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Many of them are hypergeometric:
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Combinatorial Identities

Many such hypergeometric summation identities can nowadays be

proven in an automatic and mechanical way:

Invent. math. 108: 575-633 (1992) W

mathematicae

© Springer-Verlag 1992

An algorithmic proof theory for hypergeometric
(ordinary and “¢”’) multisum/integral identities

Herbert S. Wilf* and Doron Zeilberger **

Department of Mathematics, University of Pennsylivania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
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Special Functions

> arise in mathematical analysis and in real-world phenomena

» are solutions to certain differential equations

» cannot be expressed in terms of the usual elementary functions
(v, exp, log, sin, cos, ...)

(0224 (2)! ~ (¥2)6 +
a2 @2 @)y

Airy function Bessel function Coulomb function
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989
Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these

special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scrics identities, and that is given both in English and in MAPLE.

> seminal paper by Doron Zeilberger in 1990
> created a large research area
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» many applications in mathematics and elsewhere
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Digital Library of Mathematical Functions

(Successor of the classical Handbook of Mathematical Functions
by Abramowitz and Stegun)

On May 18, 2005, Frank Olver, the mathematics editor of DLMF,
sent the following email to Peter Paule:

“The writing of DLMF Chapter BS Leonard Maximon
and myself is now largely complete [...] However, a
problem has arisen in connection with about a dozen
formulas from Chapter 10 of Abramowitz and Stegun for
which we have not yet tracked down proofs, and the
author of this chapter, Henry Antosiewiecz, died about a
year ago. Since it is the editorial policy for the DLMF not
to state formulas without indications of proofs, | am
hoping that you will be willing to step into the breach
and supply verifications by computer algebra methods

[...] 1 will fax you the formulas later today.”
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Digital Library of Mathematical Functions
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Within two weeks, all identities were proven with computer algebra,

by the members of the algorithmic combinatorics group of RISC.

(joint work with Stefan Gerhold, Manuel Kauers, Peter Paule,
Carsten Schneider, and Burkhard Zimmermann)
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Alternative approach by Frits Beukers via the integral
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g-Enumeration of Totally Symmetric Plane Partitions

q-TSPP Conjecture (David P. Robbins, George Andrews, 1983)
The orbit-counting generating function for totally symmetric plane
partitions is given by
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Fast converging series for efficient computation of mathematical
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Series Acceleration ldentities

Fast converging series for efficient computation of mathematical
constants (Jests Guillera & John Campbell)
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Symbolic Summation in Particle Physics

» Complicated multi-sums that arise in the evaluation of
Feynman integrals
» Work by Carsten Schneider and collaborators
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Symbolic Summation in Particle Physics

» Complicated multi-sums that arise in the evaluation of
Feynman integrals
» Work by Carsten Schneider and collaborators

DESY 19-096, DO-TH 19/09, SAGEX-2019-13
Three loop heavy quark form factors and their
asymptotic behavior

J. Ablinger', J. Bliimlein2, P. Marquard?, N. Rana>* and C. Schneider'

Abstract A summary of the calculation of the color—planar and complete light
quark contributions to the massive three-loop form factors is presented. Here a
novel calculation method for the Feynman integrals is used, solving general uni—
variate first order factorizable systems of differential equations. We also present
predictions for the asymptotic structure of these form factors.
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Creative Telescoping in Algebraic Statistics
MIMO Wireless Communication System:
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Difficulties in the Evaluation
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» Accuracy problems with standard floating-point arithmetic.
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» Accuracy problems with standard floating-point arithmetic.

> Use arbitrary-precision in a computer algebra system.
But this makes computations even slower.
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Holonomic Gradient Method (HGM)

— Methods for evaluating and optimizing certain expressions.
(Nakayama, Nishiyama, Noro, Ohara, Sei, Takayama, Takemura)

Input: f(x1,...,zs) holonomic, (aq,...,as) € R*
Output: an approximation of f(ai,...,as)

1.

Determine a holonomic system (set of differential equations)
to which f is a solution, and let r be its holonomic rank.

Determine a suitable “basis” of derivatives
f= () o fm) of f(a,...,z).

Convert the holonomic system into a set of Pfaffian systems,
i.e., d%if = A,f for each z;.

. Compute fm1)  f(mr) 5t 5 syitably chosen point

(b1,...,bs) € R?, for which this is easy to achieve.

Use your favourite numerical integration procedure (e.g.,
Euler, Runge-Kutta) to obtain f(ay,...,as).
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Creative Telescoping in Knot Theory

» study the colored Jones function, a knot invariant
» it is a g-holonomic sequence of Laurent polynomials
>

compute g-recurrence by symbolic summation or by guessing

v

joint work with Stavros Garoufalidis

Example: Colored Jones function of double twist knots K, ,:

n—1
i B
Tie, on@) = > (=D epr(@)eyr(@a ™ 2 (" a7 (@
k=0

where the sequence ¢, ,(q) is defined by

2k+1)(

n
k82 an n2 e, (1—¢7)(g59)n
C,(q): (_1)k+q 5 t+%5 +5+ %5 +kptkp '
. ;CZO (6D k(G Dntr1
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Many More Applications of Creative Telescoping

» Hypergeometric expressions for generating functions of walks
with small steps in the quarter plane (Alin Bostan, Frédéric
Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)
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» Uniqueness of the solution to Canham's problem which
predicts the shape of biomembranes: show that the reduced
volume Iso(z) of any stereographic projection of the Clifford
torus to R? is bijective (Alin Bostan, Sergey Yurkevich)
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» Hypergeometric expressions for generating functions of walks
with small steps in the quarter plane (Alin Bostan, Frédéric
Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)

» Uniqueness of the solution to Canham's problem which
predicts the shape of biomembranes: show that the reduced
volume Iso(z) of any stereographic projection of the Clifford
torus to R? is bijective (Alin Bostan, Sergey Yurkevich)

» Computing efficiently the n-dimensional volume of a compact
semi-algebraic set, i.e., the solution set of multivariate
polynomial inequalities, up to a prescribed precision 277
(Pierre Lairez, Marc Mezzarobba, Mohab Safey El Din)
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Many More Applications of Creative Telescoping

» Accurate, reliable and efficient method to compute a certified
orbital collision probability between two spherical space objects
involved in a short-term encounter under Gaussian-distributed
uncertainty (Mioara Joldes, Bruno Salvy, et al.)
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orbital collision probability between two spherical space objects
involved in a short-term encounter under Gaussian-distributed
uncertainty (Mioara Joldes, Bruno Salvy, et al.)

» Study of integrals and diagonals related to some topics in
theoretical physics such as the Ising model or the lattice
Green's function (Jean-Marie Maillard, Alin Bostan, Youssef
Abdelaziz, Salah Boukraa, et al.)

> Irrationality measures of mathematical constants such as
elliptic L-values (Wadim Zudilin)
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Example session:
HolonomicFunctions

Christoph
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