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In this talk
Solving = Classifying the initial series F(t, 1)
+ Computing a witness of this classification
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Solving = Classifying the initial series F(t, 1)
+ Computing a witness of this classification

(e.g. R €Q[z,t]st. R(F(t,1),t) =0)

Algebraic \
Rational Going back to our planar maps...
1i6t F(t,1) = 1+ 2t + 9t* + 54t + 378" + - - € Q[[t]]
1oaees annihilated by R = 27t22% + (1 — 18t)z + 16t — 1 € Q[z, ]
(1—t)5 — (1+2t)% From R:
e (Recurrence) ap =1 and (n+3)asr1 —6(2n+1)a, =0,
3"(2n)!

e (Closed-form) a, = 2n(n+2)],

12"
Vrns'

e (Asymptotics) a, ~ 2 when n — 4o0.
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of the talk

Objectives

Introduce so-called Discrete Differential Equations (DDEs),

e Determine the nature of the solutions of DDEs,

Provide an efficient algorithm for computing a witness,

Implementation in action ~ Solving a problem previously out of reach.
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Objects of interest:

e B

Definition
Given f € Q[u], k > 1, and Q € Q[yo, ..., Yk, t, u],

F=f+t-Q(F,AF,...,AF,t u) (DDE)

is a Discrete Differential Equation, where A : F € Q[u][[t]] — w € Q[u][[t]], and
where for £ > 1 we define A = Afo A,
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Bicolored planar maps: 3-constellations
F(tu) - F(t,1)
u—1

F(t,u) — F(t,1) — (u—1)0,F(t,1)
J’_
(u—1)
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4/11



Objects of interest:

e B

Definition
Given f € Q[u], k > 1, and Q € Q[yo, ..., Yk, t, u],

F=f+t-Q(F,AF,...,AF,t u) (DDE)

is a Discrete Differential Equation, where A : F € Q[u][[t]] — w € Q[u][[t]], and
where for £ > 1 we define A = Afo A,

Bicolored planar maps: 3-constellations Theorem
F(t,u) — F(t,1) [Bousquet-Mélou, Jehanne '06]

v _ L The unique solution in Q[u][[t]]
+ F(t,u) — F(t,1) — (u—1)0uF(t, 1) of (DDE) is algebraic over Q(t, u).
(u—1)

F(t,u) =1+ tu(F(t, u)® 4 (2F(t, u) + F(t,1))

J

~~» Constructive proof =—> algorithm
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and 's algorithm

Input: F(t,u) =1+ tu<F(t, u)® + (2F(t, u) + F(£,1)) EEu=FED 4 F("“)‘F“’(lu’jf,”{”‘””F(*’”>,

Output: 81t2F(t,1)* — 9t(9t — 2)F(t, 1)? + (27t* — 66t + 1)F(t,1) — 3t + 47t — 1 = 0.
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e Compute P € Q(t)[x, u, zo, z1] such that P(F(t,u), u, F(t,1),0,F(t,1)) =0,
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d>1
e Set up

P(F(t7 UI')7 Ui7 F(t7 1)7811F(t7 1)) =0,

For 1 <i <2, ¢0.P(F(t,U), U, F(t,1),0,F(t,1)) =0,
8U'D(F(t7 Ui)a UiaF(tvl)aauF(tvl)) =0,
m-(Up—U)—1=0.
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Quantitative estimates with

P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,
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P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,

Assumptions Useful properties
e U, U> are distinct series, e &, acts on V/(S) by permuting Ui, Us,
e S has finitely many solutions in @6, e #V(S) < Bézout bound associated with S,
e S generates a radical ideal over Q(t). e Allows to forget Ui — U> # 0 in the Bézout bound.

6/11



Quantitative estimates with
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P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,

Assumptions Useful properties
o Ui, Us are . o acts on V/(S) by Ut, Uz,
——6
e S has in Q(t), ° associated with S,
e S generates a over Q(t). e Allows to forget U; — U # 0 in the Bézout bound.
[Bostan, N., Safey El Din 23]
Under the above assumptions: 0 := deg(P)
e There exists some nonzero polynomial R € Q|zo, t] whose partial degrees
are upper bounded by , such that R(F(t,1),t) =0.
e There exists an algorithm computing this R in ops. in Q.

(We proved a general version of this result)



Some preliminaries on Grobner bases

A := Q[x, y] polynomial ring, where y = y1,...,ys.

Monomial orders
4.3 2 3.4 2 . -
e X"yiy5s =iex X“yi y> for a lexicographic order,
o x*yy3 > bmon X" iy for a block monomial order.
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Some preliminaries on

A := Q[x, y] polynomial ring, where y = y1,...,ys.

Monomial orders Leading terms for some order >
o x*y3y2 = 1ex X2yiy2 for a lexicographic order, For Q € A, the leading term LT.(Q) of Q
o x*yy3 > bmon X" iy for a block monomial order. is the monomial of highest weight for >.

Definition Properties

Fix a monomial order > on A. A finite sub- e Such bases always exist and generate Z,
set G = {gi,...,4} of an ideal Z C A dif- e Computing Grobner bases is NP-hard,
ferent from 0 is said to be a Grobner basis e Grobner bases are a powerful tool in elim-
if (LTw(g1);---,LTx(ge)) = (LT (2)). ination theory.
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New geometric modelling of the problem with

. . T2 . .
There exist 2 solutions (x,u) € Q(t) with u-coordinates to

P(x,u, F(t,0),d.F(t,0)) = 0,
BP(x, u,F(t, 0), 0uF(t,0) = 0, u£0,
0uP(x,u, F(t,0),0,F(t,0)) = 0.
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New geometric modelling of the problem with

. . T2 . .
There exist 2 solutions (x,u) € Q(t) with u-coordinates to

P(x,u, F(t,0),0.F(t,0)) = 0,
8P (x, u, F(t,0),0,F(t,0)) = 0, u#0,
auP(X, u, F(t3 0)7 auF(t? 0)) = 0

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,

W = m(V(P, 0xP, 8,P) \ V(u))
7y (U, 20,21) € @3 — (20,21) € @27
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of the problem with

There exist 2 solutions (x,u) € @2 with distinct u-coordinates to
P(x,u, F(t,0),9,F(t,0)) =0,
OxP(x,u,F(t,0),0,F(t,0)) =0, u#0,
OuP(x,u, F(t,0),0,F(t,0)) = 0.

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,
W = m(V(P, 0xP, 8,P) \ V(u))

7y : (u,20,21) € @3 — (20,21) € @27

Characterize with polynomial constraints

Foi={az € Q) | # 7 Maz) "W > 2}
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of the problem with

. . T2 . .- .
There exist 2 solutions (x,u) € Q(t) with distinct u-coordinates to

P(x,u, F(t,0),0,F(t,0)) = 0,
8XP(x7 u, F(t7 0)’ auF(t7 0)) = Oa u 7é Oa
0uP(x,u, F(t,0),0,F(t,0)) = 0.

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,

W := 71 (V(P, 5P, 3,P) \ V(u))

i (u,20,21) € QE) = (20,21) € QT

Characterize with polynomial constraints

Fr={o: € Q) | # 70 (ax) NW > 2} # T ()W = 2
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,l(J)z)fuauF(t,O)>’ k=2
Output: t3F(t,0)* — F(t,0) +1=0.
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e Compute G, Grobner basis of (P,01P,0:P,m-u— 1) N Q(t)[u, o, z1] for {u} >iex {20, 21 }:
Bo : Yo

Br-u+m7
Bi : : »%is Bi € Q(t)[20, 21] “At o € m,(V(G,)) € Qt),
s @A there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,Oz)fuauF(t,O)>’ k=2

u

Output: t3F(t,0)* — F(t,0) +1=0.

e Compute P € Q(t)[x, u, z0, z1] such that P(F(t,u), u, F(t,0),0,F(t,0)) =0,

e Compute G, of (P,01P,0:P,m-u— 1) NQ(t)[u, z0, z1] for {u} >jex {20, 21 }:
B[) 5 “Yo
> @) <k
B:: : i Bj € Q(t)[z0, 21] “At a € m,(V(G,)) € Q(t)’,
e there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1

At a € V(G NK]t, zo, z1]) fixed,
there exist two solutions in u
== 9 = 0 ( )
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,l(J)z)fuauF(t,O)>’ k=2
Output: t3F(t,0)* — F(t,0) +1=0.

e Compute P € Q(t)[x, u, z0, z1] such that P(F(t,u), u, F(t,0),0,F(t,0)) =0,

e Compute G, of (P,01P,0:P,m-u— 1) NQ(t)[u, z0, z1] for {u} >jex {20, 21 }:
B[) 5 “Yo
> @) <k
B:: : i Bj € Q(t)[z0, 21] “At a € m,(V(G,)) € Q(t)’,
e there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1

At a € V(G NK]t, zo, z1]) fixed, [Extension theorem]
there exist two solutions in u a e m,(V(G)) = #0
= Bi,7 =0 ( ) Distinct solutions in v — #0 ( )

9/11



... yields an algorithm based on elimination theory

Projecting ==
Lifting points of the projections —-
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... yields an algorithm based on elimination theory

Projecting ==
Lifting points of the projections —-
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e Decidability: geometry-driven algorithm computing R € Q[z, t] \ {0} s.t. R(F(¢t,1),t) =0,

e Resolution of the DDE of 5-constellations in an automatic fashion,
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e Decidability: geometry-driven algorithm computing R € Q[z, t] \ {0} s.t. R(F(¢t,1),t) =0,

Resolution of the DDE of 5-constellations in an automatic fashion,

Implementing the algorithm in a Maple package?
Available in 3 weeks!

e Work in progress with S. Yurkevich for systems of DDEs.

e More nested catalytic variables?
(Work in progress with M. Bousquet-Mélou)
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