Creative Telescoping

3.3 Zeilberger's Algorithm

Shaoshi Chen, Manuel Kauers, Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Wednesday, 29.11.2023
Recent Trends in Computer Algebra Special Week @ Institut Henri Poincaré

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k)
$$

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Sister Celine's method:

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Sister Celine's method:

- Applies to definite hg. summation, but is slow in practice.

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Sister Celine's method:

- Applies to definite hg. summation, but is slow in practice.
- The condition " k-free" is too strong:

$$
A\left(n, S_{n}, S_{k}\right)=P\left(n, S_{n}\right)+\Delta_{k} \cdot Q\left(n, S_{n}, S_{k}\right)
$$

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Sister Celine's method:

- Applies to definite hg. summation, but is slow in practice.
- The condition " k-free" is too strong:

$$
A\left(n, k, S_{n}, S_{k}\right)=P\left(n, S_{n}\right)+\Delta_{k} \cdot Q\left(n, k, S_{n}, S_{k}\right)
$$

Why yet another Algorithm?

Gosper's algorithm:

- Solves only the indefinite hypergeometric summation problem

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

-What about definite hypergeometric summation?

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Sister Celine's method:

- Applies to definite hg. summation, but is slow in practice.
- The condition " k-free" is too strong:

$$
A\left(n, k, S_{n}, S_{k}\right)=P\left(n, S_{n}\right)+\Delta_{k} \cdot Q\left(n, k, S_{n}, S_{k}\right)
$$

- Have to choose two parameters r and s (order w.r.t. n and k).

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
& \sum_{k=1}^{\infty} \frac{1}{k(k+n)}
\end{aligned}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\sum_{k=1}^{\infty} \frac{1}{k(k+n)} & =\frac{\gamma+\psi(n)}{n}
\end{aligned}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\underbrace{\sum_{k=1}^{\infty} \frac{1}{k(k+n)}}_{=: F_{n}} \rightsquigarrow(n+2)^{2} F_{n+2}=(n+1)(2 n+3) F_{n+1}-n(n+1) F_{n}
\end{gathered}
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: find g such that

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: find g such that

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{r}(n) F(n+r)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following integration problem: $F(x):=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: find g such that $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: find g such that

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Zeilberger's (Fast) Algorithm

Zeilberger's (Fast) Algorithm

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1072-1075

DISCRETE MATHEMATICS
www.elsevier.com/locate/disc

Communication

A fast algorithm for proving terminating hypergeometric identities
Doron Zeilberger*
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Zeilberger's (Fast) Algorithm

Available online at www.sciencedirect.com
science (d)diREGt.

Discrete Mathematics 306 (2006) 1072-1075
DISCRETE MATHEMATICS
www.elsevier.com/locate/disc

Communication
A fast algorithm for proving terminating hypergeometric identities
Doron Zeilberger*
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA
J. Symbolic Computation (1991) 11, 195-204

The Method of Creative Telescoping

DORON ZEILBERGER
Department of Mathematics and Computer Science, Temple University, Philadelphia, PA 19122, USA

In memory of John Riordan, master of ars combinatorica
(Received 1 June 1989)

[^0]
Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\frac{\Gamma(n+3 k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$
- n^{k}
- $\binom{d n}{k}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
X
- $\frac{\Gamma(n+3 k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$
- n^{k}
- $\binom{d n}{k}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\frac{\Gamma(n+3 k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$
- n^{k}
- $\binom{d n}{k}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
X
- $\frac{\Gamma(n+3 k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$
- n^{k}
X
- $\binom{d n}{k}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
X
- $\frac{\Gamma(n+3 k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$
- n^{k}
- $\binom{d n}{k}$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
q(n) h(n+1)-p(n) h(n)=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
q(n) \sum_{k} f(n+1, k)-p(n) \sum_{k} f(n, k)=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.
- Note that $g(n, k)$ has finite support (rat. fun. multiple of f).

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.
- Note that $g(n, k)$ has finite support (rat. fun. multiple of f).
- Get $q(n) S(n+1)-p(n) S(n)=0$ with $S(n):=\sum_{k} f(n, k)$.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Recipe:

- Apply Gosper's algorithm to $q(n) f(n+1, k)-p(n) f(n, k)$.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.
- Note that $g(n, k)$ has finite support (rat. fun. multiple of f).
- Get $q(n) S(n+1)-p(n) S(n)=0$ with $S(n):=\sum_{k} f(n, k)$.
- Check that $h(0)=S(0)$. Hence $S(n)=h(n)$ for all n.

Example

$$
\sum_{\varepsilon}\binom{n}{k}=2^{n}
$$

Example

$$
\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Example

$$
\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper applied to \bar{f} succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

Example

$$
\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper applied to \bar{f} succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

This g has finite support, hence $\sum_{k} \bar{f}(n, k)=0$.

Example

$$
\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper applied to \bar{f} succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

This g has finite support, hence $\sum_{k} \bar{f}(n, k)=0$. The original identity follows.

Zeilberger's Algorithm

What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

Zeilberger's Algorithm

What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)

Zeilberger's Algorithm

What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
From the FT we know that a recurrence for $S(n)$ exists, provided that $f(n, k)$ is a proper hypergeometric term in n and k.

Zeilberger's Algorithm

What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
From the FT we know that a recurrence for $S(n)$ exists, provided that $f(n, k)$ is a proper hypergeometric term in n and k.

But we don't know its order and its coefficients.

- Try order $r=0,1, \ldots$ until success.

Zeilberger's Algorithm

What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
From the FT we know that a recurrence for $S(n)$ exists, provided that $f(n, k)$ is a proper hypergeometric term in n and k.

But we don't know its order and its coefficients.

- Try order $r=0,1, \ldots$ until success.
- Write recurrence with undetermined coefficients $p_{i} \in K(n)$:

$$
p_{r}(n) S(n+r)+\cdots+p_{1}(n) S(n+1)+p_{0}(n) S(n)=0
$$

Apply Gosper's algorithm to $p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k)$.

The Miracle

Apply the parametrized Gosper algorithm to the hypergeometric term
$\bar{f}(n, k)=p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)$.

The Miracle

Apply the parametrized Gosper algorithm to the hypergeometric term
$\bar{f}(n, k)=p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)$.

- The algorithm works, despite the unknown parameters p_{i}.

The Miracle

Apply the parametrized Gosper algorithm to the hypergeometric term
$\bar{f}(n, k)=p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)$.

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k)
$$

The Miracle

Apply the parametrized Gosper algorithm to the hypergeometric term
$\bar{f}(n, k)=p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)$.

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k) .
$$

- The p_{i} appear linearly, hence the final linear system can be solved simultaneously for the p_{i} and the coefficients of $x(k)$:

$$
x(k)=\sum_{i=0}^{d} x_{i}(n) k^{i}
$$

The Miracle

Apply the parametrized Gosper algorithm to the hypergeometric term
$\bar{f}(n, k)=p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)$.

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k) .
$$

- The p_{i} appear linearly, hence the final linear system can be solved simultaneously for the p_{i} and the coefficients of $x(k)$:

$$
x(k)=\sum_{i=0}^{d} x_{i}(n) k^{i}
$$

Let's prove this...

Zeilberger's Algorithm

- Need to choose only r (not also s, as in Sister Celine)

Zeilberger's Algorithm

- Need to choose only r (not also s, as in Sister Celine)
- More efficient than Sister Celine's algorithm

Zeilberger's Algorithm

- Need to choose only r (not also s, as in Sister Celine)
- More efficient than Sister Celine's algorithm
- Guaranteed to find the telescoper of minimal order

Zeilberger's Algorithm

- Need to choose only r (not also s, as in Sister Celine)
- More efficient than Sister Celine's algorithm
- Guaranteed to find the telescoper of minimal order

Examples:

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n+k}^{2}=\frac{(2 n)!}{(n!)^{2}} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \rightsquigarrow \text { second-order recurrence } \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{d k}{n}=(-d)^{n}
\end{gathered}
$$

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$. Therefore the sum satisfies $S(n+1)-S(n)=0$.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$. Therefore the sum satisfies $S(n+1)-S(n)=0$.

Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$. Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$.
If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$. Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$.
If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

where $g(n, k) / f(n, k)=: r(n, k)$ is a rational function.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$. Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$.
If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

where $g(n, k) / f(n, k)=: r(n, k)$ is a rational function.

- (f, g) is called a $\mathbf{W Z}$ pair.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$.
Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$.
If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

where $g(n, k) / f(n, k)=: r(n, k)$ is a rational function.

- (f, g) is called a WZ pair.
- The identity $\sum_{k} \bar{f}(n, k)=h(n)$ is certified only by $r(n, k)$.

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$.
Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$. If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

where $g(n, k) / f(n, k)=: r(n, k)$ is a rational function.

- (f, g) is called a $\mathbf{W Z}$ pair.
- The identity $\sum_{k} \bar{f}(n, k)=h(n)$ is certified only by $r(n, k)$.
- One obtains the companion identity

$$
\sum_{n \geqslant 0} g(n, k)=
$$

The WZ Phenomenon

Given an identity $\sum_{k} \bar{f}(n, k)=h(n)$ with hypergeometric rhs h.
Define $f(n, k):=\bar{f}(n, k) / h(n)$, hence $S(n):=\sum_{k} f(n, k)=1$.
Therefore the sum satisfies $S(n+1)-S(n)=0$.
Apply Gosper's algorithm to $f(n+1, k)-f(n, k)$. If it succeeds we receive $g(n, k)$ such that

$$
f(n+1, k)-f(n, k)=g(n, k+1)-g(n, k)
$$

where $g(n, k) / f(n, k)=: r(n, k)$ is a rational function.

- (f, g) is called a $\mathbf{W Z}$ pair.
- The identity $\sum_{k} \bar{f}(n, k)=h(n)$ is certified only by $r(n, k)$.
- One obtains the companion identity

$$
\sum_{n \geqslant 0} g(n, k)=\sum_{j \leqslant k-1}\left(\lim _{n \rightarrow \infty} f(n, j)-f(0, j)\right)
$$

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$.

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$. Furthermore, let

$$
r=\max \left(\sum_{j=1}^{A} a_{j}+\sum_{j=1}^{D} d_{j}, \quad \sum_{j=1}^{B} b_{j}+\sum_{j=1}^{C} c_{j}\right) .
$$

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$. Furthermore, let

$$
r=\max \left(\sum_{j=1}^{A} a_{j}+\sum_{j=1}^{D} d_{j}, \quad \sum_{j=1}^{B} b_{j}+\sum_{j=1}^{C} c_{j}\right) .
$$

Then there exist polynomials $p_{0}(n), \ldots, p_{r}(n)$, not all zero, and $q(n, k) \in K(n, k)$ such that $g(n, k):=q(n, k) f(n, k)$ satisfies

$$
\sum_{i=0}^{r} p_{i}(n) f(n+i, k)=g(n, k+1)-g(n, k)
$$

[^0]: An algorithm for definite hypergeometric summation is given. It is based, in a non-obvious way, on Gosper's algorithm for definite hypergeometric summation, and its theoretical justification relies on Bernstein's theory of holonomic systems.

