Creative Telescoping

2.3 Programming of Sister Celine's Method

Shaoshi Chen, Manuel Kauers, Christoph Koutschan
Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Tuesday, 28.11.2023
Recent Trends in Computer Algebra Special Week @ Institut Henri Poincaré

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

3. Divide by $f(n, k)$ and simplify.

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k.

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k.
6. Solve the linear system for the $c_{i, j}$.

Recall Sister Celine's Algorithm

1. Choose $r, s \in \mathbb{N}$ (order in n, order in k).
2. Make an ansatz for a k-free recurrence:

$$
\sum_{i=0}^{r} \sum_{j=0}^{s} c_{i, j} \cdot f(n+i, k+j)
$$

3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k.
6. Solve the linear system for the $c_{i, j}$.
7. Sum over the k-free recurrences and return the result.

Examples

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n+k}^{2}=\frac{(2 n)!}{(n!)^{2}} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \rightsquigarrow \text { second-order recurrence } \\
\sum_{k}(-1)^{k}\binom{l+m}{l+k}\binom{m+n}{m+k}\binom{n+l}{n+k}=\frac{(l+m+n)!}{l!m!n!}
\end{gathered}
$$

