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Let (an)n>0 be a sequence of integers, where a, is the number of
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Let (an)n>0 be a sequence of integers, where a, is the number of
. of “size” n.

What can we say about modular properties of these numbers?
In this talk:

What can we say about the value of a, modulo 2%?
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Let (an)n>0 be a sequence of integers, where a, is the number of
. of “size” n.

What can we say about modular properties of these numbers?
In this talk:
What can we say about the value of a, modulo 2%?

What can we say about the value of a, modulo 3k?

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



Let (an)n>0 be a sequence of integers, where a, is the number of
. of “size” n.

What can we say about modular properties of these numbers?
In this talk:
What can we say about the value of a, modulo 2%?
What can we say about the value of a, modulo 3k?

What can we say about the value of a, modulo prime powers pk?
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Congruences modulo powers of 2
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Congruences modulo powers of 2

Example: Catalan numbers

The Catalan numbers are the numbers

1 2n
C, = =1,23,....
n n+1(n>7 n P B
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Congruences modulo powers of 2

Example: Catalan numbers

The Catalan numbers are the numbers

1 2n
C, = =1,23,....
n n+1(n>7 n P B

The first few numbers are

1,2,5,14,42,132,429,1430, 4862, 16796, 58786, 208012,
742900, 2674440, 9694845, 35357670, 129644790, 477638700,
1767263190, 6564120420, . . ..
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Congruences modulo powers of 2

Example: Catalan numbers

The Catalan numbers are the numbers

1 2n
C, = =1,23,....
n n+1(n>7 n P B
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Congruences modulo powers of 2

Example: Catalan numbers

The Catalan numbers are the numbers

1 2n
C, = =1,23,....
n n+1(n>7 n b B

The first few numbers are

1,2,5,14,42,132,429,1430, 4862, 16796, 58786, 208012,
742900, 2674440, 9694845, 35357670, 129644790, 477638700,
1767263190, 6564120420, . ...

What can we say modulo 27
The Catalan numbers are odd for n =1,3,7,15,....
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Congruences modulo powers of 2

Example: Catalan numbers

The Catalan numbers are the numbers

1 2n
C, = =1,23,....
n n+1(n>7 n b B

The first few numbers are

1,2,5,14,42,132,429,1430, 4862, 16796, 58786, 208012,
742900, 2674440, 9694845, 35357670, 129644790, 477638700,
1767263190, 6564120420, . ...

What can we say modulo 27
The Catalan numbers are odd for n =1,3,7,15,....

Guess: The Catalan number C, is odd if and only if n =2° — 1, for
some non-negative integer s.
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Guess: The Catalan number C, is odd if and only if n =2° — 1, for
some non-negative integer s.

A trivial© proof. Everybody knows that the generating function
C(z) = >_ >0 Caz" for the Catalan numbers satisfies

z2C%(z) - C(z)+1=0.
In terms of generating functions, our guess is equivalent to
C(z) = z71®(z) modulo 2,

where ¢(Z):ZSZOZ2S =z+22+24 4+ B8 4+210 4.,

©Doron Zeilberger: A computer can do this!
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Guess: The Catalan number C, is odd if and only if n =2° — 1, for
some non-negative integer s.

A trivial© proof. Everybody knows that the generating function
C(z) = >_ >0 Caz" for the Catalan numbers satisfies

z2C%(z) - C(z)+1=0.
In terms of generating functions, our guess is equivalent to
C(z) = z71®(z) modulo 2,

where ®(z) =Y gz* =z+ 22 +24 + B4+ 210 4. ..
To prove the guess, we substitute in the equation and reduce:

2(z710(2))? — 271 o(z )+1—Z 02(z) —z710(2) + 1
=z 1(<I>( )+2)—z'd(z) +1=0 modulo 2. [J

©Doron Zeilberger: A computer can do this!
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What about Catalan numbers modulo 4,8,16,...7
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What about Catalan numbers modulo 4,8,16,...7

Maybe, after reduction modulo 2%, the generating function
C(z) = >_ >0 Caz" is expressible as a polynomial in ®(z),

i=0
where the a;(z) are suitable Laurent polynomials in z, and d is a
suitable degree bound.
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What about Catalan numbers modulo 4,8,16,...7

Maybe, after reduction modulo 2%, the generating function
C(z) = >_ >0 Caz" is expressible as a polynomial in ®(z),

i=0
where the a;(z) are suitable Laurent polynomials in z, and d is a
suitable degree bound.
Recall that
®%(z) — d(z) —z=0 modulo 2.
Hence,
(®%(z) — (z) — 2)* =0 modulo 2*.

So, we may choose d = 2k — 1.
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What about Catalan numbers modulo 4,8,16,...7

Maybe, after reduction modulo 2%, the generating function
C(z) = >0 Caz" is expressible as a polynomial in ®(z),

2k—1

Cz) = ) ai(2)9'(2),

i=0
where the a;(z) are suitable Laurent polynomials in z,
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What about Catalan numbers modulo 4,8,16,...7

Maybe, after reduction modulo 2%, the generating function
C(z) = >0 Caz" is expressible as a polynomial in ®(z),

2k—1

€2) = Y al2)9(2)

i=0
where the a;(z) are suitable Laurent polynomials in z,
This Ansatz is then substituted for C(z) in the equation
2C?%(z) = C(z) +1=0 modulo 2.
One reduces "high” powers of ®(z) by the relation
(®2(z) — ®(z) — 2)k =0 modulo 2%,
compares coefficients of powers ®/(z), j = 0,1,,2k — 1, obtains a

system of (algebraic) equations for the unknowns aj(z) over
7257, and .. ..
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What about congruences modulo higher powers of 27

Well ...
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What about congruences modulo higher powers of 27

Well ...

The proposed approach has two problems:
@ The relation

(®%(z) — d(z) — 2)* =0 modulo 2*.
may not be the “minimal” one. In fact, we have
®*(2)+6®3(2)+(22+3)d%(2)+ (22 +6)P(2) +22z+52> = 0
modulo 8.
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What about congruences modulo higher powers of 27

Well ...

The proposed approach has two problems:
@ The relation

(®%(z) — d(z) — 2)* =0 modulo 2*.
may not be the “minimal” one. In fact, we have
®*(2)+6®3(2)+(22+3)d%(2)+ (22 +6)P(2) +22z+52> = 0
modulo 8.

@ Solving a system of (algebraic-differential) equations over
7./2¥Z is not a piece of a cake . ...
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What about congruences modulo higher powers of 27

Re 1). In general, we are not able to provide a formula for a monic
polynomial of minimal degree satisfied by ®(z) modulo 2¥. (More
on this later.)

So, as a “best” compromise, we base our considerations on the

congruence
(0*(2) +6D3(2)+ (22 +3)D3(2) + (22 +6)D(2) +22+52%)* =0
modulo 8%" = 2327,

This is a polynomial relation of degree 2212
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The “method” for proving congruences modulo 2¥
Re 2). The general problem. Suppose we have a sequence (f,)n>0
which we want to determine modulo a power of 2. We form the
generating function F(z) =>_ - f,z", and suppose that we know
that it satisfies a differential equation of the form

P(z; F(2), F'(2), F"(2),...,F®)(2)) = 0,

where P is a polynomial with integer coefficients, which has a
unique formal power series solution.
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The “method” for proving congruences modulo 2¥

Re 2). The general problem. Suppose we have a sequence (f,)n>0
which we want to determine modulo a power of 2. We form the
generating function F(z) =) ., f,z", and suppose that we know
that it satisfies a differential equation of the form

P(z; F(2),F'(2), F"(2),...,F®)(z2)) =0,

where P is a polynomial with integer coefficients, which has a
unique formal power series solution.

Idea: Make the Ansatz
20721
F(z) = ai(z)®'(z) modulo 232
i=0
where the a;(z)'s are (at this point) undetermined Laurent
polynomials in z.

Then, gradually determine approximations a; g(z) to a;j(z) such
that our differential equation holds modulo 27, for
B=1,2,...,3.2%
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The “method” for proving congruences modulo 2¥

The base step:
Substitute

20421
F(z)= > ai1(2)®(z) modulo 2
i=0
into the differential equation, considered modulo 2,
P(z; F(2), F'(2), F"(2),..., F®)(z)) =0 modulo 2,

use ¢’(z) = 1 modulo 2, reduce high powers of ®(z) modulo the
polynomial relation of degree 212 satisfied by ®(z), and compare
coefficients of powers ®(z), k =0,1,...,2°"2 — 1. This yields a
system of 22%2 (algebraic differential) equations (modulo 2) for
the unknown Laurent polynomials a; 1(z), i = 0,1,...,29%2 — 1,
which may or may not have a solution.
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The “method” for proving congruences modulo 2¥

The iteration:

Provided we have already found a; 5(z), i = 0,1,...,2972 — 1,

such that
2a+271

F(Z) = Z a,'”g(z)d)i(z)
i=0
solves our differential equation modulo 28 we put
aig+1(2) == aig(z) + 2°big1(2), i=0,1,...,2°72 — 1,

where the b; 3,1(z)’s are (at this point) undetermined Laurent
polynomials in z. Next we substitute
20421
F(z)= Y aipn(2)9(2)
i=0
in the differential equation.
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The “method” for proving congruences modulo 2¥

The iteration:

One uses

g
P'(z) = Z 27721 modulo 2°+1,
n=0

one reduces high powers of ®(z) using the polynomial relation
satisfied by ®(z), and one compares coefficients of powers ®/(z),
j=0,1,...,2°T2 _ 1. After simplification, this yields a system of
29%2 (linear differential) equations (modulo 2) for the unknown
Laurent polynomials b; g41(2), i =0,1,...,2°72 — 1, which may
or may not have a solution.
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Catalan numbers again
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
The base step:
We have

C(z) = Zsz_l +z7 1o (z) modulo 2.
k=0
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Catalan numbers again

The Ansatz:

2a+271
C(z) = Z ai(z)®'(z) modulo 232,
i=0
The base step:
We have

C(z) = Zsz_l +z7 1o (z) modulo 2.
k=0

The iteration: works automatically without problems.
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Theorem

Let ®(z) =Y, 2%, and let o be some positive integer. Then
the generating function C(z) for Catalan numbers, reduced
modulo 232", can be expressed as a polynomial in ®(z) of degree
at most 2°T2 — 1 with coefficients that are Laurent polynomials in
z. Moreover, for any given «, this polynomial can be found
automatically.
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Coefficient extraction from powers of ®(z)
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Coefficient extraction from powers of ®(z)
The first few powers:

d2(z) = d(2) +2 Z 22 g

n>n;>0
O(2) = 2) ¥ 43120z +6 Y A
n=>0 n1>ny>0
16 Z S2M42242m 3z,
ny>n>n3>0
d(2) = —122 32" _ g Z S32m42m g Z 24327
n>0 ni>n>0 n>np>0
+ (13 — 182)(1)(2) + (30 — 122) Z S2M 2"
n1>ny>0

n n n
+36 Z F2M+2M2 42"

ny>ny>n3>0

+ 24 224242 +52%2 —13z.
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

ny>ny>--->n>0
Then

Kl
Z 2 aiml g Erare)

r=1 aj,...,ar>1
a+-+ar=K
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

ni>ny>-->n>0

Then
Kl
Z) - Z Z mEahan--,ar(z)-
r=1 aj,...,ar>1
a+-+ar=K
The E,, 2,.....5,(z) are not independent, though!
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

ni>ny>-->n>0
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

ni>ny>-->n>0

But:

For any ring R with unit 1, the series E,, ., . a,(z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7/27)|z], over
(Z/277Z)|z] for an arbitrary positive integer v, and over Z[z|.
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

ni>ny>-->n>0

But:

For any ring R with unit 1, the series E,, ., . a,(z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7/27)|z], over
(Z/277Z)|z] for an arbitrary positive integer v, and over Z[z|.
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Coefficient extraction from powers of ®(z)

Let us write

L a12M +ap2M2 ... 43,2
Eaar,..0,(2) = E z™ 2 -

n>np>-->n>0

Lemma

oY)
c
o

K

For any ring R with unit 1, the series E,, ., . a,(z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7/27)|z], over
(Z/277Z)|z] for an arbitrary positive integer v, and over Z[z|.

Proposition

For any positive integers ay, a2, . . ., a,, the series E, 5, . ,.(z) can
be expressed as a linear combination over Z|z] of the series 1 and
series of the form Ep, p, . b.(2), where all b;'s are odd, s < r, and
bi+b+---+bs<ay+a+---+a.
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Coefficient extraction from powers of ®(z)

For any ring R with unit 1, the series E;, ,, .. 4, (z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7./27)|z], over
(Z/2VZ)|z] for an arbitrary positive integer vy, and over Z|[z].
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Coefficient extraction from powers of ®(z)

Lemma

For any ring R with unit 1, the series E;, ,, .. 4, (z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7Z./27)(z], over
(Z/2VZ)|z] for an arbitrary positive integer vy, and over Z|[z].

Proposition

For any positive integers a1, a2, . . ., a,, the series Ej, 5, . ..(z) can
be expressed as a linear combination over 7[z] of the series 1 and
series of the form Ep, p, . p.(2), where all b;'s are odd, s < r, and
by + b+ +bs<ayta+--+a.
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Coefficient extraction from powers of ®(z)

Lemma

For any ring R with unit 1, the series E;, ,, .. 4, (z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7Z./27)(z], over
(Z/2VZ)|z] for an arbitrary positive integer vy, and over Z|[z].

Proposition

For any positive integers a1, a2, . . ., a,, the series Ej, 5, . ..(z) can
be expressed as a linear combination over 7[z] of the series 1 and
series of the form Ep, p, . p.(2), where all b;'s are odd, s < r, and
by + b+ +bs<ayta+--+a.
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Coefficient extraction from powers of ®(z)

Lemma

For any ring R with unit 1, the series E;, ,, .. 4, (z), with all a;’s
odd, together with the series 1 are linearly independent over R|z].
In particular, they are linearly independent over (7Z./27)(z], over
(Z/2VZ)|z] for an arbitrary positive integer vy, and over Z|[z].

| A

Proposition

For any positive integers a1, a2, . . ., a,, the series Ej, 5, . ..(z) can
be expressed as a linear combination over 7[z] of the series 1 and
series of the form Ep, p, . p.(2), where all b;'s are odd, s < r, and
bi+b+--+bs<ar+a+---+ar.
¢2(Z) = El(Z) + 2E1,1(Z) — Z,
®3(2) = —2E3(2)3(1 — 2)Ex(z) + 6E11(2) + 6E111(2) — 32,
®*(z) = —12E3(z) — 8E31(2) — 8E13(2) + (13 — 182)Ey(2)

+ (30 — 122)Ey 1(2) + 36E11.1(2) + 24E111.1(2) +-52° — 13z.
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Catalan Numbers Modulo 2*
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Abstract
In this paper, we develop a systematic tool to calculate the congruences of some
combinatorial numbers involving n!. Using this tool, we re-prove Kummer’s and Lucas’
theorems in a unique concept, and classify the congruences of the Catalan numbers ¢,
(mod 64). To achieve the second goal, ¢, (mod 8) and ¢, (mod 16) are also ified.
Through the approach of these three congruence problems, we develop several general
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For those ¢, (mod 64) with wa(c,) = 2, we can simply plug u4(c,,) given in (47) into (32).
Here we also show a precise classification by tables.

Theorem 6.3. Let n € N with d(a) = 2. Then we have

Cn =1 (=1)7 (@)« Szm,(C‘Fz(m)):

where wis(C Fa(c,)) is given in (47). Precisely, let [a], = (10710%),, i.e.,
and then we have ¢,, (mod 64) shown in the following four tables.

a=0 a=1 a=2 a>3 a=0 a= a=2 a>3
b 4 28 44 12 b=0] 52 12 28 60
b=11] 12 36 52 20 b=1] 44 4 20 52
b=21] 60 20 36 4 b=21] 60 20 36 4
b>3] 28 52 4 36 b>3| 28 52 4 36
when 3 =0 when 3 =1
a=0 a=1 a=2 a>3 a=0 a=1 a=2 a>3
b=01] 36 28 44 12 b=0 4 60 12 44
b=1] 28 20 36 4 b=1] 60 52 4 36
b=2 44 36 52 20 b=2 12 4 20 52
b>3 12 4 20 52 b>3 44 36 52 20
when =2 when 3 >3

Proof. Notice that there are difference between a > 3 and a = 3, and similarly for b
and B. We split (47) into two parts as follows:

=0)(2d) — o — 1) = x(8' = 1) +2x(8' = 2o + 20(8' = 3)(1 - ),
) + dio(1 — o) + #(Sa(@), {(0011)s, (1x00)2})] — (&) — 27 (&)
+éigdn + 1.

y, B is independent on 3. We will only prove the first table of this theorem. The
other three tables can be checked in the same way. With simple calculation we obtain the
values of A as 3 =0 and B as follows:

2 a=3 ‘(L:U a

a=2 a=3




Theorem (L1u AND YEH, compactly)
Let d(z) =359 z?". Then, modulo 64, we have

D Coz" =322° + 162" 4+ 62° + 13z + 1+ (322" + 322° 4 202° + 44z + 40) &(2)
n=0
3 2 12 2 3 28 3
+ ( 16z + 56z + 30z + 52+ — | ®=(z) + ( 32z + 60z + 60 + — | ¥°(z)
z z

35
+ (32z3 +162% + 48z + 18 + —) &*(2) + (322° + 44) °(z2)
z

4
+ (482 +8+ @) »5(z) + (322 +32+ 7) ®’(z)  modulo 64.
z z
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Theorem
Let (z) =Y ,50 2> . Then, modulo 4096, we have

oo
Z Cnz" = 2048z + 30722'3 + 2048212 + 358421 + 640210 + 22402° + 3228
n=0

+ 83227 + 24122° + 10422° + 27022* + 532% + 222 + z + 1
+ (204822 + 38402 + 211228 + 211227 + 5522°
+31282° + 25122* + 40002° + 39042%) &(z2)
+ (204823 + 30722" 4 153620 + 11522° + 10242° + 400027 + 34402°
+37882° + 3096z* + 34162° + 236822 + 288z) ¢%(z)
+ (20482 + 20482 4 23042° + 5122° + 275227 + 30722° + 7282°
+35282" + 10322% + 316822 + 34562 + 3904) ®3(z)
+ (20482'2 + 3072z + 10242 + 20482° + 115228 + 172827 + 22722° + 24642°

48
+34522% + 315423 + 213622 + 38962 + 1600 + 7) *(2)
z
+ (20482 + 20482° + 17922° + 179227 + 10882° + 15362°

z

2272
+1704z" + 36482° + 328822 + 200z + 3728 + ) °(2)
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+ (20482'110242° + 15362° + 320027 + 28162° + 13122° + 38242*
414023 + 59222 4 3692z 4 488 + 760) 5(z2)
+ (20482° + 2304z" + 23042° + 35202 + 960z* + 24562°
421282% 4- 29362 4 1784 + 4024) >7(2)
+ (204820 + 10242° + 204828 + 51227 + 39682° + 10882° + 18882*
+8322% 4 144422 4 26462 + 3258 + %9) 8(z)
+ (20482° + 33282° + 15362° + 3008z*
+3207° + 21682° + 1144z + 3992 + ?) »9(z2)
+ (20482° + 307227 + 5122° + 14082° + 2560z

14342473 + 34082° + 13162 + 3608 +

2380) 10(2)

+ (20482 +20482° + 28162° + 3072z* + 18562

1268822 4 1288z 4 3880 +

3904) ol1(2)
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+ (204828 + 10242" + 30722° + 20482° + 1408z*

358
1+26242% 4 14402% 4 2247 + 948 + ) ®12(z2)

2384
(20482 + 20482° 4 33282* 4 28162° + 19842° + 384z + 2488 + ) o1(2)
V4

260) %(2)

+ (20482 +10242° 4 5122* 4 243223 + 179222 + 3040z + 336 +

2696
4 (20482 + 7682° + 25622 + 64z + 2752 + )

¢15(Z)

modulo 4096.
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Subgroup numbers modulo powers of 2

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



Subgroup numbers modulo powers of 2

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSLy(7Z) is odd if, and only if, n is of the form
2k — 3 or 2kt _ 6, for some positive integer k > 2.
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Subgroup numbers modulo powers of 2

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSLy(7Z) is odd if, and only if, n is of the form
2k — 3 or 2kt _ 6, for some positive integer k > 2.
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Subgroup numbers modulo powers of 2

Theorem (STOTHERS 1977)

The number s, of index-n-subgroups in the inhomogeneous
modular group PSLy(7Z) is odd if, and only if, n is of the form
2k — 3 or 2kt _ 6, for some positive integer k > 2.

In terms of ®(z):

Z Sp12" = (z7 T+ 27 HP(2)+ 2z %+ 25 +22 modulo 2.
n>0
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS FOR THE
MODULAR GROUP

TuoMAs W. MULLER and JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. Let I' = PSLy(Z) be the classical modular group. It has been shown by
Stothers (Proc. Royal Soc. Edinburgh T8A, 105-112) that s, the number of index n
subgroups in T', is odd if and only if n+3 or n+6 is a 2-power. Moreover, Stothers loc.
cit. also showed that fy, the number of free subgroups of index 6 in I', is odd if and
only if A4 1 is a 2-power. Here, these divisibility results for fy and s, are generalized
to congruences modulo higher powers of 2. We also determine the behaviour modulo 3
of fx. Our results are naturally expressed in terms of the binary respectively ternary
expansion of the index.

1. INTRODUCTION AND RESULTS

Let I' = PSLy(Z) be the classical modular group. We denote by s, the number of index
n subgroups in I', and by f) the number of free subgroups in I of index 6. These days,
quite a lot is known concerning the subgroup arithmetic of I'. Newman [5, Theorem 4]
gave an asymptotic formula for s,; for a more general and more precise result see [3,
Theorem 1]. Based on numerical computations of Newman, Johnson conjectured that
sp is odd if and only if n = 2% —3,a > 2 or n = 2* —6,a > 3. This conjecture was first
proved by Stothers [6]. He first used coset diagrams to establish a relation between s,
and fy for various A in the range 1 < A < %, and then showed that fy is odd if and
only if A =2%—1,a > 1. The parity pattern for f) found by Stothers has been shown

ristian Krattenthaler and T . ferentially algebraic sequences



2 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS

(iit) For A odd with so(A+1) = 2, write A\ =2+ 2" — 1,a > b > 1. Then we have

4, b=1
6, b=2
Hh=<2 a=b+1 (mod 16).
6, a=b+2

14,  otherwise

(iv) For X odd with so(\ + 1) = 3, write X = 2% + 2" +2° — 1, where a > b > ¢ > 1.
Assume that precisely k of the equations a = b+1, and b = c+1 hold, k = 0,1,2.

Then we have
; 1, k=0(2) (mod 16)
= mod .
Tl k=12

(v) If X is odd with so(X + 1) = 4, then f\ = 8(16).
(vi) If X is odd with s5(A+ 1) > 5, then fy = 0(16).

The regular behaviour of the function fy described in Theorem 1 breaks down for
A < 20. Here the values modulo 16 are as follows.

A1 203[4|5]6|7[8[9]10[11[12[13]14]15]16]17|18]19
fA‘5‘12‘1‘U‘2‘0‘5‘0‘6‘ U‘ 2‘ U‘ 4‘ U‘ 5‘ 0‘ 6‘ O‘ 6
Theorem 2. Let n > 22 be an integer. Then we have modulo 8

1, n=2*-3

5, n=2-6

2, n=3-2°-33-2°-6
spn=96, n=242"-32"+2"—6,2°+3, a>b+2

4, n=24224+2°6,a>b>c>220+20+2° -3 a>b>c>2b>4,
n=2+2"+3a>b>2
0, otherwise.
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14 DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS
In this way we may simplify the last displayed expression as follows.
2#{n=2042"a>b>2} +2#{n=2+2"-3,a>3,0>2}
F2#{n=2"+2"—6,a>b>3} —2#{n=2"+2"+3,a > b}
2 {n=204+2"a>3,b>2} —2#{n=24+2"-3,a>b>3}

A =2+ 2+ 4,b > ¢ > 2,0 > 4} + 44{n = 2"+ 9,a > 3}
+4#{n:2b+2°+1.b>(122}+4#{n:2“+2b+2“76‘b>02 2,a >3}
A {n=2+2"+2°+3,b>c>2a>2b>4}

AN =2"+2"+2°b > c>2,a > 2} +4#{n=2"+2"+2°— 3, b > ¢ > 2,a > 3}

+A#{n =20 +2"+3,a>3,0> 2} +4#{n =2"+2"+9,a,b > 2}
Next consider for example the quantity 4#{n = 2% +2°+6,a > 3,b > 2}. If (a,b) is a
solution with @ > b > 3, then (b, a) is also a solution, that is, the number of solutions
is even, unless n is of the form n = 2*+10,a > 3, or n is of the form 2* + 6 with a > 4.
The same argument may be applied to several other terms as well, which allows us to
simplify the expression further to obtain the following.
2{n=2"+2"a>b} +4#{n =2"+1,a > 3} + 2#{n =2" - 3,a > 4}}
+4H{n = 2°42"-3,a > b > 2}+2#{n = 2°42"—6,a > b > 3} —24{n = 2°+2"+3,a > b}
—2#n=2"+4,0a>3} —2#{n=2"a>4} +4#{n=2"+2a>b>2}
—2#{n=242"-3,a>b> 3} +4#{n=2"+ 2+ 4,b > c>2,b> 4}

F A =2 424 1> > 2} 4 AN =2 42" +2° —6,b>c>2,a> 3}
AN =2"+2"+2°+3,b>c>2,a > 2,b >4}
FA#{n=2042"4+2°b>c>2,a> 2 +4#{n=2+2" +2°—3,b>c>2a >3}

+A#{n =2"+T7,a >3} +4#{n=2"+3,a > 4}

Finally, consider the quantity #{n = 2% 4+ 2" +2°b > ¢ > 2,a > 2}. Let (a,b,c) be a
solution counted. If all three components are distinct, there are no solutions with-two
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DIVISIBILITY PROPERTIES OF SUBGROUP NUMBERS 17

further computations, we consider sets with one, two, and three parameters

ly. Sets defined by one parameter contribute
{An =22 —3,a>3} + {2 =2"—2,2"+ 1,0 > 3} + {1jn = 2,a > 3}
+{4n=3-2"a>3t+{4n=2"49,a > 3} + {6ln =2"+ 1,2 +4,a > 3}
+{7n=2"+3,a>3} +{4n=3-2"43,a > 3} + {4|n = 2° + 12}
+{lln=2"=6,2} + {7|n = 2 — 3,2" + 3} + {4|n = 2" + 12,2 + 15,a > b > 2}
+{4n=2"+1a>3}+{2n=2"-3,a>4}} —{2In=2"+4,a > 3}
—{2n=2%a>4} +{4n=2"-2,a > 5} + {4n =2" - 6,a > 5}
+{4n=3-2"-6,a>5}+{4n=2"+15,a>2} + {4n=2"+T7,a > 4}
+{4n=2"+3,a>4}+{4n=3-2+3,a >4} + {4n =2"+4,a > 4}
+{4n=2"a>4}+{4n=3-2"a>4} +{4n=2"+1,a > 4}

+{4n=2"-3,a>4}+{4n=3-2"-3,a>4} + {4]n =2"+T7,a > 3}
+{4n=2"4+3,a >4},

which is congruent to
{Bln=2"-6,a>5}+{lln=2"-3,a >3} 4+ {6|n =2 — 2,a > 3}
+{6ln=2"+3,a>3}+{4n=2"+9,a >3}
+{4n=3-2"-6,a>3} +{4n=3-2°-3,a > 4}.

Next, we collect all 2-parameter sets. These contribute
{An=2"+2"+1,2+2"-2a>b>2} +{2n=2"+2"a > b > 2}
+{dn=2+2"+4,2°+2" + L,a>b>2} +{2n=2"+2"+3,a > b > 2}

+{4ln =2 42°29+2° +3,2° +2° — 6,2 + 2" — 3,a > b > 2}
+{2ln=2"+2"a>b}+{4n=2"+2"-3,a>b>2}

+{2n=2"42"-6,a>b>3} —{2ln=2"+2"+3,a > b}

4ln=2"+ 2" a>b>2} {2n=2"4+2"_3a>b>3
Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences




In terms of the series ®(z), the result of Miiller and
Schlage—Puchta can be compactly expressed in the form

Z spy12" = 2244220447V 4424 4 472 44210 4 470442940284 425127414231 072
n>0

1 7 5 5 2 6 2 2 2
+4z+2+—2+—3+—4+—5+—6+( + st Al e )¢(z)

2
+(4z+—+—+—+4z+ +42+ +22+—+ +4)<b2(z)

6 4 6 2 3
+(;+;+;+z—4+;+4z +;>¢(z) modulo 8.
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Subgroup numbers modulo powers of 2

Let S(z) = >0 Sn+12" be the generating function for the
subgroups numbers of PSLy(Z). Then Godsil, Imrich and Razen
found the differential equation

(—1+423 4224 442° 22" —42°)5(2)+ (2" — 21°)(S/(2) + 5?(2))
+14z+422+42° - 442° 2528 =0
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Subgroup numbers modulo powers of 2

Let S(z) = >0 Sn+12" be the generating function for the
subgroups numbers of PSLy(Z). Then Godsil, Imrich and Razen
found the differential equation

(—1+423 4224 442° 22" —42°)5(2)+ (2" — 21°)(S/(2) + 5?(2))
+14z+422+42° - 442° 2528 =0

Theorem

Let ®(z) = Y, 2%, and let o be some positive integer. Then
the generating function S(z), when reduced modulo 232%, can be
expressed as a polynomial in ®(z) of degree at most 2°+2 — 1 with
coefficients that are Laurent polynomials in z. Moreover, for any

given «, this polynomial can be found automatically.
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Theorem
Let ®(z) =3 >0 z2". Then, modulo 64, we have

> sn11(PSL2(2)) 2"

n>0
= 257 4+ 32250 4 482 1 482*" + 32230 4 327%5 1 32233 1 4872 4 16228 + 402°°
+162%° 4+ 3222 4+ 322%% 4+ 162%% 4 162°! + 522%° + 32271 4 40718
+ 6027 4 482%0 + 47 1 32713 4 4712 4 3621 4 16210 + 602° + 22° + 1627
+426+6025+44z4+16z3+54z2+602+32+5?6 + i—2+i—i+i—‘:’+ i—g
+ (32234 +322%0 4 322%° 4 32724 4 162%? + 3222 + 32220 4 32717 4 32716

+482M 1+ 16213 + 16212 + 162 + 32210 1 3228 + 4827 + 82° + 82 + 482% + 24z + 32
20 12 4 24
0 8 36 7) o(2)

e (32234 + 32229 4+ 32228 4+ 32220 4+ 32224 4 32771 4 48210 4+ 32218 4 487Y7 4 32714

+ 48213 1+ 32212 4 56210 + 829 + 162% + 4827 + 242° + 562° + 44z* + 1623

, 60 50 48 8 50 52 52\ ,
+48z°+40z+44+ —+ S + =+ 5 + =+ — + = |P(2)
z z2  z3 A S 26 A

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



4 (32z28 + 32224 1+ 32771 + 32270 4 32219 4 48216 4 32714 4 32713 4 32712

32 0
_l'_i

2
+ 322 + 16210 + 482° + 828 + 482° + 562* + 823 + 162° + 482z + 56 + —
z 22

52 4 36 12 36) 4
+§+;+;+;+? (z)
e (32z44 + 32241 132733 4 32232 4 32231 4 32730 4 32,28 4 32277 4 16220 4 322

+ 32223 1 4827 + 1622 + 402%° + 3221° + 32218 1 2477 4+ 16210 + 48215 4 32714
416213+ 8212+ 3221 + 56210+ 562 + 4428 + 4027 + 482° + 162° +20z* + 5623 + 302>
40 34 52 17 26 40 29
+32z+28+—+—2+—3+—4+—5+—6+—7)¢4(z)
z zZ V4 V4 V4 z z
4 (32z32 4322304322264 32224 4 32223 4 302224 32221 4 48220 4 48218 4 32,10 4 48714

+ 32213 4 48212 + 48211 + 3228 + 1627 + 562° + 482° + 482* + 402% + 1622

24 24 20 24 40 20
+32z+56+—+—2+—3+—4+—5+—6)¢5(z)
z z z z z V4

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



e (32z32 + 32231 1+ 327%0 32277 4 32724 1 32223 4 48219 + 1628 + 48217
+ 162 + 4821% + 32212 4 32211 4 5628 + 4027 + 562° + 162°

8 52 60 30 20 20 14
+ 82" +562° +42° +562 4324 —+ S+ S+ S+ o+ 5+ )¢’6(z)

4 (32z3° +322%0 132221 1 32720 4 48718 1 32716 1 48214 1+ 32213 1+ 48210+ 162° +82°

48 40
+ 3225 4162 4 162° 4 822 +48z+40+—+—+—+—+—+—+ >¢7( )

modulo 64.
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Minimal polynomials for ®(z)
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Minimal polynomials for ®(z)

The degree of a minimal polynomial for the modulus 27, v > 1, is
the least d such that 27 | d!.
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Minimal polynomials for ®(z)

The degree of a minimal polynomial for the modulus 27, v > 1, is
the least d such that 27 | d!.

Proposition
Minimal polynomials for the moduli 2,4,8,16,32,64,128 are

Az, t) =t +t+z modulo 2,
Ai(z,t)? modulo 4,
Ax(z,t) := Ai(z, t)? + 483 + 212 + 6t + 2z + 42° modulo 8,
Ai(z,t)Ax(z, t) modulo 16,
Ax(z, t)? modulo 32,
Ax(z, t)? modulo 64,

t® + 12417 + t°(68z + 18) + t°(124z + 24) + t* (622° + 64z + 81)
+ t3 (2022 + 762 + 28) + t* (1162° + 1142° + 12z + 92)
+ t (1162° + 282° + 8z + 16) + 9z* + 1242> + 122 + 112z modulo 128.
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Congruences modulo powers of 3
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Abstract

We prove various congruences for Catalan and Motzkin numbers as well as related sequences.
The common thread is that all these sequences can be expressed in terms of binomial coefficients.
Our techniques are combinatorial and algebraic: group actions, induction, and Lucas’ congruence
for binomial coefficients come into play. A number of our results settle conjectures of Cloitre
and Zumkeller. The Thue-Morse sequence appears in several contexts.
© 2005 Elsevier Inc. All rights reserved.
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The number of non-crossing graphs
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The number of non-crossing graphs
Let N, denote the number of non-crossing graphs with n vertices.
The first few numbers are

3,7,36,233,1692, 13174, 107496, 907221, 7853868, 69357002, . . .
Flajolet and Noy showed that

_ 3 — 3 3
N:22n1 jn_2 _22n2 §n_§ .
n n n—1 n n—1

Conjecture (DEUTSCH AND SAGAN)
We have

1 (mod3) ifn=3 orn=2-3" for an integer i > 0,
N,=<2 (mod3) ifn=3"+32 for integers iy > ir > 0,
0 (mod 3) otherwise.

The conjecture was proved by Eu, Liu and Yeh; and by Gessel.
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The number of non-crossing graphs

Conjecture (DEUTSCH AND SAGAN)
We have

1 (mod3) ifn=3"orn=2-3 foran integer i > 0,
Nn=42 (mod3) ifn=3"+32 for integers iy > ir > 0,
0 (mod 3) otherwise.
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The number of non-crossing graphs

Conjecture (DEUTSCH AND SAGAN)
We have

1 (mod3) ifn=3"orn=2-3 foran integer i > 0,
Nn=42 (mod3) ifn=3"+32 for integers iy > ir > 0,
0 (mod 3) otherwise.
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The number of non-crossing graphs

Conjecture (DEUTSCH AND SAGAN)
We have

1 (mod3) ifn=3"orn=2-3 foran integer i > 0,
Nn=42 (mod3) ifn=3"+32 for integers iy > ir > 0,
0 (mod 3) otherwise.

Flajolet and Noy had actually first shown: Let
N(z) := 3,51 Naz". Then

N3(z) + N?(z) — 3z N(z) +22*> = 0.
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The number of non-crossing graphs

Let ®(z) =, 2>, and let a be a non-negative integer. Then

the generating function N(z), when reduced modulo 33", can be
expressed as a polynomial in ®(z) of degree at most 3°! — 1, with
coefficients that are Laurent polynomials in z over the integers.
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The number of non-crossing graphs
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The number of non-crossing graphs

The Ansatz:
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The number of non-crossing graphs

The Ansatz:
3o¢+1_1
N(z) = ai(z)®'(z) modulo 3%"
i=0
The base step:
We have
3a+1 1
N(z) = ai1(2)®'(z) modulo 3,
i=0
where

a01(z) = s2(2) + sa(z) modulo 3,

a3a1(z) =1 —s,(2z) modulo 3,

a2.321(z) =1 modulo 3,

with s,(z) = Zi‘;g 2% and with all other aj 1(z) vanishing.
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The number of non-crossing graphs

The Ansatz:

The iteration:

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



The number of non-crossing graphs

The Ansatz:
3o¢+1_1
N(z)= > ai(z)®(z) modulo 3*".
i=0
The iteration: Provided we have already found Laurent
polynomials a; 5(z), i = 0,1,...,3%" — 1, for some B with
1 <8 <3%—1, such that
3&+171
> aip(2)®(2)
i=0

solves our equation modulo 37, we put
aiﬁ—i_l(z) = 3,‘7/3(2) + 3Bbi7/3+1(z)> i=0,1,..., 3a+1 -1,

where the b; g1(z)’s are (at this point) undetermined Laurent
polynomials in z.
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The number of non-crossing graphs

The Ansatz:

The iteration:
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The number of non-crossing graphs

The Ansatz:
3o¢+1_1
N(z) = ai(z)®'(z) modulo 3%,
i=0
The iteration:
Next we substitute
3a+1_1 3a+1_1
S asn(@(2) = Y (aip(2) + 31511 (2)) ¥ (2)
i=0 i=0

in the equation.
After reduction, this yields a system of linear equations in the
unknowns b; g41(z) modulo 3.
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The number of non-crossing graphs

The Ansatz:

The iteration:
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The number of non-crossing graphs

The Ansatz:

3atl_g
N(z) = ai(z)®'(z) modulo 3%,
i=0
The iteration:
The coefficient matrix of the system takes the form

D(s2(2) + sa(2)) D(-2*") D(-2"(1 - sa(2)))
D(1 — s4(2)) D(s2(z) + sa(2) +1) D(1—s4(2) —2%") |,
D(1) D(1 = sa(2)) D(s3(2) + sa(2) + 1)

with D(x) denoting the 3% x 3% diagonal matrix whose diagonal
entries equal x.
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The number of non-crossing graphs

The Ansatz:

3atl_g
N(z) = ai(z)®'(z) modulo 3%,
i=0
The iteration:
The coefficient matrix of the system takes the form

D(s2(2) + sa(2)) D(-2*") D(-2"(1 - sa(2)))
D(1 — s4(2)) D(s2(z) + sa(2) +1) D(1—s4(2) —2%") |,
D(1) D(1 = sa(2)) D(s3(2) + sa(2) + 1)

with D(x) denoting the 3% x 3% diagonal matrix whose diagonal
entries equal x.
One can show that

det(A) = 223" modulo 3.
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Central trinomial coefficients modulo 3

Theorem (DEUTSCH AND SAGAN)

Let T, denote the n-th central trinomial coefficient, that is, the
coefficient of z" in (1 + z + z2)". Then

1 (mod 3), ifne T(01),
0 (mod 3), otherwise.

Here, T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



Motzkin numbers modulo 3

Theorem (DEUTSCH AND SAGAN)

The Motzkin numbers M,, satisfy

1 (mod 3), ifne3T(01)orne3T(01)—2,
M, =< —1 (mod 3), ifne3T(01)— 1,
0 (mod 3),  otherwise.

Here, T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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Central binomial coefficients modulo 3

Theorem (DEUTSCH AND SAGAN)

The central binomial coefficients satisfy

<2n> _ {(—1)53(") (mod 3), ifne T(01),

n 0 (mod 3), otherwise.

Here, T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion, and d3(n) denotes
the number of 1s in the ternary expansion of n.
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Catalan numbers modulo 3

Theorem (DEUTSCH AND SAGAN)

The Catalan numbers C,, satisfy

o= (=1)%(+1) (mod 3), ifne T*(01) -1,
"7 10 (mod 3), otherwise.

Here, T*(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and 05(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.
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Central Eulerian numbers modulo 3

Let A(n, k) denote the number of permutations of {1,2,...,n}
with exactly kK — 1 descents.

Theorem (DEUTSCH AND SAGAN)
The central Eulerian numbers A(2n — 1, n) and A(2n, n) satisfy

1 (mod 3), ifne T(01)+1,
0 (mod 3), otherwise.

A(2n—1,n) = {

and

1 (mod3), ifne T(01)+1,
A(2n,n) =< —1 (mod 3), ifne T(01) orn€ T(01)+ 2,
0 (mod 3),  otherwise.

Here, T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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The paper by Deutsch and Sagan contains results of similar nature
for Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schroder
numbers, and hex tree numbers.
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Let us have another look at the central trinomial numbers theorem:

Theorem (DEUTSCH AND SAGAN)

Let T, denote the n-th central trinomial coefficient, that is, the
coefficient of z" in (1 + z + z2)". Then

1 (mod 3), ifne T(01),

T, =
0 (mod 3), otherwise,

where T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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Let us have another look at the central trinomial numbers theorem:

Theorem (DEUTSCH AND SAGAN)

Let T, denote the n-th central trinomial coefficient, that is, the
coefficient of z" in (1 + z + z2)". Then

1 (mod 3), ifne T(01),

T, =
0 (mod 3), otherwise,

where T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.
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Let us have another look at the central trinomial numbers theorem:

Theorem (DEUTSCH AND SAGAN)

Let T, denote the n-th central trinomial coefficient, that is, the
coefficient of z" in (1 + z + z2)". Then

1 (mod 3), ifne T(01),

T, =
0 (mod 3), otherwise,

where T(01) denotes the set of all positive integers n, which have
only digits 0 and 1 in their ternary expansion.

In other words: Let

oo
MCED DD UL | (R
k>0 ny>--->n >0 j=0

=14+z4+2 42+ 22 +204+ 22428 .

Then: > >0 Tnz" =W¥(z) modulo 3.
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A functional equation modulo 3 satisfied by V(z)
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
lIIZ(Z) = m modulo 3.
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
V2(z) = modulo 3.

1+z )
We have
2 - vy 1 - 32
v = [Ja+ 27 = o[+ )
Jj=0 Jj=0
1 5 3\2 1 B2 2
1+z(1+z) g(l—i—z) 1+Z(1+z) (z’) modulo 3
= 1Jlrz(1 + 2°)¥?(2z°) modulo 3
=T modulo 3.
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
lIIZ(Z) = m modulo 3.
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
lIIZ(Z) = m modulo 3.
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
\U2(z) = m mOdUIO 3.

It is well-known that the generating function T(z) =} .o Thz" is
given by T(z) = 1/v/1 —2z — 322, or, phrased differently,
(1-2z-32°)T?(z)—1=0.

Moreover, this functional equation determines T(z) uniquely.
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A functional equation modulo 3 satisfied by V(z)

The series W(z) = [[Zo(1 + 2¥) satisfies

1
\U2(z) = ? mOdUIO 3.

It is well-known that the generating function T(z) =} .o Thz" is
given by T(z) = 1/v/1 —2z — 322, or, phrased differently,
(1-2z-32°)T?(z)—1=0.

Moreover, this functional equation determines T(z) uniquely.
Taken modulo 3, the above functional equation becomes:

(1+2)T%(z)—1=0 modulo 3.
Consequently:

Z Thz" =WV(z) modulo 3.
n>0
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Let us have another look at the Motzkin numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Motzkin numbers M, satisfy

1 (mod3), ifne3T(01)orne3T(01)—2,
My = ¢ -1 (mod 3), ifne3T(01)—1,

0 (mod 3),  otherwise.
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Let us have another look at the Motzkin numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Motzkin numbers M, satisfy

1 (mod3), ifne3T(01)orne3T(01)—2,
My = ¢ -1 (mod 3), ifne3T(01)—1,

0 (mod 3),  otherwise.

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



Let us have another look at the Motzkin numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Motzkin numbers M, satisfy

1 (mod3), ifne3T(01)orne3T(01)—2,
M, = —1 (mod 3), ifne3T(01)—1,

0 (mod 3),  otherwise.

Equivalently:
Z Myz" =zt~ 22+ (1 -z +22)¥(z*) modulo 3
n>0
=z 224 (z7 '+ 27?) (14 2)¥(z®) modulo 3
—z1_ 24 (z_l + 2_2)lll(z) modulo 3.
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Want to prove:

Z M,z" =21 — 272+ (z71 4+ z272)¥(z) modulo 3.
n>0

It is well-known (and easy to see) that the generating function
M(z) = 3,50 Mnz" satisfies

22M?(z) + (z = 1)M(2) +1 =0.
Hence, to verify the claim above, we substitute in the left-hand
side:

M (2)+ (z-1)M(2) +1=2° (zfl —z 2+ (27 + 272)\Il(z)>2

+(z— 1)(2_1 -z 24 (z7 4+ 2_2)\11(2)) + 1

This vanishes indeed modulo 3, once we invoke the relation

V2(z) = iz modulo 3.
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Want to prove:

Z M,z" =21 — 272+ (z71 4+ z272)¥(z) modulo 3.

n>0
It is well-known (and easy to see) that the generating function
M(z) = 3,50 Maz" satisfies

22M?(z) + (z = 1)M(2) +1 =0.

Hence, to verify the claim above, we substitute in the left-hand
side:

M (2)+ (z-1)M(2) +1=2° (zfl —z 2+ (27 + 272)\Il(z)>2

+(z— 1)(2_1 -z 24 (z7 4+ 2_2)\11(2)) + 1

This vanishes indeed modulo 3, once we invoke the relation

V2(z) = modulo 3.

14z
“Of course,” one does not want to do this by hand, but by using
the computer.

Christian Krattenthaler and Thomas W. Miiller Congruences for differentially algebraic sequences



Let us have another look at the central binomial coefficients
theorem:

Theorem (DEUTSCH AND SAGAN)

The central binomial coefficients satisfy

<2n> [ (=1)%( (mod 3), ifne T(01),

n 0 (mod 3), otherwise,

where 03(n) denotes the number of 1s in the ternary expansion of
n.
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Let us have another look at the central binomial coefficients
theorem:

Theorem (DEUTSCH AND SAGAN)

The central binomial coefficients satisfy

<2n> [ (=1)%( (mod 3), ifne T(01),

n 0 (mod 3), otherwise,

where 03(n) denotes the number of 1s in the ternary expansion of
n.
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Let us have another look at the central binomial coefficients
theorem:

Theorem (DEUTSCH AND SAGAN)

The central binomial coefficients satisfy

<2n> [ (=1)%( (mod 3), ifne T(01),

0 (mod 3), otherwise,

where 03(n) denotes the number of 1s in the ternary expansion of
n.

Equivalently:

3 <2n"> 2" = W(—z) modulo 3.
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Want to prove:

3 (2n”> 2" =W(—z) modulo 3.

and, hence,
(1—4z)CB*(z) —1=0.

In view of

\U2(—z) = L modulo 3,
z

this is obvious.
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Let us have another look at the Catalan numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Catalan numbers C,, satisfy

. (=1)%(+1) (mod 3), ifne T*(01) -1,
"7 10 (mod 3), otherwise.

Here, T*(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and ¢5(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.
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Let us have another look at the Catalan numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Catalan numbers C,, satisfy

. (=1)%(+1) (mod 3), ifne T*(01) -1,
"7 10 (mod 3), otherwise.

Here, T*(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and ¢5(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.
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Let us have another look at the Catalan numbers theorem:

Theorem (DEUTSCH AND SAGAN)

The Catalan numbers C,, satisfy

. (=1)%(+1) (mod 3), ifne T*(01) -1,
"7 10 (mod 3), otherwise.

Here, T*(01) denotes the set of all positive integers n, where all
digits in their ternary expansion are 0 or 1 except for the
right-most digit, and 05(n) denotes the number of 1s in the ternary
expansion of n ignoring the right-most digit.

Equivalently:

Z Coz" =zt 4 (271 +14 2)¥(-2%) modulo 3
n>0
=z 14271 - 2)?¥(-2%) modulo 3
=z 147211~ 2)¥(-z) modulo 3.
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Want to prove:
Z Coz"=—z1 4+ 2711 - 2)¥(-z) modulo 3.
n>0

It is well-known that the generating function C(z) =),y Caz"
satisfies

zC%(z) = C(z)+1=0.
Hence, to verify the claim above, we substitute in the left-hand
side:

()~ C) +1=2(~ 7+ 21 - ()]

- ( —z 4 - z)\ll(—z)) + 1.

This vanishes indeed modulo 3, once we invoke the relation

1
V2 (—z) = T modulo 3.
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Want to prove:

Z Coz"=—z1 4+ 2711 - 2)¥(-z) modulo 3.

n>0
It is well-known that the generating function C(z) = _ -, Cs2"
satisfies

zC%(z) = C(z)+1=0.

Hence, to verify the claim above, we substitute in the left-hand
side:

()~ C) +1=2(~ 7+ 21 - ()]

- ( —z 4 - z)\ll(—z)) + 1.

This vanishes indeed modulo 3, once we invoke the relation

V2 (—z) = modulo 3.

1 —
“Of course” again, one does not want to do this by hand, but by
using the computer.
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What are the common features?
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What are the common features?

@ In each case, the generating function satisfies a quadratic
equation (and, as a matter of fact, this applies as well for
Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schroder
numbers, and hex tree numbers).
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What are the common features?

@ In each case, the generating function satisfies a quadratic
equation (and, as a matter of fact, this applies as well for
Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schroder
numbers, and hex tree numbers).

@ In each case, one could express the generating function, after
reduction of its coefficients modulo 3, as a linear expression in
V(+z2).
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What are the common features?

@ In each case, the generating function satisfies a quadratic
equation (and, as a matter of fact, this applies as well for
Motzkin prefix numbers, Riordan numbers, sums of central
binomial coefficients, central Delannoy numbers, Schroder
numbers, and hex tree numbers).

@ In each case, one could express the generating function, after
reduction of its coefficients modulo 3, as a linear expression in
V(+z2).

Can this be so many accidents?
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A meta-theorem

Theorem

Let F(z) be a formal power series with integer coefficients which
satisfies a quadratic equation

c(2)F?(z) + c1(2)F(2) + co(z) =0 modulo 3,

where

Then

Zfi(1 4 ez7)f2H1
& (2) & (2)

V(ez”) modulo 3.
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A meta-theorem

Theorem

Let F(z) be a formal power series with integer coefficients which
satisfies a quadratic equation

c(2)F?(z) + c1(2)F(2) + co(z) =0 modulo 3,

where

Q o(z) =z%(1+ £2")®2 modulo 3, with non-negative integers
e1,e and e € {1,-1};

Then

Zfi(1 +e27)PH
& (2) & (2)

V(ez”) modulo 3.
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A meta-theorem

Theorem

Let F(z) be a formal power series with integer coefficients which
satisfies a quadratic equation

c(2)F?(z) + c1(2)F(2) + co(z) =0 modulo 3,

where
Q o(z) =z%(1+ 27)®2 modulo 3, with non-negative integers
e, e ande € {1,-1};
Q c(z) — co(2)ca(z) = Z2(1 + £27)?2+1 modulo 3, with
non-negative integers f, .
Then

fi Y\f+1
Flz) = c1(z) . zZ(14¢€27)

o(2) o) V(ez”) modulo 3.
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The corresponding choices of ¢,(z), c1(z), co(z) are:

(2) a(z) | «(z) | ¢(z) - c(z)e(2)

mod 3
trinomial | 1 — 2z — 322 0 -1 1+z
Motzkin 22 z—1 1 1+z
cent.bin. 1—4z 0 -1 1-2z
Catalan z -1 1 1-=z
Motz.pref. z— 322 1-3z| -1 1+~2
Riordan z+ 22 14z 1 14z
Delannoy | 1— 6z + 22 0 -1 1+ 22
Schroder z z—1 1 1+ 22
hex tree 22 3z-1 1 1-2?
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Can we also do congruences modulo powers of 37
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Can we also do congruences modulo powers of 37
Yes!

One follows the recipe that we developed for the series ®(z) in
order to find congruences modulo powers of 2:

One expresses the generating function now as polynomial in W(z)
(or W(—2z), or W(z2), or ...), with undetermined coefficients,
which may be Laurent polynomials in z and 1 + z (respectively
1—z 1+2% ...). Again, “high” powers of W(z) can be reduced,
here by means of the relation

1 \* o
(w2(z)— ) =0 modulo 3%,
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As it turns out, there is even a meta-theorem which refines all the
modulo 3-results of Deutsch and Sagan to any power of 3. The
corresponding results can be found automatically. Moreover, this
meta-theorem produces as well several new congruence results.
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Theorem

Let o« be some positive integer. Furthermore, suppose that the
formal power series F(z) with integer coefficients satisfies the
functional-differential equation

c2(2)F*(2) + a(2)F(2) + co(2)

where +39(z F(2), F'(2), F"(2),- -, F(s)(z)) =0,

Then F(z), when coefficients are reduced modulo 33, can be
expressed as a po/ynomia2l 3ig \111(527) of the form

F(z) =ao(z) + Y ai(z)¥(c2") modulo 3%,
i=0
where the coefficients aj(z), i = 0,1,...,2-3% — 1, are Laurent
polynomials in z and 1 + eZ7.
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Theorem

Let o« be some positive integer. Furthermore, suppose that the
formal power series F(z) with integer coefficients satisfies the
functional-differential equation

c2(2)F*(2) + a(2)F(2) + co(2)

where +39(z F(2), F'(2), F"(2),- -, F(s)(z)) =0,

Q (z) =z%(1 + 27)® modulo 3, with non-negative integers
e1,e and e € {1,-1};

Then F(z), when coefficients are reduced modulo 33, can be
expressed as a po/ynomia2l 3ig \111(527) of the form

F(z) =ao(z) + Y ai(z)¥(c2") modulo 3%,
i=0
where the coefficients aj(z), i = 0,1,...,2-3% — 1, are Laurent
polynomials in z and 1 + eZ7.
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Theorem

Let o« be some positive integer. Furthermore, suppose that the
formal power series F(z) with integer coefficients satisfies the
functional-differential equation

c2(2)F?(2) + ca(2)F(2) + co(2)
where +39(2: F(2), F'(2), F'(2), ..., F(2)) = 0,
Q (z) =z%(1 + 27)® modulo 3, with non-negative integers
el,e ande € {1,—1};

Q c(z) — co(2)ca(z) = 22 (1 + £27)?2+1 modulo 3, with
non-negative integers fi, fo;

Then F(z), when coefficients are reduced modulo 33, can be
expressed as a po/ynomia2l 3ig \111(527) of the form

F(z) =ao(z) + Y ai(z)¥(c2") modulo 3%,
i=0
where the coefficients aj(z), i = 0,1,...,2-3% — 1, are Laurent
polynomials in z and 1 + eZ7.
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Theorem

Let o« be some positive integer. Furthermore, suppose that the
formal power series F(z) with integer coefficients satisfies the
functional-differential equation
2 (2)F*(2) + a(2)F(2) + ao(2)
where +3Q(z: F(2), F'(2), F"(2),..., F®)(2)) = 0,
Q (z) =z%(1 + 27)® modulo 3, with non-negative integers
e1,e ande € {1, -1},
Q c(z) — co(2)ca(z) = 22 (1 + £27)?2+1 modulo 3, with
non-negative integers fi, fo;
© Q is a polynomial with integer coefficients.
Then F(z), when coefficients are reduced modulo 33, can be
expressed as a po/ynomia2l 3ig \111(527) of the form
F(z) =ao(z) + Y ai(z)¥(c2") modulo 3%,
i=0
where the coefficients aj(z), i = 0,1,...,2-3% — 1, are Laurent
polynomials in z and 1 + eZ7.
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Sketch of proof.
Base step:

fi Y\ Hh+(3%+1)/2
Flz) = ca(z2) M (1+¢e27)

CQ(Z) CQ(Z)

V3% (e27)

solves the equation modulo 3.

Iteration step: Works smoothly; in fact, the system of equations
which one has to solve is already in diagonal form for each
iteration.
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Motzkin numbers modulo 27

Theorem
We have

> Myz" =131 4142724 (92 + 12+ 24271 4 2127%) ()
n>0

+(92° +122* +102° + 232% + 252 + 19 + 14z~ + 427 2) V3(2?)
— (92" +32° + 242° + 30z* + 62°
+212% + 6z + 3+ 24z 1 + 12272) W3(23)
modulo 27.
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Central trinomial numbers modulo 27

We have
Y Taz'=— (922 +24z+15) V()
n>0

+ (152° + 252* 4+ 42° + 122° + 10z + 19) V3(2?)
+ (928 4+ 62" 4+62°4+92° +212* + 323 + 152 + 24) Vo (23)
modulo 27.
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Central binomial coefficients modulo 27

We have
2 1
> < ”> 2" = (9 L 3) V(—z) — (4z + 8)W3(—2)
n 1—z
n>0
— (122° + 122+ 3) W*(—z) modulo 27.

v
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Catalan numbers modulo 27

Theorem
We have

Y Coz"=-13271 -3 (4+ 227 ¥(-2)
n>0
+ (—8z—14+ 4271) W3 (—2z)
+3 (22— 6z+9—4z1)W3(~z) modulo 27.

4
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Coefficient extraction
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Coefficient extraction

Can we extract coefficients from powers of W(z) (modulo 3)?
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Coefficient extraction

Can we extract coefficients from powers of W(z) (modulo 3)?

For accomplishing this, we need an extension of the relation

modulo 3

1
Vi(a) = 14z

to higher powers of 3. This extension comes from the identity

1 = 231+ 2
W2(Z):1_|_722 Z 3SHL+5+1)'

3%
S0 k>ok>0 =1 L1172
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The identity again:

) (1 237
viz) = l—i-zZ Z H +k+1)‘

s>0 ki>-->ks>0j=1
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The identity again:

S 3/ 1+ 3J
\U2z 1—1—22 Z Hiszrl)

3%
>0 k>ook>0j—1 1tz

Let us write

~ 1 + 23 g
Hay o, a:(2) = Z H T okl )

3%
k>ooke>0j=1 \ 1+z

aj

Using this notation, the above identity can be rephrased as

V2(z) = 1+ 23 HLL 1(2).

s tlmes

It is not difficult to see that powers of W(z) can be expressed using
the series Hy, 4,,...a,(2).
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The identity again:

s 53401 4 ;39
vE =Y Y D

3%
S0 k> k>0 jo1 1+2z

Let us write

~ 1 + 23 g
Hay o, a:(2) = Z H T okl )

3%
ki>ook>0j=1 \ 1+2z

aj

It is not difficult to see that powers of W(z) can be expressed in
the form

W2K( ) 1—|—Z)K Z Z C2K 315327"'7 )ﬁal,ag,...,a,(z)v
r=1 ay,...,ar>1
respectively

W2K+1(Z)— (1 Z Z C2K a,az,...,a r)’jlal,ag,...,a,(z)a

r=1 ay,...,ar>1

where the coefficients cyi(a1, az, . . ., a,) are suitable combinatorial
coefficients, which can be written down explicitly.
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Let us write

o (14 28 ’)
Hay ay,....0,(2) = Z H 3kj+1

k1> > k>0 j=1

gj

It is not difficult to see that powers of W(z) can be expressed in
the form

\U2K( ) 1+Z)K Z Z C2K di,az,...,a )Hal,ag,...,a,(z)a

r=1 ay,...,a,>1
respectively

W2K+1(z) (1 + Z Z Z C2K(a].7 an, ..., )ﬁal,ag,...,ar(z)v

r=1 ay,...,ar>1

where the coefficients c i (a1, a2, . .., ar) are suitable combinatorial
coefficients, which can be written down explicitly.
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Let us write

o (14 28 ’)
Hay ay,....0,(2) = Z H 3kj+1

ki>->ks>0j=1

aj

It is not difficult to see that powers of W(z) can be expressed in
the form

\U2K( ) 1+Z)K Z Z C2K di,az,...,a )Hal,ag,...,a,(z)a

r=1 ay,...,a,>1
respectively

W2K+1(z) (1 + Z Z Z C2K a1, dz, ..., )Hal,ag,...,ar(z)v

r=1 ay,...,ar>1

where the coefficients c i (a1, a2, . .., ar) are suitable combinatorial
coefficients, which can be written down explicitly.

Consequently, the coefficient extraction problem will be solved if
we are able to say how to extract coefficients from the series

(1+Z) Ha1,az, a(z) and (1"‘Z)KW(Z)ﬁal,az,.--,ar(Z)-
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The binomial coefficient (2n"), when reduced modulo 9, equals
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Theorem

The binomial coefficient (2n"), when reduced modulo 9, equals

Q 0, if, and only if, n contains at least two digits 2 or the string
12 in its 3-adic expansion;
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Theorem

The binomial coefficient (2n"), when reduced modulo 9, equals

Q 0, if, and only if, n contains at least two digits 2 or the string
12 in its 3-adic expansion;

@ 3, if, and only if, n contains the string 02, no other digit 2,
and an odd number of digits 1 in its 3-adic expansion;
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Theorem

The binomial coefficient (2n"), when reduced modulo 9, equals

Q 0, if, and only if, n contains at least two digits 2 or the string
12 in its 3-adic expansion;

@ 3, if, and only if, n contains the string 02, no other digit 2,
and an odd number of digits 1 in its 3-adic expansion;

© 6, if, and only if, n contains the string 02, no other digit 2,
and an even number of digits 1 in its 3-adic expansion;
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The binomial coefficient (2n"), when reduced modulo 9, equals

Q 0, if, and only if, n contains at least two digits 2 or the string
12 in its 3-adic expansion;

@ 3, if, and only if, n contains the string 02, no other digit 2,
and an odd number of digits 1 in its 3-adic expansion;

© 6, if, and only if, n contains the string 02, no other digit 2,
and an even number of digits 1 in its 3-adic expansion;

Q 1, if, and only if, the 3-adic expansion of n is an element of

{oyu | J (11700%)***11%0%,
k>0

where the number of digits 1 is even;
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© 4, if, and only if, the 3-adic expansion of n is an element of
|J (12%00%)** 11707,
k>0

where the number of digits 1 is even;
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© 4, if, and only if, the 3-adic expansion of n is an element of
| (12%00%)** 1107,
k>0

where the number of digits 1 is even;

Q 7, if, and only if, the 3-adic expansion of n is an element of
L (11700%)*11*07,
k>0

where the number of digits 1 is even;
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© 4, if, and only if, the 3-adic expansion of n is an element of
| (12%00%)** 1107,
k>0

where the number of digits 1 is even;

Q 7, if, and only if, the 3-adic expansion of n is an element of
L (11700%)*11*07,
k>0

where the number of digits 1 is even;

@ 2, if, and only if, the 3-adic expansion of n is an element of

L (11*00%)*11°07,
k>0

where the number of digits 1 is odd;
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© 5, if, and only if, the 3-adic expansion of n is an element of
L (12%00%)*F 1107,
k>0

where the number of digits 1 is odd;
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© 5, if, and only if, the 3-adic expansion of n is an element of
L (12%00%)*F 1107,
k>0

where the number of digits 1 is odd;

© 8, if, and only if, the 3-adic expansion of n is an element of
| (11%00%)**211707,
k>0

where the number of digits 1 is odd.
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Central Eulerian numbers
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Central Eulerian numbers

The Eulerian number A(n, k) is defined as the number of
permutations of {1,2,...,n} with exactly kK — 1 descents. It is
well-known that

A(n, k) = g(—l)k‘f (ij>1

We are interested in analysing central Eulerian numbers, that is,
the numbers A(2n, n) = A(2n,n+ 1) and A(2n — 1, n), modulo
powers of 3.
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Central Eulerian numbers

The Eulerian number A(n, k) is defined as the number of
permutations of {1,2,...,n} with exactly kK — 1 descents. It is
well-known that

A(n, k) = io(—l)k‘f (ij>1

J

We are interested in analysing central Eulerian numbers, that is,
the numbers A(2n, n) = A(2n,n+ 1) and A(2n — 1, n), modulo
powers of 3.

Problem: There is (provably?) no functional or differential
equation for the corresponding generating functions

ano A(2n, n)z" or Enzo A(2n—1,n)z".
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However: If one considers (the coefficients in the) generating
functions > -, A(2n,n)z" and >, -4 A(2n — 1,n)z" modulo a
fixed power of 3, 3K say, then they do satisfy functional equations,

modulo 3K!
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First key observation

Let us consider A(2n, n) = A(2n, n + 1), given explicitly by

n+1
[ 2n+1
A(2n,n+1) = Z(—l)”+11< n >j2".

= n+1—j

Since ¢(3%) = 23571 (with (.) denoting the Euler totient
function), we have

an, [ 2n+1
A2n,n+1) =) (-1)"1 (n 1 _j>j25 (mod 3°)
j=0

for n=s(mod3°7!) and n,s > (8- 1).
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Second key observation

We have
n+1 on+1
_ _qyntl—j 2 3
A(2n,n+1):j§:0( 1) J(n—i—l—j)j *  (mod 37)

for n=s(mod3°7)and n,s > 1(8-1).
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Second key observation

We have
n+1 _ on+1
A2n,n+1) =) (-1)"1 (n 1 _J_)ﬂs (mod 3)
j=0

for n=s(mod3°7)and n,s > 1(8-1).

Proposition

For any positive integer s, we have

Zznni(—wﬂ—f( 2n+1 )ﬂs _ % (1+VIT3z) (1+3plz

S0 =0 n+1—

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.
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Proposition

For any positive integer s, we have

. n+1 e D + 1
S 23 (1) a1 )= (1+\/1+4z> (1+ 3ps(z
n>0 j=0

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.
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Proposition

For any positive integer s, we have

. n+1 e D + 1
S 23 (1) a1 )= (1+\/1+4z> (1+ 3ps(z
n>0 j=0

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.
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Proposition

For any positive integer s, we have

. n+1 e D + 1
YD C Vi) (R T (1+\/1+4z> (1+ 3ps(z
n>0 j=0

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.

That is, if we denote the generating function on the left-hand side
by Es(z), then it satisfies the equation

E2(z) — Es(2) — z — 3ps(2) Es(2) — 32zps(2) (2 4 3ps(2)) = 0
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Proposition

For any positive integer s, we have

. n+1 e D + 1
YD C Vi) (R T (1+\/1+4z> (1+ 3ps(z
n>0 j=0

where ps(z) is a polynomial in z with integer coefficients, and
which satisfies ps(0) = 0.

That is, if we denote the generating function on the left-hand side
by Es(z), then it satisfies the equation

E2(z) — Es(2) — z — 3ps(2) Es(2) — 32zps(2) (2 4 3ps(2)) = 0
This is an equation of the form
(2)F?(2) + c(2)F(2)(2) + co(z) +3Q(...) =0

as in our theorem!!
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Recipe for treating central Eulerian numbers modulo 3

o First consider A(2n,n+ 1) only for n = s (mod 3°~1), with s
fixed.

Something similar works for A(2n — 1, n).
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Recipe for treating central Eulerian numbers modulo 3

o First consider A(2n,n+ 1) only for n = s (mod 3°~1), with s
fixed.

o Solve the functional equation for E5(z) modulo 3°.

Something similar works for A(2n — 1, n).
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Recipe for treating central Eulerian numbers modulo 3

o First consider A(2n,n+ 1) only for n = s (mod 3°~1), with s
fixed.

o Solve the functional equation for E5(z) modulo 3°.

o Only the coefficients of z" in E5(z) with n = s (mod 3°71)
are of interest to us; compute the corresponding section of the

series.

Something similar works for A(2n — 1, n).
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Recipe for treating central Eulerian numbers modulo 3

o First consider A(2n,n+ 1) only for n = s (mod 3°~1), with s
fixed.

o Solve the functional equation for E5(z) modulo 3°.

o Only the coefficients of z" in E5(z) with n = s (mod 3°71)
are of interest to us; compute the corresponding section of the
series.

@ Add the various sections for s =0,1,2,...,3°71 — 1. This
yields the desired polynomial in W(z).

Something similar works for A(2n — 1, n).
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The corresponding results modulo 27

Theorem
We have

> A@2n,n+1)z" =14+3(32° — 4z +2) V(2)
n>0

+ (2123 + 202% + 132 + 23) V3(2)
+3(62* + 42> + 32> + 4) ¥>(z) modulo 27.

’
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The corresponding results modulo 27

Theorem
We have

> A@2n,n+1)z" =14+3(32° — 4z +2) V(2)
n>0

+ (2123 + 202% + 132 + 23) V3(2)
+3(62* + 42> + 32> + 4) ¥>(z) modulo 27.

’
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The corresponding results modulo 27

Theorem
We have

> A@2n,n+1)z" =14+3(32° — 4z +2) V(2)
n>0

+ (2123 + 202% + 132 + 23) V3(2)
+3(62* + 42> + 32> + 4) ¥>(z) modulo 27.

| A

Theorem
We have

Z A(2n—1,n)z" = -3z (32 + 5)V(z)
n>0

+ 2 (242° 4+ 152% + 10z + 19) ¥3(2)
+3z(32* +62° + 222 + 72+ 8) W*(z) modulo 27.
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Minimal polynomials for V(z)
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Minimal polynomials for V(z)

The degree of a minimal polynomial for the modulus 37, v > 1, is
2d, where d is the least positive integer such that 37 | 39d!.
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Minimal polynomials for V(z)

Conjecture

The degree of a minimal polynomial for the modulus 37, v > 1, is
2d, where d is the least positive integer such that 37 | 39d!.

Proposition

|

Minimal polynomials for the moduli

3,9,27,81,243,729,2187,...,3'3 are

Aoz, t) ==t
Ad(z, 1)
Ad(z, 1)
Ai(z, t) == (t2 —

Ao(z, t)AL(z, t)
A2z, )ALz, t)
Al(z, 1)
Al(z, 1)
Ao(z, )A2(z, t)
A3(z, )AL (2, )

3
Ai(z, 1)
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_ 1
1+z

1

1+z

) - (8-

1
1+z

)+

27z
(1+2)5

modulo 3,
modulo 9,
modulo 27,
modulo 81,
modulo 243,
modulo 729,
modulo 2189,
modulo 387
modulo 39,
modulo 3107

modulo 311,
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