Creative Telescoping

5.2 HolonomicFunctions Demo

Shaoshi Chen, Manuel Kauers, Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences

Friday, 01.12.2023
Recent Trends in Computer Algebra Special Week @ Institut Henri Poincaré

Execute Closure Properties of D-Finite Functions

Some D-finite and some non-D-finite functions:

$$
\begin{gathered}
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2} \\
\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right) \\
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

Finite Element Methods

Finite Element Methods

(joint work with Joachim Schöberl and Peter Paule)

Finite Element Methods

(joint work with Joachim Schöberl and Peter Paule)

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.

Finite Element Methods

(joint work with Joachim Schöberl and Peter Paule)

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.
Define basis functions (2D case)

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using Legendre and Jacobi polynomials.

Finite Element Methods

(joint work with Joachim Schöberl and Peter Paule)

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.
Define basis functions (2D case)

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using Legendre and Jacobi polynomials.
Problem: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Find Certain Operators in Annihilator Ideals

Ansatz: One needs a relation of the form
$\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)$,
that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Find Certain Operators in Annihilator Ideals

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Result: With our holonomic methods, we find the relation

$$
\begin{aligned}
& (2 i+j+3)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+1}(x, y)+ \\
& 2(2 i+1)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+2}(x, y)- \\
& (j+3)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+3}(x, y)+ \\
& (j+1)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j}(x, y)- \\
& 2(2 i+3)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+1}(x, y)- \\
& (2 i+j+5)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i+1, j+1}(x, y)=0 .
\end{aligned}
$$

Prove Special Function Identities

Table of Integrals by Gradshteyn and Ryzhik

2

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

1.

$$
\begin{aligned}
& \text { 1. } \begin{array}{r}
\int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=(-1)^{n} \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n!\Gamma(\lambda) \Gamma(\mu+\nu)}{ }_{3} F_{2}\left(-n, n+\lambda, \nu ; \frac{1}{2}, \mu+\nu ; \gamma^{2}\right) \\
{[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>0] \quad \text { ET II 191(41)a }} \\
2 . \quad \int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n+1}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=\frac{(-1)^{n} 2 \gamma \Gamma(\mu) \Gamma(\lambda+n+1) \Gamma\left(\nu+\frac{1}{2}\right)}{n!\Gamma(\lambda) \Gamma\left(\mu+\nu+\frac{1}{2}\right)} \\
\\
\times{ }_{3} F_{2}\left(-n, n+\lambda+1, \nu+\frac{1}{2} ; \frac{3}{2}, \mu+\nu+\frac{1}{2} ; \gamma^{2}\right) \\
{\left[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>-\frac{1}{2}\right] \quad \text { ET II 191(42) }}
\end{array}
\end{aligned}
$$

7.32 Combinations of Gegenbauer polynomials $C_{n}^{\nu}(x)$ and elementary functions

 7.321$$
\begin{array}{r}
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a) \\
{\left[\operatorname{Re} \nu>-\frac{1}{2}\right]}
\end{array}
$$

ET II 281(7), MO 99a
$7.322 \int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{\nu}\left(\frac{x}{a}-1\right) e^{-b x} d x=(-1)^{n} \frac{\pi \Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b)$

$$
\left[\operatorname{Re} \nu>-\frac{1}{2}\right]
$$

ET I 171(9)
7.323
1.
$\int_{0}^{\pi} C_{n}^{\nu}(\cos \varphi)(\sin \varphi)^{2 \nu} d \varphi=0$ $[n=1,2,3, \ldots]$

Table of Integrals by Gradshteyn and Ryzhik

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$
Gamma
function $\Gamma(x)$
Bessel function $J_{\nu}(x)$

Let's prove this identity with creative telescoping. . .

Prove Special Function Identities

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}
\end{equation*}
$$

Prove Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}
\end{align*}
$$

Prove Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}
\end{gather*}
$$

Prove Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
& e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
& \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}
\end{align*}
$$

Prove Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
\int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}\\
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{(\nu)}(x) \mathrm{d} x=\frac{\pi i^{n} \Gamma(n+2 \nu) J_{n+\nu}(a)}{2^{\nu-1} a^{\nu} n!\Gamma(\nu)} \tag{5}
\end{gather*}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\frac{1}{i+j-1}\right)=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{array}{r}
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\frac{1}{i+j-1}\right)=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\left(\sum_{k}\binom{i}{k}\binom{j}{k} 2^{k}\right)=2^{n(n-1) / 2}
\end{array}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{gathered}
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\frac{1}{i+j-1}\right)=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\left(\sum_{k}\binom{i}{k}\binom{j}{k} 2^{k}\right)=2^{n(n-1) / 2} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\left(\binom{2 i+2 a}{j+b}\right)=2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!}
\end{gathered}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{gathered}
\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\frac{1}{i+j-1}\right)=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\left(\sum_{k}\binom{i}{k}\binom{j}{k} 2^{k}\right)=2^{n(n-1) / 2} \\
0 \leqslant i, j \leqslant n-1
\end{gathered}\left(\binom{2 i+2 a}{j+b}\right)=2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!}, \operatorname{det}_{1 \leqslant i, j \leqslant 2 m+1}\left(\binom{\mu+i+j+2 r}{j+2 r-2}-\delta_{i, j+2 r}\right) .
$$

The Holonomic Ansatz

The Holonomic Ansatz

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\operatorname{det}\left(\mathcal{A}_{n}\right)=a_{n, 1} \operatorname{Cof}_{n, 1}+\ldots+a_{n, n-1} \operatorname{Cof}_{n, n-1}+a_{n, n} \operatorname{det}\left(\mathcal{A}_{n-1}\right)
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

$\sum(n)^{2}\binom{3 m k}{2 n}=\binom{n n}{n}^{2}$ WHO YOU GONNA CALL?

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=a_{n, 1} \frac{\operatorname{Cof}_{n, 1}}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}+\ldots+a_{n, n-1} \frac{\operatorname{Cof}_{n, n-1}}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}+a_{n, n}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=a_{n, 1} c_{n, 1}+\ldots+a_{n, n-1} c_{n, n-1}+a_{n, n} c_{n, n}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=\sum_{j=1}^{n} a_{n, j} c_{n, j}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{1, j} c_{n, j}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{i, j} c_{n, j} \quad(1 \leqslant i<n)
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{i, j} c_{n, j} \quad(1 \leqslant i<n), \quad c_{n, n}=1
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n) \tag{3}
\end{align*}
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n)
\end{align*}
$$

Conjecture (Di Francesco's determinant for 20V configurations):

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n)
\end{align*}
$$

Theorem (Di Francesco's determinant for 20V configurations):

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

