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Why yet another Algorithm?
Gosper’s algorithm:
I Solves only the indefinite hypergeometric summation problem

f(k) = g(k + 1)− g(k)

=⇒
b∑

k=a

f(k) = g(b+ 1)− g(a).

I What about definite hypergeometric summation?

n∑
k=0

(
n

k

)
= 2n.

Sister Celine’s method:
I Applies to definite hg. summation, but is slow in practice.
I The condition “k-free” is too strong:

I Have to choose two parameters r and s (order w.r.t. n and k).
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Creative Telescoping

Creative telescoping is a method

I to deal with parametrized definite sums and integrals

I that yields differential/recurrence equations for them

I that became popular in computer algebra in the past 30 years

Example:

∞∑
k=1

1

k2
=
π2

6
Bad: no parameter!

︸ ︷︷ ︸
=:Fn

∞∑
k=1

1

k(k + n)
=
γ + ψ(n)

n
 (n+ 2)2Fn+2 = (n+ 1)(2n+ 3)Fn+1 − n(n+ 1)Fn

2 / 12
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman’s differentiating under the integral sign)

Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: find g such that f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).

Creative Telescoping: find g such that

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).g(x, b)− g(x, a)
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Zeilberger’s (Fast) Algorithm
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Bivariate Hypergeometric Terms
Definition: A bivariate term f(n, k) is called hypergeometric
(w.r.t. n and k) if

f(n+ 1, k)

f(n, k)
and

f(n, k + 1)

f(n, k)

are both rational functions in n and k.

Examples:

I 3nk+1

7

I
Γ(n+ 3k − π)

Γ(2n− k + 1
2)

3

I nk

7

I

(
dn

k

)

7
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Gosper’s Missed Opportunity

Conjecture of the form
∑
k

f(n, k) = h(n) with
h(n+ 1)

h(n)
=
p(n)

q(n)
.

How to prove it using Gosper’s algorithm?

Recipe:

I Apply Gosper’s algorithm to q(n)f(n+ 1, k)− p(n)f(n, k).

I (Hopefully) obtain g(n, k) such that

q(n)f(n+ 1, k)− p(n)f(n, k) = g(n, k + 1)− g(n, k).

I Apply
∑

k to the above identity.

I Note that g(n, k) has finite support (rat. fun. multiple of f).

I Get q(n)S(n+ 1)− p(n)S(n) = 0 with S(n) :=
∑

k f(n, k).

I Check that h(0) = S(0). Hence S(n) = h(n) for all n.
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Example

∑
k

(
n

k

)
= 2n

We have h(n) = 2n and hence h(n+ 1)− 2h(n) = 0.

f(n+ 1, k)− 2f(n, k) =

(
n+ 1

k

)
− 2 ·

(
n

k

)
=

2k − n− 1

n− k + 1

(
n

k

)
︸ ︷︷ ︸

=:f̄(n,k)

Gosper applied to f̄ succeeds:

g(n, k) =
k

k − n− 1
f̄(n, k) = −

(
n

k − 1

)
.

This g has finite support, hence
∑

k f̄(n, k) = 0.
The original identity follows.
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Zeilberger’s Algorithm
What if we don’t know the evaluation of the sum:

S(n) :=
∑
k

f(n, k) =?

(we assume natural boundaries, i.e., f has finite support w.r.t. k)

From the FT we know that a recurrence for S(n) exists,
provided that f(n, k) is a proper hypergeometric term in n and k.

But we don’t know its order and its coefficients.

I Try order r = 0, 1, . . . until success.

I Write recurrence with undetermined coefficients pi ∈ K(n):

pr(n)S(n+ r) + · · ·+ p1(n)S(n+ 1) + p0(n)S(n) = 0.

Apply Gosper’s algorithm to pr(n)f(n+ r, k) + · · ·+ p0(n)f(n, k).
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The Miracle
Apply the parametrized Gosper algorithm to the hypergeometric
term

f̄(n, k) = pr(n)f(n+ r, k) + · · ·+ p1(n)f(n+ 1, k) + p0(n)f(n, k).

I The algorithm works, despite the unknown parameters pi.
I The pi appear only in c(k) in Gosper’s equation

a(k) · x(k + 1)− b(k − 1) · x(k) = c(k).

I The pi appear linearly, hence the final linear system can be
solved simultaneously for the pi and the coefficients of x(k):

x(k) =
d∑

i=0

xi(n)ki.

Let’s prove this. . .
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Zeilberger’s Algorithm

I Need to choose only r (not also s, as in Sister Celine)

I More efficient than Sister Celine’s algorithm

I Guaranteed to find the telescoper of minimal order

Examples: n∑
k=0

(
n

k

)
= 2n

n∑
k=−n

(−1)k
(

2n

n+ k

)2

=
(2n)!

(n!)2

n∑
k=0

(
n

k

)2(n+ k

k

)2

 second-order recurrence

n∑
k=0

(−1)k
(
n

k

)(
dk

n

)
= (−d)n
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The WZ Phenomenon

Given an identity
∑

k f̄(n, k) = h(n) with hypergeometric rhs h.

Define f(n, k) := f̄(n, k)/h(n), hence S(n) :=
∑

k f(n, k) = 1.
Therefore the sum satisfies S(n+ 1)− S(n) = 0.

Apply Gosper’s algorithm to f(n+ 1, k)− f(n, k).
If it succeeds we receive g(n, k) such that

f(n+ 1, k)− f(n, k) = g(n, k + 1)− g(n, k)

where g(n, k)/f(n, k) =: r(n, k) is a rational function.

I (f, g) is called a WZ pair.

I The identity
∑

k f̄(n, k) = h(n) is certified only by r(n, k).

I One obtains the companion identity∑
n>0

g(n, k) =

∑
j6k−1

(
lim
n→∞

f(n, j)− f(0, j)
)
.
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The Apagodu-Zeilberger Algorithm
Theorem: Let f(n, k) = p(n, k) · h(n, k) be a proper hg. term
such that the polynomial p(n, k) is of maximal degree

and

h(n, k) =

(
A∏

j=1

(
αj

)
a′jn+ajk

)(
B∏
j=1

(
βj
)
b′jn−bjk

)
(

C∏
j=1

(
γj
)
c′jn+cjk

)(
D∏
j=1

(
δj
)
d′jn−djk

) zk
with aj , a

′
j , bj , b

′
j , cj , c

′
j , dj , d

′
j ∈ N. Furthermore, let

r = max

(
A∑

j=1

aj +
D∑
j=1

dj ,
B∑
j=1

bj +
C∑

j=1

cj

)
.

Then there exist polynomials p0(n), . . . , pr(n), not all zero,
and q(n, k) ∈ K(n, k) such that g(n, k) := q(n, k)f(n, k) satisfies

r∑
i=0

pi(n)f(n+ i, k) = g(n, k + 1)− g(n, k).
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