdots & , \boldsymbol{\gamma}_{i}, \boldsymbol{\beta}_{j} \in \mathbb{Q}(t)[\boldsymbol{z}_{0}, \boldsymbol{z}_{1}] \\ \boldsymbol{\beta}_{r} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{r} \\ \mathbf{B}_{2}: \quad \mathbf{g}_{2}:= \boldsymbol{u}^{2} + \boldsymbol{\beta}_{r+1} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{r+1} \end{cases}$ "At $\boldsymbol{\alpha} \in \pi_{\boldsymbol{\mu}}(V(\boldsymbol{G}_{\boldsymbol{\mu}})) \subset \overline{\mathbb{Q}(t)}^2$, there exist two distinct solutions in μ " At $\alpha \in V(G_u \cap \mathbb{K}[t, z_0, z_1])$ fixed, there exist two solutions in u $\implies \beta_i, \gamma_i = 0$ (equations)

Input:
$$F(t, u) = 1 + t \left(uF(t, u) + \frac{F(t, u) - F(t, 0) - u \partial_u F(t, 0)}{u^2} \right),$$

Output: $t^3 F(t, 0)^3 - F(t, 0) + 1 = 0.$

• **Compute** G_u Gröbner basis of $\langle P, \partial_1 P, \partial_2 P, m \cdot u - 1 \rangle \cap \mathbb{Q}(t)[u, z_0, z_1]$ for $\{u\} \succ_{lex} \{z_0, z_1\}$: B_0 : $\mathbf{B}_{1}: \begin{cases} \boldsymbol{\beta}_{1} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{1} \\ \vdots & , \boldsymbol{\gamma}_{i}, \boldsymbol{\beta}_{j} \in \mathbb{Q}(t)[\boldsymbol{z}_{0}, \boldsymbol{z}_{1}] \\ \boldsymbol{\beta}_{r} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{r} \\ \mathbf{B}_{2}: \quad \mathbf{g}_{2}:= \boldsymbol{u}^{2} + \boldsymbol{\beta}_{r+1} \cdot \boldsymbol{u} + \boldsymbol{\gamma}_{r+1} \end{cases}$ "At $\boldsymbol{\alpha} \in \pi_{\boldsymbol{\mu}}(V(\boldsymbol{G}_{\boldsymbol{\mu}})) \subset \overline{\mathbb{O}(t)}^2$. there exist two distinct solutions in μ " At $\alpha \in V(G_u \cap \mathbb{K}[t, z_0, z_1])$ fixed, [Extension theorem] $\alpha \in \pi_u(V(G_u)) \implies \text{LeadingCoeff}_u(\mathbf{g}_2) \neq 0$ there exist two solutions in μ $\implies \beta_i, \gamma_i = 0$ (equations) Distinct solutions in $u \implies \text{disc}_u(\mathbf{g}_2) \neq 0$ (inequations)

Projecting \Rightarrow Elimination theoremLifting points of the projections \Rightarrow Extension theorem

[Proposition] Let $g \in (\mathbb{Q}(t)[z_0, z_1])[u]$. Then g has at least *i* distinct solutions at $\alpha \in \overline{\mathbb{Q}(t)}^2$ if and only if the $(i \times i)$ -minors of the Hermite quadratic form associated with g do not vanish simultaneously at α .

 \rightsquigarrow Reduces to studying the **multiplication maps** $(M_{u^{\ell}}: q \mapsto q \cdot u^{\ell})_{\ell \geq 1}$ in $(\mathbb{Q}[t, z_0, z_1])[u]/\langle g \rangle$

(ISSAC'23)

Projecting \implies Elimination theoremLifting points of the projections \implies Extension theorem

[Proposition] Let $g \in (\mathbb{Q}(t)[z_0, z_1])[u]$. Then g has at least *i* distinct solutions at $\alpha \in \overline{\mathbb{Q}(t)}^2$ if and only if the $(i \times i)$ -minors of the Hermite quadratic form associated with g do not vanish simultaneously at α .

 \rightsquigarrow Reduces to studying the **multiplication maps** $(M_{u^{\ell}}: q \mapsto q \cdot u^{\ell})_{\ell \geq 1}$ in $(\mathbb{Q}[t, z_0, z_1])[u]/\langle g \rangle$

gebraic Geometry and Commutative gebra

Fourth Edition

🙆 Springer

(ISSAC'23)

David A. Cox John Little Donal O'Shea Ideals, Varieties, and

Algorithms

Springer

Projecting \Longrightarrow Elimination theoremLifting points of the projections \Rightarrow Extension theorem

[Proposition] Let $g \in (\mathbb{Q}(t)[z_0, z_1])[u]$. Then g has at least *i* distinct solutions at $\alpha \in \overline{\mathbb{Q}(t)}^2$ if and only if the $(i \times i)$ -minors of the Hermite quadratic form associated with g do not vanish simultaneously at α .

 \rightsquigarrow Reduces to studying the **multiplication maps** $(M_{u^{\ell}}: q \mapsto q \cdot u^{\ell})_{\ell \geq 1}$ in $(\mathbb{Q}[t, z_0, z_1])[u]/\langle g \rangle$

[Bostan, N., Safey El Din '23]

Disjunction of conjunctions of polynomial equations and inequations whose zero set is \mathcal{F}_2

(Our strategy works in the general case)

(ISSAC'23)

Projecting \Longrightarrow Elimination theoremLifting points of the projections \Rightarrow Extension theorem

[Proposition] Let $g \in (\mathbb{Q}(t)[z_0, z_1])[u]$. Then g has at least *i* distinct solutions at $\alpha \in \overline{\mathbb{Q}(t)}^2$ if and only if the $(i \times i)$ -minors of the Hermite quadratic form associated with g do not vanish simultaneously at α .

 \rightsquigarrow Reduces to studying the **multiplication maps** $(M_{u^{\ell}}: q \mapsto q \cdot u^{\ell})_{\ell \geq 1}$ in $(\mathbb{Q}[t, z_0, z_1])[u]/\langle g \rangle$

David A. Con John Little Donal 0'Shea Ideals, Varieties, and Algorithms An Introduction to Computational

Igebraic Geometry and Commutative Igebra

Fourth Edition

🕗 Springer

[Bostan, N., Safey El Din '23]

Disjunction of conjunctions of polynomial equations and inequations whose zero set is \mathcal{F}_2

(Our strategy works in the general case)

[5—cc	onstellations	<i>k</i> = 4]
Strategy	Timing	(d_{z_0}, d_t)
Duplication	> 5d	?
Elimination	2d21h	(9,3)

- Decidability: geometry-driven algorithm computing $R \in \mathbb{Q}[z, t] \setminus \{0\}$ s.t. R(F(t, 1), t) = 0,
- Resolution of the DDE of 5-constellations in an automatic fashion,

- Decidability: geometry-driven algorithm computing $R \in \mathbb{Q}[z, t] \setminus \{0\}$ s.t. R(F(t, 1), t) = 0,
- Resolution of the DDE of 5-constellations in an automatic fashion,

- Implementing the algorithm in a *Maple* package? Available in 3 weeks!
- Work in progress with S. Yurkevich for systems of DDEs.
- More nested catalytic variables?

(Work in progress with M. Bousquet-Mélou)