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Complex Differentially 
Algebraic  

Differentiably 
Finite Algebraic Rational 
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D-finite : Satisfies a linear DE with polynomial coefficients. AKA Holonomic   

D-Algebraic: Satisfies a polynomial DE.   

D-Transcendental : NOT differentially algebraic

Classification
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Combinatorial classes

TYPE OF CLASS TYPICAL EXAMPLES NATURE OF OGF

Finite class Polynomial

Iterative grammar 
specification

Recognizable by a finite automaton 
Regular language, eg. Fibonacci

Rational function

Recursively grammar 
specification

Trees, Catalan classes, 
Maps

Algebraic function

?
Shuffles of Dyck Paths 

k-regular labelled graphs 
SYT of bounded height 

Co-growth series of Amenable groups*

D-finite

? Families of decorated maps D-algebraic

 𝒞 ⟹ C(t) :=
∞

∑
n=0

𝒞n tnA combinatorial class is a set equipped with a size function. 
Ordinary Generating Functions (OGF) encode enumerative 
data as integer coefficients of formal power series. 
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Fibonacci 
numbers

Catalan 
numbers

2-3 Trees

Complete 2-3 
Trees

K-regular 
graphs

Simple walks in 
quarter plane

Excursions on 
Sierpinski 
gasket

Excursions on 
Cayley graphs of 
free products of 
finite groupsRegular 

languages

Constrained 
regular 
languages

132- avoiding 
permutations

Baxter  
permutations

Bell 
numbers 
(OGF)

Bell 
numbers 
(EGF)

Walks in half planeUnconstrained 
simple walks

Context free languages

Tree decorated 
maps

Simple walks in  
“transcendental” 

region
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Applications of classification
• Theoretical Computer Science  

The following language is not unambiguously context free: 
 because its generating function  

 is not algebraic.  (Flajolet 1988) 

• Group Theory  
Let G be a finitely generated amenable group that is not nilpotent-by-finite and let S be a 
finite symmetric generating set for G. The OGF for walks starting and ending at the 
origin on the Cayley Graph X(G;S) is not D-finite.  (Bell, M. 2021)  
Gives a strategy to determine if  Thompson’s Group F is an amenable group. (Elvey-Price, 
Guttmann 2019) 

•

𝒞 = {w ∈ {a, b, c}* ∣ |w |a ≠ |w |b or |w |a ≠ |w |c }
C(t) = ∑

n

cntn
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D-finite series in combinatorics
• Richard Stanley’s 1980 article plants several seeds, many of 

which were considered by Gessel (1990): 

• Baxter permutations  

• Young Tableaux of bounded height  

• k-regular graphs 

• Cited by > 500 
> 12 000 hits to {Holonomic |D-finite }+combinatorics 

• Most D-finite classes are in some bijection with a class of 
lattice walks 

(3) the set of hesitating tableaux of length 2n, with height bounded by k, ending in a row of length m;
(4) the set of Wk-hesitating walks of length 2n ending at (m, 0, . . . , 0).

4. Young tableaux, involutions and open matchings

4.1. Bijections. We can now prove our first main result, namely Theorem 1. Our strategy is to use Propo-
sition 6, and prove the following result, from which Theorem 1 is a straightforward consequence.

Proposition 8. The set of standard Young tableaux of size n with height bounded by 2k and m odd columns
are in bijection with the set of open matching diagrams of length n, with m open arcs and with no (k + 1)-
crossing.

As far as we can tell, this theorem was first conjectured by Burrill [9]4. Our proof uses the Robinson-
Schensted-Knuth (RSK) correspondence, and the bijection of Chen et al..

A di↵erent proof was communicated to us by Christian Krattenthaler [24]. It relies on the RSK correspon-
dence like our proof, but also on jeu de taquin (an operation on Young tableaux invented by Schützenberger [25]).
We note that the two bijections di↵er: our bijection has the advantage of preserving – just like the Chen
et al. construction – the “opener/closer” sequence (in a formulation using diagrams on both sides of the
bijection; cf Lemma 11 for more details), a strong property which does not clearly appear in Krattenthaler’s
alternative. His proof passes through growth diagrams [23].

The following lemma presents a classic property of the RSK correspondence.

Lemma 9. (Robinson-Schensted-Knuth correspondence) The set of standard Young tableaux of size n with
height bounded by k and m odd columns is in bijection with involutions of size n with m fixed points and no
decreasing subsequence of length k + 1.

1 3 5

2 4 8

6 9 10

7 1 2 3 4 5 6 7 8 9 10

Figure 9. Left. A standard Young tableau Y of size 10. Right. The arc diagram represen-
tation of the involution (1 7)(3 9)(4 6)(5 10). This involution is the image of (Y, Y ) under
the RSK correspondence.

As a first step, Lemma 9 yields combinatorial objects that are close to open matchings. Indeed, involutions
have a very natural arc diagram representation: cycles (i j) are represented by an arc, and fixed points are
isolated dots. An example is shown in Figure 9. We can map involutions into the set of open matchings by
simply changing every isolated point into an open arc. Under this map, there is a simple correspondence
between decreasing sequences in an involution and nestings in the open diagram.

Lemma 10. Let k 2 Z�1. An involution has no decreasing subsequence of length 2k+1 if and only if there
is no enhanced k-nesting in its arc diagram representation.

Proof. Let ↵ be an involution. If its arc diagram has an enhanced k-nesting then ↵ contains k cycles
(i1 j1), . . . , (ik jk) that satisfy i1 < i2 < · · · < ik  jk < · · · < j1, which clearly induces a decreasing
subsequence of length 2k � 1.

Conversely, assume that there exist 2k�1 numbers i1 < i2 < · · · < i2k�1 such that ↵(i2k�1) < · · · < ↵(i1).
If ↵(ik) � ik � 0, then i1 < · · · < ik  ↵(ik) < · · · < ↵(i1): this means that (i1,↵(i1)), . . . , (ik,↵(ik)) form
an enhanced k-nesting. Otherwise, ↵(ik)� ik  0. Thus ↵(i2k�1) < · · · < ↵(ik)  ik < · · · < i2k�1: the arcs
(↵(i2k�1), i2k�1), . . . , (↵(ik), ik) form an enhanced k-nesting. ⇤

By the two preceding lemmas, the proof of Proposition 8 is reduced to the proof that involution diagrams
of length n with m fixed points and no enhanced (k+1)-nesting are in bijection with open matching diagrams
of length n with m open arcs and no (k + 1)-crossing. This is established by the following lemma.

4More precisely, this conjecture used open matchings with no (k + 1)-nesting.

8
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Why the interest in D-finite series?

• Closure properties mirror combinatorial actions 

• The differential equation is a useful data structure for both reasoning and computation 

• Clear proof strategies  

• Conjecture (Christol, 1990): If a series with non-negative integer coefficients and a positive, finite, radius of 
convergence is furthermore D-finite, then it can be written as the diagonal of a multivariate rational function. 

• D-algebraic series are much more difficult to manipulate and characterize.

“Almost anything is non-holonomic unless it is holonomic by design.”  

                                                                                      - Flajolet, Gerhold & Salvy, 2005
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“Classic” Strategies
To show a series is D-finite:  

Build it from other D-finite series 

Show the coefficients satisfy a linear recurrence 

Write it as the constant term (with respect to auxiliary variables) of a multivariable D-finite series (essentially, a 
Cauchy integral) 

To show a series is NOT D-finite  

Show asymptotic growth of the coefficients is not of the correct form 
 
Show that it comes from a function with an infinite number of singularities 

It is sufficient to show it is D-Transcendendal



Differential  
Transcendence
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A non-D-finite lattice model

• Theorem (M., Rechnitzer, 2009) 
The univariate OGF has an infinite number of singularities  and is not D-finite.   

• A possible combinatorial explanation: A sequence of directed paths in strips of increasing height 

• Similar models proved in an ad hoc manner.  

M. Mishna, A. Rechnitzer / Theoretical Computer Science 410 (2009) 3616–3630 3629

pull!

pull!

i

j

i

j

Fig. 5. Stretching the walk to find a directed path in a strip.

If we then make the substitution t 7! q
1+q2 , the expression simplifies remarkably into the following recurrence for

Dk(y) = Dk(y, q
1+q2 ):

Dk(y) = q3Dk�2(q)(yk+2 + 1) � qy2Dk�2(y)(qk+2 + 1)
(qk+2 + 1)(yq � 1)(y � q)

. (45)

In fact, for our purposes it suffices to consider:

Dk(1) = q(qk+2 + 1)Dk�2(1) � 2q3Dk�2(q)
(qk+2 + 1)(q � 1)2

. (46)

From this formula, and from computations for various values of k, Dk(1) is a rational function in q, and it seems clear that
the set (taken over all k) of poles of Dk(1) is dense in the unit circle. Were this so, we would apply the following theorem
(from [2]) to the generating function QS(s, s; q

1+q2 ) = P
Dk(1; q

1+q2 )s
k, and thus conclude the non-holonomy of QS(x, y; t).

Theorem 17. Let f (x; t) = P
n cn(x)t

n be a holonomic power series in C(x)[[t]]. with rational coefficients in x. For n � 0 let Sn
be the set of poles of cn(y), and let S = S

Sn. Then S has only a finite number of accumulation points.

Again, the principal difficulty is showing that the singularities do not cancel; that solutions to qk+2 + 1 are indeed poles of
Dk.

This approach was pioneered by Guttmann and Enting [10], and has been fruitful for several different models [9,16].
Unfortunately it is not clear how to apply their arguments successfully to this problem.

4.3. Related walks

We expect walks with steps from the following sets to also have non-holonomic generating functions because the groups
of their kernel iterates are infinite. It is seems likely this can be proved in a manner similar to Theorems 1 and 2.

A second family that appears to be non-holonomic is the set of walks restricted to the interior of the wedge in the left
half plane bounded by y = ±mx, for rational m, with steps from {N, E,S}. Remark that when m = 1, these are in bijection
with the walks in our first case, using Step set S. These satisfy a parametrized recurrence similar to Eq. (45) (see [12]).
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Fig. 1. Sample walks with steps from S = {NW,NE,SE} (left) and T = {NW,N,SE} (right).

1.1. Walks and their generating functions

The objects under consideration are walks in N ⇥ N, the first quadrant of the integer lattice, with steps taken from
S = {(�1, 1), (1, 1), (1, �1)} in the first case, and T = {(�1, 1), (0, 1), (1, �1)} in the second case. We also label these
steps using compass directions: S = {NW,NE,SE} and T = {NW,N,SE}. Two sample walks are given in Fig. 1.

To each step set we associate two formal power series:W (t) a (univariate) counting generating function and Q (x, y; t), a
(multivariate) generating function which refinesW (t). The series,W (t), is the ordinary generating function for the number
ofwalks, that is, the coefficient of tn is the number ofwalks of length n. The complete generating function,Q (x, y; t), encodes
more information. The coefficient of xiyjtn in Q (x, y; t) is the number of walks of length n ending at the point (i, j). Note that
the specialisation x = y = 1 in the complete generating function is precisely the counting series, i.e. Q (1, 1; t) = W (t). If
the choice of step set is not clear by context, we add a subscript.

In part, our interest in the complete generating function stems from the fact it satisfies a very useful functional equation
which we derive using the recursive definition of a walk: a walk of length n is a walk of length n� 1 plus a step. The quarter
plane condition asserts itself by restricting our choice of step should thewalk of length n�1 end on a boundary (i.e. an axis).

The step set S leads to the following equation:

Q (x, y; t) = 1 + t
✓
xy + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t), (1)

and set T defines a comparable equation:

Q (x, y; t) = 1 + t
✓
y + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t). (2)

These two equations are very similar with the only difference arising from the coefficient of Q (x, y; t). Also note that the
first equation is x $ y symmetric, while the second is not.

In the text that follows we will frequently use a bar over a variable or function to denote its reciprocal, for example:
x ⌘ 1

x .

1.2. Properties of holonomic functions

We are interested in understanding the analytic nature of the generating functions. This gives a basic first classification of
structures and also some general properties, for example, about the asymptotic growth of the coefficients. See, for example,
Bousquet-Mélou’s recent summary classifying combinatorial families with rational and algebraic generating functions [4].
We are interested in generating functions which are holonomic, also known as D-finite. Let x = x1, x2, . . . , xn.

A multivariate function G(x) is holonomic if the vector space generated by the partial derivatives of G (and their iterates),
over rational functions of x is finite dimensional. This is equivalent to the existence of n partial differential equations of the
form

p0,if (x) + p1,i
@ f (x)
@xi

+ · · · + pdi,i
@di f (x)
(@xi)di

= 0,

where 1  i  n and the pj,i are all polynomials in x.
In the univariate case, this implies that there is at most a finite number of singularities, which can be recovered as zeros

of the leading coefficient, pd,1(x).
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In fact.. D-transcendental
Dreyfus+Hardouin+Roques+Singer 17  • Bostan 19 

f(qt) = a(t)f(t) + b(t)

Combinatorial recurrence 

Functional equation for Q𝒮(x, y)

Rewrite so LHS is  K𝒮(x, y)Q𝒮(x, y)

Find rational parametrization for  E𝒮

Deduce an Ishizaki/Ogawara style equation 
for R(x(s))

Conclude D-transcendance

Q(x, y) = 1 + z(x/y + y/x + xy)Q(x, y)−z(x/y)Q(x,0) − z(y/x)Q(0,y)

K(x, y)Q(x, y) = xy−R(x) − R(y)

x(s) =
v(1 − v2)s
(s2 + 1)

, y(s) =
(1 − v2)s
v2s2 + 1

, z =
v

v2 + 1 ⟹ 0 = x(s)y(s)−R(x(s)) − R(y(s))

A walk is either the empty walk, or it is a shorter walk with a step appended, but you must 
exclude those walks that then step out of the quarter plane 

M. Mishna, A. Rechnitzer / Theoretical Computer Science 410 (2009) 3616–3630 3617

Fig. 1. Sample walks with steps from S = {NW,NE,SE} (left) and T = {NW,N,SE} (right).
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more information. The coefficient of xiyjtn in Q (x, y; t) is the number of walks of length n ending at the point (i, j). Note that
the specialisation x = y = 1 in the complete generating function is precisely the counting series, i.e. Q (1, 1; t) = W (t). If
the choice of step set is not clear by context, we add a subscript.

In part, our interest in the complete generating function stems from the fact it satisfies a very useful functional equation
which we derive using the recursive definition of a walk: a walk of length n is a walk of length n� 1 plus a step. The quarter
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first equation is x $ y symmetric, while the second is not.
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We are interested in understanding the analytic nature of the generating functions. This gives a basic first classification of
structures and also some general properties, for example, about the asymptotic growth of the coefficients. See, for example,
Bousquet-Mélou’s recent summary classifying combinatorial families with rational and algebraic generating functions [4].
We are interested in generating functions which are holonomic, also known as D-finite. Let x = x1, x2, . . . , xn.

A multivariate function G(x) is holonomic if the vector space generated by the partial derivatives of G (and their iterates),
over rational functions of x is finite dimensional. This is equivalent to the existence of n partial differential equations of the
form
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@ f (x)
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where 1  i  n and the pj,i are all polynomials in x.
In the univariate case, this implies that there is at most a finite number of singularities, which can be recovered as zeros
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Lemma (Ishizaki 1998; Ogawara 2015)  

Given a Laurent series ,and Taylor expansions of rational functions , 
and , a complex number that is not a root of unity such that 

    

then   is EITHER rational or D-transcendental.

f(t) a(t), b(t) ∈ ℂ(t)
q

f(qt) = a(t)f(t) + b(t)

f(t)

Solution dichotomy
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Strategy

•   

Example:  Bell numbers

 

(Klazar 2003; Bostan, DiVizio, Raschel 2020+)

f(t) ↦ f ( t
1 + t )

B(t) = ∑ Bntn ⟹ B ( t
t + 1 ) = tB(t) + 1

Rough principle: (ref. Adamczewski, Dreyfus, Hardouin 2021) 
  

A Laurent series solution f(t) of a linear [shift|Mahler|q-shift] equation is  
EITHER rational, or D-transcendental

• q-shift:  (q not a root of unity) 
Example: Genus 0 quarter plane walks 

• Shift operator:      
Example:    

• Mahler operator:   
Example:  

 

f(t) ↦ f(qt)

f(t) ↦ f(t + h)
Γ(t + 1) = tΓ(t)

f(t) ↦ f(tk)

f(t) = ∑ t2n
 satisfies f(t) = t + f(t2) …not rational, hence it must be D-transcendental.



Order 1 Iterative Equations
f(R(t)) = a(t)f(t)+b(t)
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Extending the strategy

 New Examples:  R(t) = t2 + t3, R(t) =
t

1 + t2

Theorem 1. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity , then   is either rational or D-transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = f(t)+b(t)
R(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)

NEW!

Theorem 11. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity ,then   is either algebraic or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)
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Complete 2-3 Trees

Iterative description: Start with single leaf. Each iteration generates trees of depth one more 
by replacing a leaf with either             or            in all possible ways.    

Complete trees have all leaves at the same level. Size is given by # of leaves

and seven others
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Complete 2-3 Trees

denote this operation here using square brackets, and by indicating the substitution. This operation is
encoded at the level of generating functions by a variable substitution.

Let T be the class of complete S-trees. Given a tree in T , we create a set of larger trees by replacing
all leaves with subtrees of height 1 with k leaves for some k 2 S in all possible ways. Consider the
example S = {2, 3}. We can specify the class T as follows:

eq:23treecombeq:23treecomb (2.2) T ⌘ •+ T
"
• 7!

�
+

� #
.

We can generate the trees up to size 6:

(2.3) •
� �

�
� �

,

�
� �

,

�
� �

,

�
� �

,

�
� � �

. . .

Every tree has a unique derivation from the functional equation Eq. (2.2) , determined by iteratively
deleting all the leaves in the tree. Thus, the generating function for the counting sequence (tn) of trees
of length n, denoted T (z) has initial Taylor series expansion

T (z) = z + z
2 + z

3 + z
4 + 2z5 + 2z6 +O(z7)

and satisfies the functional equation

eq:23treeeqneq:23treeeqn (2.4) T (z) = z + T (z2 + z
3).

We use Corollary 1.2 to deduce that as T (z) satisfies Eq. (2.4), it is di↵erentially transcendental1.

thm:tree-main Corollary 2.1. The ordinary generating function for (unlabelled) complete rooted plane 2-3 trees is dif-

ferentially transcendental.

Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
generating function is di↵erentially transcendental. The key hypothesis for this construction to work is
that S does not contain 1, otherwise the class is not well defined. For example, B-trees of order m bodini

paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation

G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
the second di↵erentially transcendental!
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denote this operation here using square brackets, and by indicating the substitution. This operation is
encoded at the level of generating functions by a variable substitution.

Let T be the class of complete S-trees. Given a tree in T , we create a set of larger trees by replacing
all leaves with subtrees of height 1 with k leaves for some k 2 S in all possible ways. Consider the
example S = {2, 3}. We can specify the class T as follows:

eq:23treecombeq:23treecomb (2.2) T ⌘ •+ T
"
• 7!

�
+

� #
.

We can generate the trees up to size 6:
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Every tree has a unique derivation from the functional equation Eq. (2.2) , determined by iteratively
deleting all the leaves in the tree. Thus, the generating function for the counting sequence (tn) of trees
of length n, denoted T (z) has initial Taylor series expansion

T (z) = z + z
2 + z

3 + z
4 + 2z5 + 2z6 +O(z7)

and satisfies the functional equation

eq:23treeeqneq:23treeeqn (2.4) T (z) = z + T (z2 + z
3).

We use Corollary 1.2 to deduce that as T (z) satisfies Eq. (2.4), it is di↵erentially transcendental1.

thm:tree-main Corollary 2.1. The ordinary generating function for (unlabelled) complete rooted plane 2-3 trees is dif-

ferentially transcendental.

Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
generating function is di↵erentially transcendental. The key hypothesis for this construction to work is
that S does not contain 1, otherwise the class is not well defined. For example, B-trees of order m bodini

paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation
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1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
the second di↵erentially transcendental!
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T(z) is not rational …

• (Odlyzko 82)

Theorem 1. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity , then   is either rational or D-transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = f(t)+b(t)
R(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)

denote this operation here using square brackets, and by indicating the substitution. This operation is
encoded at the level of generating functions by a variable substitution.

Let T be the class of complete S-trees. Given a tree in T , we create a set of larger trees by replacing
all leaves with subtrees of height 1 with k leaves for some k 2 S in all possible ways. Consider the
example S = {2, 3}. We can specify the class T as follows:
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Every tree has a unique derivation from the functional equation Eq. (2.2) , determined by iteratively
deleting all the leaves in the tree. Thus, the generating function for the counting sequence (tn) of trees
of length n, denoted T (z) has initial Taylor series expansion

T (z) = z + z
2 + z

3 + z
4 + 2z5 + 2z6 +O(z7)

and satisfies the functional equation

eq:23treeeqneq:23treeeqn (2.4) T (z) = z + T (z2 + z
3).

We use Corollary 1.2 to deduce that as T (z) satisfies Eq. (2.4), it is di↵erentially transcendental1.

thm:tree-main Corollary 2.1. The ordinary generating function for (unlabelled) complete rooted plane 2-3 trees is dif-

ferentially transcendental.

Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
generating function is di↵erentially transcendental. The key hypothesis for this construction to work is
that S does not contain 1, otherwise the class is not well defined. For example, B-trees of order m bodini

paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation
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1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
the second di↵erentially transcendental!
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degrees of rigor, of showing that if (1.3) holds then c = (4 log(4 - 4)))‘. 
Certainly (1.3) implies that 

f(z) - -c log@ - ’ - z) as z--+4-‘, zE (0,4-l). (1.6) 

Let us suppose that in fact for some constant c’, 

f(z) = -c log(d-’ - z) + c’ + o(1) as z-4-l. (1.7) 

Since for zE (O,d-‘), if we let z=$-’ -x, then 

z* + 23 = 4-1 - (4 - 4) x + 0(x2), 

the functional equation (1.5) and (1.7) give us 

-c log x + c’ + a( 1) 

as x + 0, which implies 

c log(4 - $) = $ ~ ‘, (1.8) 

which is the desired conclusion. 
We have shown that c = (0 log(4 - 4)))’ iff(z) satisfies (1.7). But (1.7) is 

not implied by (1.3). However, one can also prove that (1.8) gives the only 
possible value for c without any unproved assumptions. It can be shown by a 
relatively easy application of the Hardy-Littlewood-Karamata Tauberian 
Theorem [ 111 to simplified versions of the results that will be proved here 
that 

-i- log x 

I<& 
an#-n - 

4 hid4 - 4) 
as x-co, 

which proves rigorously that if (1.3) holds, then c must satisfy (1.8). 
However, the main result of this paper is that (1.3) does not hold, and that 
the a, exhibit asymptotic oscillations. 

THEOREM 1. There exists a positive nonconstant continuous function 
u(x) which satisfies u(x) = u(x + log(4 - 4)) for all real x such that 

a, -Fu(log n) as n-03. 

The average value of u(x) is (Q log(4 - q5))-‘. 

The oscillations of u(x) are demonstrted in Table I. Unfortunately we do 
not obtain any good expansions for u(x), but numerical evidence indicates 
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FIG. 1. All the 2,3-trees with n < 5 leaves. 

where 4 = (1 + 5 i/*)/2 = 1.6 lg... is the “golden ratio.” The authors of that 
paper also asked whether there exists a constant c such that 

a, - - E 4” as n+co. (1.3) 

It was next noted by Knuth that if (1.3) holds, then the most likely value of c 
is (4 log(4 - #))-‘. (All logarithms in this paper are to the base e.) The basic 
idea is to consider the generating function 

f(z) = g a,z”. 
II=1 

The most important fact aboutf(z) is that it satisfies the functional equation 

f(z) = z +f(z’ + z”). (1.5) 

If we substitute z* + z3 for z in (1.4) and use the binomial theorem, then 
(1.5) is readily seen to be equivalent to (1.1). (Such expansions are valid in 
IzI < #-I, where (1.4) converges absolutely by (1.2).) Alternatively, this can 
be seen directly. Any single term z” in (1.4) corresponds to some particular 
2,3-tree T with n leaves. If d is the depth (distance from root to leaf) of such 
a tree, then (z’ + z3)” will correspond to the sum of zm over all 2,3-trees 
with m leaves obtainable from T by attaching to each leaf either two or three 
descendents. Since any tree of depth d + 1 is obtainable in a unique way 
from a unique tree of depth d, we see that (1.5) holds as a relation on formal 
power series, and therefore by (1.2) for all z with 1 z 1 < 4-i. 

Now that we have established (1.5), there are several ways, of varying 

T(z) is D-transcendental

T(z)
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Complete 2-3 Trees

denote this operation here using square brackets, and by indicating the substitution. This operation is
encoded at the level of generating functions by a variable substitution.

Let T be the class of complete S-trees. Given a tree in T , we create a set of larger trees by replacing
all leaves with subtrees of height 1 with k leaves for some k 2 S in all possible ways. Consider the
example S = {2, 3}. We can specify the class T as follows:

eq:23treecombeq:23treecomb (2.2) T ⌘ •+ T
"
• 7!
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+

� #
.

We can generate the trees up to size 6:
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Every tree has a unique derivation from the functional equation Eq. (2.2) , determined by iteratively
deleting all the leaves in the tree. Thus, the generating function for the counting sequence (tn) of trees
of length n, denoted T (z) has initial Taylor series expansion

T (z) = z + z
2 + z

3 + z
4 + 2z5 + 2z6 +O(z7)

and satisfies the functional equation

eq:23treeeqneq:23treeeqn (2.4) T (z) = z + T (z2 + z
3).

We use Corollary 1.2 to deduce that as T (z) satisfies Eq. (2.4), it is di↵erentially transcendental1.

thm:tree-main Corollary 2.1. The ordinary generating function for (unlabelled) complete rooted plane 2-3 trees is dif-

ferentially transcendental.

Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
generating function is di↵erentially transcendental. The key hypothesis for this construction to work is
that S does not contain 1, otherwise the class is not well defined. For example, B-trees of order m bodini

paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation
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4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
the second di↵erentially transcendental!

5

X

n

fnt
n 7! f(R(t)) :=

X

n

fnR(t)n .

This is well defined since R has no constant term.
Throughout we identify C(t) with a sub-field of C((t)), by identifying rational functions with their

Taylor expansion. Iterative equations of the form

f(R(t)) = a(t)f(t) + b(t)

are well studied from a variety of perspectives, particularly especially for polynomial, or even rational
R, and rational a and b. They appear naturally in the analysis of branching processes, number theoretic Judicious

choice
of refer-
ences

phenomena and combinatorial generating functions. Teufl [Teu07] collects examples from diverse areas,
including the Thue-Morse word, 2-3 trees and random walks on the Sierpiński graph.

The main results here examine the nature of solutions to these equations: When are the series dif-
ferentially algebraic? The following theorem is a slightly less general statement than one of our main
results, but captures the central dichotomy.

thmINTRO:rational-a=1 Theorem 1.1. Let R 2 C(t) be such that R(0) = 0 and R
0(0) 2 {0, 1, roots of unity}. We suppose that

there exists b 2 C(t) and f 2 C((t)) such that f(R(t)) = f(t) + b(t). Then either f 2 C(t) or f is

di↵erentially transcendental over C(t), i.e. f does not satisfy an algebraic di↵erential equation over C(t).

Under additional conditions, we can deduce transcendence directly. This has a quite useful corollary
that we will apply of the generating series associated with complete trees:

corINTRO:trees-chainsaw Corollary 1.2. In the notation and under the assumptions of Theorem 1.1, we suppose moreover that

R 2 t
2C[t], and that b 2 tC[t], with b 6= 0 and degt b  degt R. Then f is di↵erentially transcendental

over C(t).

A second result in the paper can be restated in the following way:

thmINTRO:MainForApplications Theorem 1.3. Let R 2 C(t) be such that R(0) = 0 and R
0(0) 2 {0, 1, roots of unity}. We suppose that

there exist f 2 C((t)) and a, b 2 C(t), with a 6= 0, such that f(R(t)) = a(t)f(t) + b(t). Then either f is

algebraic over C(t) or f is di↵erentially transcendental over C(t).

Remark 1.4. The statements unify a collection of results in the literature. The case R(t) = qt, with
q 2 C, q 6= 0, 1 of Theorem 1.3 is proved in [Ish98, Theorem 1.2] and [Oga14, Theorem 2]. If R(t) = t+1
then the result is proved in [Nis84, Theorem 2]. In the case R(t) = t

d, with d � 2, it is proved [Nis84,
Theorem 3], [Ran92, page 22] and in [Ngu11]. The first Galoisian approach to these problem is developed
in [Har08]. which has inspired di↵erent parameterized Galois theories leading to similar statements in
di↵erent setting. See [HS08, §3.1],[DVHW17, §3],The main result of [ADH21] is an analogous statement
for functional equation of any order, while in [BDVR20] the authors deal with first order inhomogeneous
equations associated with R(t) = t

1+t and consider the di↵erential transcendence of solutions over the
germs of meromorphic functions at zero, inspired by the example of the generating series of Bell numbers
in [Kla03].

Notice that we do not cover the case of a general non-zero R
0(0), which is most likely true. Maybe

we

should

write a

small ap-

pendix

on this

for com-

pleteness

1.2 Classifying combinatorial structures by the nature of their generating

function

These results are useful in the combinatorics context for classification of objects by the nature of their
generating function. A combinatorial class is a set of discrete objects, each with a size subject to the
condition that the number of objects of a given size is finite. Given a class, enumerative data can be
encoded in a formal power series in t such that the coe�cient of tn is the number of objects of size n. This
is the (ordinary) generating function associated to the class. Classically, knowing the functional equations
a generating functions satisfies can inform on the type of the recurrences and shape of asymptotic formulas
for the counting sequence. More remarkable is that such information can provide combinatorial insight,
for example, it can immediately establish that a class cannot be described with an unambiguous context

2

T(z) is D-transcendental (Indeed, most complete tree classes are similar)

When R(t) is a polynomial we have a stronger result that we can apply here. 
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Walks on self-similar graphs

and has initial Taylor series expansion

T
c(t) = t+ t

2 + t
3 + t

4 + 2t5 + 2t6 +O(t7). (OEISA014535)

Equation (1.4) has an important consequence.

Theorem 1.1. The ordinary generating function for (unlabelled) complete rooted plane {2, 3}-trees is di↵eren-
tially transcendental.

We prove this result using Theorem B, or rather its useful corollary, applied to the generating series associated
with complete trees (see Corollary 3.1 below):

Corollary 1.2. Let R 2 t
2C[t] \ {0} and b 2 tC[t], with b 6= 0 and degt b < degt R. If there exists f 2 C((t))

such that �R(f) = f + b, then f is di↵erentially transcendental over C(t).

Remark, for general complete S-trees, the argument is the same: the generating function T
c(t) =

P
n�0 t

c
nt

n

of Tc satisfies
T

c(t) = t+ T
c(S(t)).

Theorem 1.3. Let S be a finite set of positive integers each greater than 1. Then the ordinary generating

function for (unlabelled) complete rooted plane S-trees is di↵erentially transcendental.

For example, for any m, the set of complete {dm/2e, . . . ,m}-trees is the well known class of B-trees of order
m [BM70]. By Theorem 1.3, the generating function for B-trees of order m is di↵erentially transcendental.
Recall a S-tree class is only well defined if S does not contain 1, so the restriction in Corollary 1.2 is quite
natural.

A more general result is also true since the ordinary generating function of any class of complete S-trees is
either di↵erentially transcendental or rational by Theorem B. Under some weak constraints on S, the asymptotic
analyses of Odlyzko [Odl82] and de Bruijn [dB79] can be used to show the generating function is not rational.

Remark 1.4. Note the generating function T (t) for all S-trees and the generating function T
c(t) for complete

S-trees satisfy equations that bear a superficial similarity: T (t) = t+S(T (t)) vs. T c(t) = t+T
c(S(t)). However,

the first is algebraic and the second di↵erentially transcendental! Are there other examples of classically algebraic
objects for which the addition of a simple condition changes the nature of the generating function in such a
striking manner?

Random walks on self-similar graphs. Our second family of discrete objects concerns walks on self-
similar graphs. We present the results for Sierpiński graph, but similar conclusions are true for the entire class
of symmetric self-similar graphs, as described by Böhn and Teufl [KT04].

The Sierpiński graph results from a fractal generating process starting with a single line, iteratively rewritten
and rescaled in particular way. More precisely, one starts with a unit line, S0 = and applies the following
replacement rule:

(1.5) 7!

in an iterated process. Figure 2 demonstrates the first few iterates. The Sierpiński graph is the limit of this
process.

S0 = S1 = S2 = S3 = S4 =

Figure 2: Initial iterates defining the Sierpiński graph.

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. The Green function of symmetric self-similar graphs satisfy
homogeneous iterative equations,

G(R(t)) = a(t)G(t)

with algebraic (often rational) R and rational a. Roughly, the substitution t 7! R(t) has a combinatorial
interpretation reflecting the self-similarity of the graph [KT04]. As the graph is 4-regular, G(4t) is the generating
function for walks that begin and end at the origin on the Sierpiński graph. These walks are also known as
excursions on the graph. The series begins:

G(4t) = 1 + 4 t2 + 4 t3 + 32 t4 + 76t5 + 348 t6 + 1112 t7 +O(t8).
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m [BM70]. By Theorem 1.3, the generating function for B-trees of order m is di↵erentially transcendental.
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analyses of Odlyzko [Odl82] and de Bruijn [dB79] can be used to show the generating function is not rational.
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Random walks on self-similar graphs. Our second family of discrete objects concerns walks on self-
similar graphs. We present the results for Sierpiński graph, but similar conclusions are true for the entire class
of symmetric self-similar graphs, as described by Böhn and Teufl [KT04].

The Sierpiński graph results from a fractal generating process starting with a single line, iteratively rewritten
and rescaled in particular way. More precisely, one starts with a unit line, S0 = and applies the following
replacement rule:
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in an iterated process. Figure 2 demonstrates the first few iterates. The Sierpiński graph is the limit of this
process.
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Figure 2: Initial iterates defining the Sierpiński graph.

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. The Green function of symmetric self-similar graphs satisfy
homogeneous iterative equations,

G(R(t)) = a(t)G(t)

with algebraic (often rational) R and rational a. Roughly, the substitution t 7! R(t) has a combinatorial
interpretation reflecting the self-similarity of the graph [KT04]. As the graph is 4-regular, G(4t) is the generating
function for walks that begin and end at the origin on the Sierpiński graph. These walks are also known as
excursions on the graph. The series begins:

G(4t) = 1 + 4 t2 + 4 t3 + 32 t4 + 76t5 + 348 t6 + 1112 t7 +O(t8).

4

First few iterations:

Consider a walk starting and ending at the same 
point on the limit of this process. 

o

Figure 3: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one of

the 32 excursions of length 4.

Figure 3 illustrates an example excursion.
Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that return to

their origin on the Sierpiński graph satisfies the functional equation

(1.6) G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

We apply Theorem C to G(t).

Theorem 1.5. The Green function G(t) of walks that start and end at the origin on the infinite Sierpiński

graph is di↵erentially transcendental over C(t).

In light of Equation (1.6), to prove Theorem 1.5, it su�ces to show that G(t) is not algebraic. Grabner and
Woess in loc.cit. show that the coe�cient of tn in G(t) grows asymptotically like

n
� log 3/ log 5

F (log n/ log 5)

as n goes to infinity, for some nonconstant periodic function F . The constant � log 3/ log 5 is related to the
fractal dimension of the underlying structure. Since the exponent of n is not rational, G(t) is not algebraic (see
[FS09, Theorem VII.8]), hence it is di↵erentially transcendental.

One can apply Theorem C to deduce the di↵erential transcendence of the Green functions of excursions on
other self similar graphs. The step of excluding the case of an algebraic generating function may follow from
results of Teufl [Teu03] on the coe�cient asymptotics, particularly when paired with [FS09, Theorem VII.8].

Pattern avoiding permutations. The Noonan-Zeilberger conjecture [NZ96] posited that the set of permu-
tations avoiding a fixed set of patterns should have a D-finite generating function, that is, that the generating
function should satisfy a linear di↵erential equation with rational coe�cients. Twenty years later, after much
activity on the problem, Garrabrant and Pak [GP16] finally disproved it showing in a proof that the generating
function of permutations avoiding a particular set of 30000 patterns was not D-finite. The study of consecutive
pattern avoidance (defined below) has a slightly di↵erent flavour, but is also a good candidate for a systematic
analysis, and indeed Elizalde and Noy [EN12] comprehensively classified the nature of the generating function
for all small patterns to length 4. Permutations avoiding consecutive patterns can naturally describe bases of
shu✏e algebras with monomial relations [DK13]. Most permutations avoid a consecutive pattern and conse-
quently, it turns out to be better to encode enumerative data using the exponential generating functions (EGF),

i.e., we associate to our counting sequence (fn)1n=0 the series bf(t) =
P

n�0
fn
n! t

n. To avoid confusion when were
are talking about both EGF and OGF, the carat identifies the EGF of a sequence. A non-D-finite example
was found quickly, and although it had been conjectured that in fact the reciprocal should always be D-finite,
Elizalde and Noy gave strong evidence that the reciprocal of the EGF for the class of permutations avoiding
the consecutive pattern 1432 was not D-finite, an example we consider now.

A permutation � 2 Sn is said to avoid the consecutive pattern 1423 if there is no 1  i  n � 4 such that
�(i) < �(i + 4) < �(i + 2) < �(i + 3). Let bP (t) be the exponential generating function for permutations that
avoid the consecutive pattern 1423. (OEISA201692). Elizalde and Noy [EN12] determined the following system
of equations for the EGF bP (t):

(1.7) bP (t) =
1

2� bS(t)
such that S(t) = S

✓
t

1 + t2

◆
t

1 + t
+ 1.

The non-D-finiteness of S(t) was subsequently proved by Beaton, Conway and Guttmann in [BCG17] who
showed that an explicit solution to the functional equation had an infinite number of singularities. Theorem A
above, with R(t) = t

1+t2 gives a potentially simpler path to establish that S(t) is not D-finite (and indeed the
even stronger conclusion that it is di↵erentially transcendental) since you would just need to show that S(t) is
not solution of an inhomogeneous linear di↵erential equation of order 1. As it is, as Beaton et al. did establish

5

G(t) = 1 + 4 t2 + 4 t3 + 32 t4 + 76t5 + 348 t6 + 1112 t7 + O(t8) .

Generating function for walks that start 
and end at the same point:
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Walks on self-similar graphs

o

Figure 3: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one of

the 32 excursions of length 4.

Figure 3 illustrates an example excursion.
Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that return to

their origin on the Sierpiński graph satisfies the functional equation

(1.6) G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

We apply Theorem C to G(t).

Theorem 1.5. The Green function G(t) of walks that start and end at the origin on the infinite Sierpiński

graph is di↵erentially transcendental over C(t).

In light of Equation (1.6), to prove Theorem 1.5, it su�ces to show that G(t) is not algebraic. Grabner and
Woess in loc.cit. show that the coe�cient of tn in G(t) grows asymptotically like

n
� log 3/ log 5

F (log n/ log 5)

as n goes to infinity, for some nonconstant periodic function F . The constant � log 3/ log 5 is related to the
fractal dimension of the underlying structure. Since the exponent of n is not rational, G(t) is not algebraic (see
[FS09, Theorem VII.8]), hence it is di↵erentially transcendental.

One can apply Theorem C to deduce the di↵erential transcendence of the Green functions of excursions on
other self similar graphs. The step of excluding the case of an algebraic generating function may follow from
results of Teufl [Teu03] on the coe�cient asymptotics, particularly when paired with [FS09, Theorem VII.8].

Pattern avoiding permutations. The Noonan-Zeilberger conjecture [NZ96] posited that the set of permu-
tations avoiding a fixed set of patterns should have a D-finite generating function, that is, that the generating
function should satisfy a linear di↵erential equation with rational coe�cients. Twenty years later, after much
activity on the problem, Garrabrant and Pak [GP16] finally disproved it showing in a proof that the generating
function of permutations avoiding a particular set of 30000 patterns was not D-finite. The study of consecutive
pattern avoidance (defined below) has a slightly di↵erent flavour, but is also a good candidate for a systematic
analysis, and indeed Elizalde and Noy [EN12] comprehensively classified the nature of the generating function
for all small patterns to length 4. Permutations avoiding consecutive patterns can naturally describe bases of
shu✏e algebras with monomial relations [DK13]. Most permutations avoid a consecutive pattern and conse-
quently, it turns out to be better to encode enumerative data using the exponential generating functions (EGF),

i.e., we associate to our counting sequence (fn)1n=0 the series bf(t) =
P

n�0
fn
n! t

n. To avoid confusion when were
are talking about both EGF and OGF, the carat identifies the EGF of a sequence. A non-D-finite example
was found quickly, and although it had been conjectured that in fact the reciprocal should always be D-finite,
Elizalde and Noy gave strong evidence that the reciprocal of the EGF for the class of permutations avoiding
the consecutive pattern 1432 was not D-finite, an example we consider now.

A permutation � 2 Sn is said to avoid the consecutive pattern 1423 if there is no 1  i  n � 4 such that
�(i) < �(i + 4) < �(i + 2) < �(i + 3). Let bP (t) be the exponential generating function for permutations that
avoid the consecutive pattern 1423. (OEISA201692). Elizalde and Noy [EN12] determined the following system
of equations for the EGF bP (t):

(1.7) bP (t) =
1

2� bS(t)
such that S(t) = S

✓
t

1 + t2

◆
t

1 + t
+ 1.

The non-D-finiteness of S(t) was subsequently proved by Beaton, Conway and Guttmann in [BCG17] who
showed that an explicit solution to the functional equation had an infinite number of singularities. Theorem A
above, with R(t) = t

1+t2 gives a potentially simpler path to establish that S(t) is not D-finite (and indeed the
even stronger conclusion that it is di↵erentially transcendental) since you would just need to show that S(t) is
not solution of an inhomogeneous linear di↵erential equation of order 1. As it is, as Beaton et al. did establish
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G(t) = 1 + 4 t2 + 4 t3 + 32 t4 + 76t5 + 348 t6 + 1112 t7 + O(t8) .

Generating function for walks that start and end at the same point:

G(t)  satisfies a recurrence  (Grabner + Woess) 

 G ( 4t2

1 − 3t ) =
6t2 + t − 1
2t2 + t − 1

G(t) .

This factor comes from the self-similarity of the graph
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The G(t) is not algebraic …
Theorem 11. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity, then   is either algebraic or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)

The asymptotics of the coefficients are incompatible with algebraicity. The coefficients 

of  grow like for some non-constant period 
function F. (Grabner and Woess 97)

tn

o

Figure 3: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one of

the 32 excursions of length 4.

Figure 3 illustrates an example excursion.
Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that return to

their origin on the Sierpiński graph satisfies the functional equation

(1.6) G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

We apply Theorem C to G(t).

Theorem 1.5. The Green function G(t) of walks that start and end at the origin on the infinite Sierpiński

graph is di↵erentially transcendental over C(t).

In light of Equation (1.6), to prove Theorem 1.5, it su�ces to show that G(t) is not algebraic. Grabner and
Woess in loc.cit. show that the coe�cient of tn in G(t) grows asymptotically like

n
� log 3/ log 5

F (log n/ log 5)

as n goes to infinity, for some nonconstant periodic function F . The constant � log 3/ log 5 is related to the
fractal dimension of the underlying structure. Since the exponent of n is not rational, G(t) is not algebraic (see
[FS09, Theorem VII.8]), hence it is di↵erentially transcendental.

One can apply Theorem C to deduce the di↵erential transcendence of the Green functions of excursions on
other self similar graphs. The step of excluding the case of an algebraic generating function may follow from
results of Teufl [Teu03] on the coe�cient asymptotics, particularly when paired with [FS09, Theorem VII.8].

Pattern avoiding permutations. The Noonan-Zeilberger conjecture [NZ96] posited that the set of permu-
tations avoiding a fixed set of patterns should have a D-finite generating function, that is, that the generating
function should satisfy a linear di↵erential equation with rational coe�cients. Twenty years later, after much
activity on the problem, Garrabrant and Pak [GP16] finally disproved it showing in a proof that the generating
function of permutations avoiding a particular set of 30000 patterns was not D-finite. The study of consecutive
pattern avoidance (defined below) has a slightly di↵erent flavour, but is also a good candidate for a systematic
analysis, and indeed Elizalde and Noy [EN12] comprehensively classified the nature of the generating function
for all small patterns to length 4. Permutations avoiding consecutive patterns can naturally describe bases of
shu✏e algebras with monomial relations [DK13]. Most permutations avoid a consecutive pattern and conse-
quently, it turns out to be better to encode enumerative data using the exponential generating functions (EGF),

i.e., we associate to our counting sequence (fn)1n=0 the series bf(t) =
P

n�0
fn
n! t

n. To avoid confusion when were
are talking about both EGF and OGF, the carat identifies the EGF of a sequence. A non-D-finite example
was found quickly, and although it had been conjectured that in fact the reciprocal should always be D-finite,
Elizalde and Noy gave strong evidence that the reciprocal of the EGF for the class of permutations avoiding
the consecutive pattern 1432 was not D-finite, an example we consider now.

A permutation � 2 Sn is said to avoid the consecutive pattern 1423 if there is no 1  i  n � 4 such that
�(i) < �(i + 4) < �(i + 2) < �(i + 3). Let bP (t) be the exponential generating function for permutations that
avoid the consecutive pattern 1423. (OEISA201692). Elizalde and Noy [EN12] determined the following system
of equations for the EGF bP (t):

(1.7) bP (t) =
1

2� bS(t)
such that S(t) = S

✓
t

1 + t2

◆
t

1 + t
+ 1.

The non-D-finiteness of S(t) was subsequently proved by Beaton, Conway and Guttmann in [BCG17] who
showed that an explicit solution to the functional equation had an infinite number of singularities. Theorem A
above, with R(t) = t

1+t2 gives a potentially simpler path to establish that S(t) is not D-finite (and indeed the
even stronger conclusion that it is di↵erentially transcendental) since you would just need to show that S(t) is
not solution of an inhomogeneous linear di↵erential equation of order 1. As it is, as Beaton et al. did establish

5

G(t) is D-transcendental (When are walks on other fractals similar?)

Related to the fractal dimension
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The result is best possible.
• We cannot hope for a stronger conclusion for Theorem II.  

• Eg. The equation  has an irrational, yet 
algebraic, solution:  

• Construction: Consider , with S(t) a rational series so that  
the hypotheses on R(t) are satisfied.  

• Then  is a non-rational, algebraic solution of , with 
coherent choice of square roots for  and .

y(t + t2 + t4 − t − t3) = (1 + t + t3)y(t)
y(t) = t − 1

R(t) = 1 + (t − 1)S(t)2

y = (t − 1)1/2 y(R(t)) = S(t)y(t)
(t − 1) S(t)2
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Extending the strategyNEW!

Theorem 111. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational and furthermore ,  

no iterate of R is the identity 
then   is either D-finite or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)+b(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)
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Permutations avoiding consecutive patterns

• A permutation  of n avoids the consecutive pattern 1423 if there is no   so 
that . 

• The EGF  of 1423-avoiding permutations can be written using S(t) 

satisfying the following:  (Elizalde and Noy 2012) 

 

• Similar situation for  avoiding permutations

σ 0 ≤ i ≤ n − 4
σ(i + 1) < σ(i + 4) < σ(i + 2) < σ(i + 3)

̂P(t) = ∑
pn

n!
tn

o

Figure 3: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one of

the 32 excursions of length 4.

Figure 3 illustrates an example excursion.
Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that return to

their origin on the Sierpiński graph satisfies the functional equation

(1.6) G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

We apply Theorem C to G(t).

Theorem 1.5. The Green function G(t) of walks that start and end at the origin on the infinite Sierpiński

graph is di↵erentially transcendental over C(t).

In light of Equation (1.6), to prove Theorem 1.5, it su�ces to show that G(t) is not algebraic. Grabner and
Woess in loc.cit. show that the coe�cient of tn in G(t) grows asymptotically like

n
� log 3/ log 5

F (log n/ log 5)

as n goes to infinity, for some nonconstant periodic function F . The constant � log 3/ log 5 is related to the
fractal dimension of the underlying structure. Since the exponent of n is not rational, G(t) is not algebraic (see
[FS09, Theorem VII.8]), hence it is di↵erentially transcendental.

One can apply Theorem C to deduce the di↵erential transcendence of the Green functions of excursions on
other self similar graphs. The step of excluding the case of an algebraic generating function may follow from
results of Teufl [Teu03] on the coe�cient asymptotics, particularly when paired with [FS09, Theorem VII.8].

Pattern avoiding permutations. The Noonan-Zeilberger conjecture [NZ96] posited that the set of permu-
tations avoiding a fixed set of patterns should have a D-finite generating function, that is, that the generating
function should satisfy a linear di↵erential equation with rational coe�cients. Twenty years later, after much
activity on the problem, Garrabrant and Pak [GP16] finally disproved it showing in a proof that the generating
function of permutations avoiding a particular set of 30000 patterns was not D-finite. The study of consecutive
pattern avoidance (defined below) has a slightly di↵erent flavour, but is also a good candidate for a systematic
analysis, and indeed Elizalde and Noy [EN12] comprehensively classified the nature of the generating function
for all small patterns to length 4. Permutations avoiding consecutive patterns can naturally describe bases of
shu✏e algebras with monomial relations [DK13]. Most permutations avoid a consecutive pattern and conse-
quently, it turns out to be better to encode enumerative data using the exponential generating functions (EGF),

i.e., we associate to our counting sequence (fn)1n=0 the series bf(t) =
P

n�0
fn
n! t

n. To avoid confusion when were
are talking about both EGF and OGF, the carat identifies the EGF of a sequence. A non-D-finite example
was found quickly, and although it had been conjectured that in fact the reciprocal should always be D-finite,
Elizalde and Noy gave strong evidence that the reciprocal of the EGF for the class of permutations avoiding
the consecutive pattern 1432 was not D-finite, an example we consider now.

A permutation � 2 Sn is said to avoid the consecutive pattern 1423 if there is no 1  i  n � 4 such that
�(i) < �(i + 4) < �(i + 2) < �(i + 3). Let bP (t) be the exponential generating function for permutations that
avoid the consecutive pattern 1423. (OEISA201692). Elizalde and Noy [EN12] determined the following system
of equations for the EGF bP (t):

(1.7) bP (t) =
1

2� bS(t)
such that S(t) = S

✓
t

1 + t2

◆
t

1 + t
+ 1.

The non-D-finiteness of S(t) was subsequently proved by Beaton, Conway and Guttmann in [BCG17] who
showed that an explicit solution to the functional equation had an infinite number of singularities. Theorem A
above, with R(t) = t

1+t2 gives a potentially simpler path to establish that S(t) is not D-finite (and indeed the
even stronger conclusion that it is di↵erentially transcendental) since you would just need to show that S(t) is
not solution of an inhomogeneous linear di↵erential equation of order 1. As it is, as Beaton et al. did establish

5

1m23…(m − 1)



Marni Mishna 2023

S(t) is not D-finite …
Theorem 111. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational and furthermore ,  

no iterate of R is the identity 
then   is either D-finite or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)+b(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)

S(t) = 1 +
1

1 + t
S ( 1

1 + t2 )
• S(t) has an infinite number of singularities. (Beaton, Conway and Guttmann 2018) 

• Since S(t) is not D-finite, by Theorem III,  S(t) is D-transcendental. 

• NOTE: We cannot conclude anything about 

o

Figure 3: A close up on the origin (labelled o) of the Sierpinski Graph. The (red) path in bold is one of

the 32 excursions of length 4.

Figure 3 illustrates an example excursion.
Grabner and Woess [GW97, Proposition 1] proved that the Green function G(t) for walks that return to

their origin on the Sierpiński graph satisfies the functional equation

(1.6) G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

We apply Theorem C to G(t).

Theorem 1.5. The Green function G(t) of walks that start and end at the origin on the infinite Sierpiński

graph is di↵erentially transcendental over C(t).

In light of Equation (1.6), to prove Theorem 1.5, it su�ces to show that G(t) is not algebraic. Grabner and
Woess in loc.cit. show that the coe�cient of tn in G(t) grows asymptotically like

n
� log 3/ log 5

F (log n/ log 5)

as n goes to infinity, for some nonconstant periodic function F . The constant � log 3/ log 5 is related to the
fractal dimension of the underlying structure. Since the exponent of n is not rational, G(t) is not algebraic (see
[FS09, Theorem VII.8]), hence it is di↵erentially transcendental.

One can apply Theorem C to deduce the di↵erential transcendence of the Green functions of excursions on
other self similar graphs. The step of excluding the case of an algebraic generating function may follow from
results of Teufl [Teu03] on the coe�cient asymptotics, particularly when paired with [FS09, Theorem VII.8].

Pattern avoiding permutations. The Noonan-Zeilberger conjecture [NZ96] posited that the set of permu-
tations avoiding a fixed set of patterns should have a D-finite generating function, that is, that the generating
function should satisfy a linear di↵erential equation with rational coe�cients. Twenty years later, after much
activity on the problem, Garrabrant and Pak [GP16] finally disproved it showing in a proof that the generating
function of permutations avoiding a particular set of 30000 patterns was not D-finite. The study of consecutive
pattern avoidance (defined below) has a slightly di↵erent flavour, but is also a good candidate for a systematic
analysis, and indeed Elizalde and Noy [EN12] comprehensively classified the nature of the generating function
for all small patterns to length 4. Permutations avoiding consecutive patterns can naturally describe bases of
shu✏e algebras with monomial relations [DK13]. Most permutations avoid a consecutive pattern and conse-
quently, it turns out to be better to encode enumerative data using the exponential generating functions (EGF),

i.e., we associate to our counting sequence (fn)1n=0 the series bf(t) =
P

n�0
fn
n! t

n. To avoid confusion when were
are talking about both EGF and OGF, the carat identifies the EGF of a sequence. A non-D-finite example
was found quickly, and although it had been conjectured that in fact the reciprocal should always be D-finite,
Elizalde and Noy gave strong evidence that the reciprocal of the EGF for the class of permutations avoiding
the consecutive pattern 1432 was not D-finite, an example we consider now.

A permutation � 2 Sn is said to avoid the consecutive pattern 1423 if there is no 1  i  n � 4 such that
�(i) < �(i + 4) < �(i + 2) < �(i + 3). Let bP (t) be the exponential generating function for permutations that
avoid the consecutive pattern 1423. (OEISA201692). Elizalde and Noy [EN12] determined the following system
of equations for the EGF bP (t):

(1.7) bP (t) =
1

2� bS(t)
such that S(t) = S

✓
t

1 + t2

◆
t

1 + t
+ 1.

The non-D-finiteness of S(t) was subsequently proved by Beaton, Conway and Guttmann in [BCG17] who
showed that an explicit solution to the functional equation had an infinite number of singularities. Theorem A
above, with R(t) = t

1+t2 gives a potentially simpler path to establish that S(t) is not D-finite (and indeed the
even stronger conclusion that it is di↵erentially transcendental) since you would just need to show that S(t) is
not solution of an inhomogeneous linear di↵erential equation of order 1. As it is, as Beaton et al. did establish
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Open questions & future work

➤ Identify combinatorial contexts that result in such functional equations. 

➤ Simplify proofs of non-D-finiteness by proving D-transcendence.  

➤ Higher order equations. 

➤ Automated “guessing” tools for other kinds of functional equations. 

➤ Can we improve Theorem III ?



Thank you for 
 your attention! 
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Proof strategy
Theorem 1. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies    with 
 rational, and furthermore 

 
then   is either rational or D-transcendental. 

f(t) ∈ ℂ[[t]] f(R(t)) = f(t) + b(t)
R(t), b(t)

R(0) = 0, R′ (0) ∈ {0,1,roots of unity}
f(t)

• There exists a series solution .  (Böttcher function) 

• Hypothesis: R has a zero of order >1 => limited possibilities: Either R(t) is (roughly)  or a Chebyshev polynomial (and hence 
previous results apply) or  is D-transcendental. 

• Define .   is D-transcendental over   and this is key.  

•  is a formal solution to the associated Julia equation  

•  a derivation  that commutes with  

• f(t) D-algebraic wrt d/dt over over  => f(t) D-algebraic wrt  => key statement from differential Galois theory (Hardouin 08) 

 

• Can deduce from this statement that =>  

τ to the equation τ(R(t)) = τ(t)d

tk

τ

Ψ =
τ′ 

τ
log(τ) Ψ ℂ(t)

Ψ y(R(t)) = R′ (t)y(t)

∂ := Ψ
d
dt

∂ ΦR : ∑ fntn ↦ ∑ fn(R(t))n

ℂ(t) ∂

6 Iterative di↵erence equations of the form �R(y) = y+ b. Proof

of Theorem 1.5
sec:main-additive

We denote by F the field generated by C((t)) and  and all its derivatives with respect to d
dt . This means

that either F = C((t)) if R0(0) 6= 0 or F = C((t))(log t), if R0(0) = 0. We have seen in §4 that the field
F comes equipped with an extension of the endomorphism �R and an extension of the derivative d

dt .
Moreover, the sub-field of F of constants is C, which is also the sub-field of F of invariant elements with
respect to �R. Until the end of the paper we suppose the following assumptions to be verified:

(DT )
We fix R 2 C(t), with R(0) = 0, with no further assumptions on R

0(0).
We suppose that there exists  2 F such that �R( ) = R

0(t) and that
 is di↵erentially transcendental over C(t) with respect to d

dt .

Notice that if R0(0) is not 0 or a root of unity, one easily shows that  2 t+ t
2
C[[t]] substituting a formal

power series in the functional equation and showing that one can determine its coe�cients recursively.
(See Lemma A.3, below.) We recall Theorem 1.5, whose proof is the purpose of this section:

thm:main-additive Theorem 6.1. Under the assumptions (DT ), let b 2 C(t), b 6= 0, and let f 2 C((t)) be a solution of

the equation �R(f) = f + b. Then, either f 2 C(t) or f is di↵erentially transcendental over C(t), with
respect to

d
dt .

The proof of Theorem 6.1 is based on a result of di↵erence Galois theory, that we do recalling in a
few lines. The following lemma explains the crucial role of  in the proofs below:

lemma:CommutationPartialPhi Lemma 6.2. The derivation @ :=  d
dt commutes with �R, namely @ � �R = �R � @.

Proof. For any f 2 F we have: (@ ��R)(f) =  �R(f 0)R0 = �R(f 0)�R( ) = �R(f 0 ) = (�R � @)(f).

We call K the field generated by C(t), the function  and its derivatives with respect to d/dt. We
are exactly in the situation considered in [DV21], namely: we have a base field K contained in a larger
field F; the endomorphism �R acts on both K and F and in both cases its subfield of constant is C; the
derivative @ :=  d

dt stabilizes K in F and commutes to �R. Therefore we are in the situation of [DV21,
Corollary 2.6.7], which is a restatement of [Har08]. For further reference we state it in a more general
contest than what we need in this section:

prop:DiffAlgHanoi Proposition 6.3. Let F be a field equipped with an endomorphism � and a derivation @, such that

� � @ = @ � � and let K be a sub-field of F stable by � and @ and containing the field C of invariant

elements of F with respect to �. Let f 2 K, f 6= 0, and z 2 F be a solution of �R(y) = y + b. The

following statements are equivalent:

1. There exist n � 0, �0, . . . ,�n 2 C, not all zero, and g 2 K such that �0b+�1@(b)+ · · ·+�n@
n(b) =

�R(g)� g.

2. There exist n � 0, �0, . . . ,�n 2 C, not all zero, such that �0f + �1@(f) + · · ·+ �n@
n(f) 2 K.

3. f satisfies a linear di↵erential equation in @ with coe�cients in K, i.e., f is @-finite over K.

4. f satisfies an algebraic di↵erential equation in @ with coe�cients in K, i.e., f is di↵erentially

algebraic over K.

rmk:DiffAlgHanoi Remark 6.4. We are not proving the proposition above, but we can quickly comment on the equivalence
between the first three assertions. Since � and @ commute, if f satisfies a di↵erential equation of order
n over K, the system of functional equations

�(y) = y + b

�(@(y)) = @(y) + @(b)

...

�(@n(y)) = @
n(y) + @

n(b)
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f(t) ∈ ℂ(t)


