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D-finite : Satsfies a linear DE with polynomial coefficients. AKA Holonomic

D-Algebraic: Satisfies a polynomial DE.

D-Transcendental : NO'T differentially algebraic
B— S




Combinatorial classes

A combinatorial class is a set equipped with a size function. -~
Ordinary Generating Functions (OGF) encode enumerative ¢ — ((1) := Z | G,
n=0

data as integer coellicients of formal power series.

tn

TYPE OF CLASS TYPICAL EXAMPLES NATURE OF OGF
Finite class Polynomial
Iteratwe grammar Recognizable by a finite automaton Rational function

specification Regular language, eg. Fibonacci

Recurswdy gammar Trees, Catalan classes., Algebraic function
specification Maps

Shuffles of Dyck Paths
? k-regular labelled graphs D-finite

SY'T of bounded height

Families of decorated maps D-algebraic
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Applications of classification

Theoreucal Computer Science

The following language is not unambiguously context free:

6 ={we€lab,c}*||w| #|[w]| or|w| #|w]. }becauseitsgeneratingfunction
C(t) = Z c, t"1snotalgebraic. (Flajolet 1958)

n

Group Theory
Let G be a finitely generated amenable group that is not nilpotent-by-finite and let S be a

finite symmetric generating set for G. The OGF for walks starting and ending at the
origin on the Cayley Graph X (G:S) 1s not D-finite. (Bell, M. 20z
Gives a strategy to determine if Thompson’s Group F is an ¢

)
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D-finite series in combinatorics

Differentiably Finite Power Series

® Richard Stanley’s 1980 article plants several seeds, many of R P Staest

° ° . A formal power series . f(n)x" 1s said to be differentiatly hnite if 1t satishes a linear d:flerential
W IC Were COHSI ere y e S Se 19 9 O . zquation with polynomial coefficients. Such power series arise in a wide variety of problems in
gnumerative combinatorics. The basic properties of such series of significance to combinztorics are
surveyed. Some reciprocity theorems are proved which link two such series together. A number of
examples, applications and open problems are discussed.
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® Baxter permutations

® Young Tableaux of bounded height 4

i 10

® /f-regular graphs
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Why the mterest in D-finite series?

“Almost anything is non-holonomic unless it is holonomic by design.”

- Flajolet, Gerhold & Salvy, 2005
® (losure properties mirror combinatorial actions

® The differential equation is a useful data structure for both reasoning and computation

o (lear proof strategies /

e Conjecture ( Christol, 1990): 11 a series with non-negative integer coefficien
nermore D-finite, then it can be written as the dig



“Classic™ Strategies

To show a series 1s D-finite:
Build 1t from other D-finite series
Show the coefficients satisty a linear recurrence

Write it as the constant term (with respect to auxiliary variables) of a multivariable D-finite series (essentially, a
Cauchy integral)

To show a series 1s NO'T D-finite

now asymptotic growth of the coefficients is not of the correct form
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A non-D-finite lattice model

Q~ [
* pull!
I :/ >
J " pull!

Fig. 5. Stretching the walk to find a directed path in a strip.

® Theorem (M., Rechnitzer, 2009) |
The univariate OGF has an ifinite number of singularities and is not D-finite. 4

inatorial explanation: A sequence of directed




% In tact.. D-transcendental

Dreyfus+Hardouin+Roques+Singer 17 * Bostan 19

Combinatorial recurrence A walk is etther the empty walk, or it is a shorter walk with a step appended, buz you must

_ exclude ti0se walks that then step out of the quarter plane

Functional equation for Q ¢(x, y) Ox,y) = 1+ z2(x/y + y/x +xy)Q(x, y)—2(x/y)Q(x,0) — 2(y/x)Q(0,y)

Rewrite so LHS is K o(x, y)O ¢(x, ) K(x, y)O(x,y) = xy—R(x) — R(y)

: : : : v - V2)s - v2)s v i y SO
Find rational parametrization for E ¢ 0=~ = =y — U= x(8)y(s) .w*"

Ded [shizaki/O tyl { -
cduce an 1s 1zafor R(}g(?z\)f?ras € equation f( qt) = Cl(t)f(t F

Conclude D-transcendance



Solution dichotomy

Lemma (/shuzaki 1998; Ogawara 2015)

Given a Laurent series f(7),and Taylor expansions of rational functions a(?), b(r) € C(2),
and g, a complex number that is not a root of unity such that

Jgt) = a(®)f(1) + b(1)

(7) 1s EITHER rational or D-transcendental.




Strategy

Rough principle: (ref. Adamczewski, Dreyfus, Hardouin 2021)

A Laurent series solution f(z) of a linear [shift | Mahler | g-shift] equation is
EITHER razional, or D-transcendental

g-shift: f(z) — f(qgt) (qnot aroot of unity)
: [
Example: Genus o quarter plane walks e f ( : )

Shift operator: f(¢) — f(t + h) Example: Bell numbers
Example: I'(t+ 1) = tI'(¢)

[
B(1) = ZB,J” — B - ) =B + 1
Mahler operator: f(t) — f(t*) (Klazar 2009: B

...not rational, hence it must be D-transcendental.




Order 1 Iterative Equations
fIR(2)) = a(t)(H)+b(1)




= Kxtending the strategy

Theorem 1. (Di Vizio, Fernandes, M. 2029+)

J(R(@)) = f()+

Theorem 11. (Di Vizio, Fernandes, M. 2029+)
f(R() = f(?)




Complete 2-3 Trees

Complete trees have all leaves at the same level. Size 1s given by # ol leaves

/ \
IRt A A /l\ A A /l\ A A A A

[terative description: Start with smgle leaf. Each iteration generates trees of depth one more
by replacing a leat with either in all possible ways.

i A reerfodo 4
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Comp]ete 2—3 Trees

/\ /I\

. &I A A /l\A A/l\ M LLL
.HA+A\]

T=e+T

T(z)=z+2°+2° 4+ 2*+22° +22° + O(z")



/(z)1s not rational ...

Theorem 1. (D¢ Vizio, Fernandes, M. 2029+)
J(R(D) = f(H)+

T(z) =z +T(z" + 2°).

* (Odlyzkos2)  T(z)~—clogl¢™' —z) as z-¢", 2€(0,47).

c=(plog(d—9))"'. 9= (1+5"%)/2=1.618... is the “golden ratio.”



Complete 2-3 Trees

AN

o o O/O\O O/O\O O/O\O O/O\O O O
P Q| | S\ | R/ /N | O O
T(2) =z +T(2* + 2°).

When R(z) is a polynomial we have a stronger result that we can apply here.

- Carollary 1.2. In the notation and under the assumptions of Theorem 1.1, we suppose moreover that
R € t*C[t], land that b € tC . i | Then f is differentially transcendentc




Walks on self-similar graphs
Generate a fractal with the following rule:

— _\/

First few iteratons:

So = _

Consider a walk starting and ending at the same
point on the limit of this process.

Generating function for walks that start
nd end at the same point:




Walks on self-similar graphs

\/ \/

A A
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Generating function for walks that start and end at the same point:

G =144 +42+32t*+761° +348t°+ 11121 + O(t®) .

G(z) sausfies a recurrence (Grabner + Woess) This factor comes fre

17 11‘19/ Qf f58 g?‘ﬂfg

412 % 612




T'he G(z) 1s not algebraic ...

Theorem 11. (Df Vizio, Fernandes, M. 2029+)
J(R()) = f(¥)

Related to the fractal dimension
The asymptotics of the coellicients arc 3 ibIc with algebraicity. The coelficients

n~ 108 3/10g5F(10g n/log5)

for some nor

of 1" grow like

1 Woess g7)



T'he resultis best possible.

® We cannot hope for a stronger conclusion for Theorem 1.

® Fg. The equation y(f + 2+ 1t*—t—1°) = (1 + ¢+ t°)y(¢) has an irrational, yet
algebraic, solution: y(f) = \/ t— 1

e Construction: Consider R(¥) = 1 + (¢ — 1)S(¢)?, with S(z) a rational series so tt
the hypotheses on £(z) are satisfied. /

t — 1)!2is a non-rational, algebraic solutior
quare roots for (¢ —




= Kxtending the strategy

Theorem 111. (Di Vizio, Fernandes, M. 2029+)
f(R() = f(D+




Permutations avoiding consecutive patterns

® A permutation o of 7z avoids the consecutive pattern 1423 if thereisno 0 <1 < n —4so
thato(i+ 1) < o(i+4) <o(i +2) < o(i + 3).

o The EGF P(t) = Z &t” of 1423-avoiding permutations can be written using 5(z)

n'
satistying the following: (Zlizalde and Noy 2012)

t t
h that t) = - 1.
such that  S(t) S(1+t2)1—|—t




S(z) 1s not D-finite ...

Theorem 111. (Di Vizio, Fernandes, M. 2029+)
J(R() = f(O+

1 1
S@)=1+—"->=5
) 1 +1¢ (1+t2)

® 5(2) has an infinite number of singularities. (Beaton, Conway and G.

oy Theorem 111, S(z)is I



Concluding remarks




Simple walks in
‘transcendental”
region

Simple walks in

Walks in half plane
quarter plane

Excursions on

Cayley graphs of

free products of Constrained Excursions on

finite groups regular Sierpinski
languages gasket

Context free languages

Differentably Differentally
: Finite Algebraic

——=1+t+2+... 2P
1 —1¢ et=1+t+;+?+...

Complex

Algebraic

132- avoiding Baxter Complete 2-3

permutations permutations Trees
Tree decorated

K-regular maps

2-3 Trees
graphs

Bell Bell
Catalan
numbers numbers numbers
(EGF) (OGF)




Open questions & future work

» |ldentify combinatorial contexts that result in such functional equations.
» Simplify proofs of non-D-finiteness by proving D-transcendence.

» Higher order equations.

» Automated “guessing” tools for other kinds of functional equations.

heorem 11 ?



Thank you fo

your attention!




Theorem 1. (D¢ Vizio, Fernandes, M. 2029+)

PrO ()f Strate gy FR®) = (1) + b(t)

® There exists a series solution 7 to the equation t(R(?)) = 7(H)%. (Bottcher function)

e Hypothesis: R has a zero of order >1 => limited possibilities: Either R(t) is (roughly) X or a Chebyshev polynomial (and hence
previous results apply) or 7 is D-transcendental.

o DefineV = z log(z). W is D-transcendental over C(¢) and #is is key.

T

e Yisaformal solution to the associated Julia equation y(R(#)) = R'(¢)y(¢)

d
B — lPE a derivation 0 that commutes with @, : Y £ > Y f.(R(1))"

d/dt over over C(¢) => {(t) D-algebraic wrt d => key stateme
‘ C', not all zero, and g € K such tha



