Conclusion

Manuel Kauers • Institute for Algebra • JKU

Monday	Tuesday	Wednesday	Thursday	Friday
Intro- duction	Binomial Summation	Creative Telescoping	D-finite univariate	Chyzak's algorithm
Rational Integration Theory	Sister Celine Theory	Gosper's algorithm	D-finite multivariate	Example Session
Rational Integration Coding	Sister Celine Coding	Zeilberger's algorithm	Advanced Closure Properties	Conclusion

Some points to remember:

- What is a telescoper?
- What is it good for?
- How can it be computed?

What did we not cover in this course?

- Liouvillean functions and $\Pi \Sigma$ expressions
- Reduction-based creative telescoping for D-finite functions

Liouvillean functions and $\Pi \Sigma$ expressions

Liouvillean functions and $\Pi \Sigma$ expressions
Example: $\log (x+\sqrt{1-\exp (x)})$.

Liouvillean functions and $\Pi \Sigma$ expressions
Example: $\log (x+\sqrt{1-\exp (x)})$.
In order to do integration, we do not really need functions.

Liouvillean functions and $\Pi \Sigma$ expressions
Example: $\log (x+\sqrt{1-\exp (x)})$.
In order to do integration, we do not really need functions.
We only need things that can be differentiated.

Liouvillean functions and $\Pi \Sigma$ expressions
Example: $\log (x+\sqrt{1-\exp (x)})$.
In order to do integration, we do not really need functions.
We only need things that can be differentiated.
If K is a field, a function $\mathrm{D}: \mathrm{K} \rightarrow \mathrm{K}$ is called a derivation if

$$
\mathrm{D}(\mathrm{a}+\mathrm{b})=\mathrm{D}(\mathrm{a})+\mathrm{D}(\mathrm{~b}) \quad \text { and } \quad \mathrm{D}(\mathrm{ab})=\mathrm{D}(\mathrm{a}) \mathrm{b}+\mathrm{aD}(\mathrm{~b})
$$

for all $a, b \in K$.

Liouvillean functions and $\Pi \Sigma$ expressions
Example: $\log (x+\sqrt{1-\exp (x)})$.
In order to do integration, we do not really need functions.
We only need things that can be differentiated.
If K is a field, a function $\mathrm{D}: \mathrm{K} \rightarrow \mathrm{K}$ is called a derivation if

$$
\mathrm{D}(\mathrm{a}+\mathrm{b})=\mathrm{D}(\mathrm{a})+\mathrm{D}(\mathrm{~b}) \quad \text { and } \quad \mathrm{D}(\mathrm{ab})=\mathrm{D}(\mathrm{a}) \mathrm{b}+\mathrm{aD}(\mathrm{~b})
$$

for all $a, b \in K$.
The field K together with such a D is called a differential field.

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~d}$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\mathrm{D}\left(\mathrm{t}_{1}\right)=1
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\mathrm{D}\left(\mathrm{t}_{1}\right)=1 \quad \mathrm{t}_{1} \sim \chi
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
\mathrm{D}\left(\mathrm{t}_{1}\right)=1 & \mathrm{t}_{1} \sim x \\
\mathrm{D}\left(\mathrm{t}_{2}\right)=\mathrm{t}_{2} &
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
D\left(t_{1}\right)=1 & t_{1} \sim x \\
D\left(t_{2}\right)=t_{2} & t_{2} \sim \exp (x)
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
\mathrm{D}\left(\mathrm{t}_{1}\right)=1 & \mathrm{t}_{1} \sim x \\
\mathrm{D}\left(\mathrm{t}_{2}\right)=\mathrm{t}_{2} & \mathrm{t}_{2} \sim \exp (x) \\
\mathrm{D}\left(\mathrm{t}_{3}\right)=\frac{-\mathrm{t}_{2}}{2 \mathrm{t}_{3}} &
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
D\left(t_{1}\right)=1 & t_{1} \sim x \\
D\left(t_{2}\right)=t_{2} & t_{2} \sim \exp (x) \\
D\left(t_{3}\right)=\frac{-t_{2}}{2 t_{3}} & t_{3} \sim \sqrt{1-\exp (x)}
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $D\left(t_{i}\right)$ for $i=1, \ldots, d$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
D\left(t_{1}\right)=1 & t_{1} \sim x \\
D\left(t_{2}\right)=t_{2} & t_{2} \sim \exp (x) \\
D\left(t_{3}\right)=\frac{-t_{2}}{2 t_{3}} & t_{3} \sim \sqrt{1-\exp (x)} \\
D\left(t_{4}\right)=\frac{1-\frac{t_{2}}{2 t_{3}}}{t_{1}+t_{3}} &
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Idea: interpret complicated expressions as elements of a suitably constructed differential field.

Fact: On a rational function field $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{d}}\right) \mathrm{a}$ derivation D is uniquely determined by $\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~d}$.

Example: On $\mathrm{K}=\mathbb{Q}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}\right)$ we can define a derivation via

$$
\begin{array}{ll}
D\left(t_{1}\right)=1 & t_{1} \sim x \\
D\left(t_{2}\right)=t_{2} & t_{2} \sim \exp (x) \\
D\left(t_{3}\right)=\frac{-t_{2}}{2 t_{3}} & t_{3} \sim \sqrt{1-\exp (x)} \\
D\left(t_{4}\right)=\frac{1-\frac{t_{2}}{2 t_{3}}}{t_{1}+t_{3}} & t_{4} \sim \log (x+\sqrt{1-\exp (x)})
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A differential field $K=C\left(t_{1}, \ldots, t_{d}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"),

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

- $D\left(t_{d}\right) \in C\left(t_{1}, \ldots, t_{d-1}\right) \quad$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"), and $\mathrm{D}(\mathrm{r})=0 \Leftrightarrow r \in \mathrm{C}$ for all $\mathrm{r} \in \mathrm{K}$.

Liouvillean functions and $\Pi \Sigma$ expressions
Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"), and $\mathrm{D}(\mathrm{r})=0 \Leftrightarrow \mathrm{r} \in \mathrm{C}$ for all $\mathrm{r} \in \mathrm{K}$.

The Risch algorithm solves the integration problem in such fields:

Liouvillean functions and $\Pi \Sigma$ expressions
Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"), and $\mathrm{D}(\mathrm{r})=0 \Leftrightarrow r \in \mathrm{C}$ for all $\mathrm{r} \in \mathrm{K}$.

The Risch algorithm solves the integration problem in such fields:

- Given a liouvillean field K and an element $f \in K$

Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"), and $\mathrm{D}(\mathrm{r})=0 \Leftrightarrow r \in \mathrm{C}$ for all $\mathrm{r} \in \mathrm{K}$.

The Risch algorithm solves the integration problem in such fields:

- Given a liouvillean field K and an element $f \in K$
- Construct a liouvillean field E with $\mathrm{K} \subseteq \mathrm{E}$ and an element $\mathrm{g} \in \mathrm{E}$ such that $\mathrm{D}(\mathrm{g})=\mathrm{f}$, or prove that no such E exists.

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A differential field $\mathrm{K}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}}\right)$ is called liouvillean if the differential subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is liouvillean and

- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a primitive"), or
- $\mathrm{D}\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is hyperexponential"), and $\mathrm{D}(\mathrm{r})=0 \Leftrightarrow r \in \mathrm{C}$ for all $\mathrm{r} \in \mathrm{K}$.

The Risch algorithm solves the integration problem in such fields:

- Given a liouvillean field K and an element $f \in K$
- Construct a liouvillean field E with $\mathrm{K} \subseteq \mathrm{E}$ and an element $g \in E$ such that $D(g)=f$, or prove that no such E exists.

Example: $\int \frac{1}{1+\exp (x)}=x-\log (1+\exp (x))$

Liouvillean functions and $\Pi \Sigma$ expressions

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Actually, for the recursion needs a parameterized version of the integration problem:

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Actually, for the recursion needs a parameterized version of the integration problem:

- Given: $f_{1}, \ldots, f_{r} \in K$

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Actually, for the recursion needs a parameterized version of the integration problem:

- Given: $f_{1}, \ldots, f_{r} \in K$
- Find: $c_{1}, \ldots, c_{r} \in C$ and $g \in K$ such that

$$
c_{1} f_{1}+\cdots+c_{r} f_{r}=D(g)
$$

or prove that no such things exist.

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Actually, for the recursion needs a parameterized version of the integration problem:

- Given: $f_{1}, \ldots, f_{r} \in K$
- Find: $c_{1}, \ldots, c_{r} \in C$ and $g \in K$ such that

$$
c_{1} f_{1}+\cdots+c_{r} f_{r}=D(g)
$$

or prove that no such things exist.
Looks familiar?

Liouvillean functions and $\Pi \Sigma$ expressions

Risch's algorithm reduces the given integration problem to an integration problem in a smaller field, which is then solved recursively.

Actually, for the recursion needs a parameterized version of the integration problem:

- Given: $f_{1}, \ldots, f_{r} \in K$
- Find: $c_{1}, \ldots, c_{r} \in C$ and $g \in K$ such that

$$
c_{1} f_{1}+\cdots+c_{r} f_{r}=D(g)
$$

or prove that no such things exist.
Looks familiar?
We can also use this for evaluating definite integrals of liouvillean functions.

Liouvillean functions and $\Pi \Sigma$ expressions

	hypergeometric summation	liouvillean integration
indefinite	Gosper	Risch
definite (CT)	Zeilberger	Raab

Liouvillean functions and $\Pi \Sigma$ expressions
There is also a summation analog of all this.

Liouvillean functions and $\Pi \Sigma$ expressions

There is also a summation analog of all this.
Example: $\sum_{k=1}^{n} \frac{2^{k}-\sum_{i=1}^{k} \frac{1}{k}}{k!+\sum_{i=1}^{k} \frac{1}{k^{2}}}$

Liouvillean functions and $\Pi \Sigma$ expressions

There is also a summation analog of all this.
Example: $\sum_{k=1}^{n} \frac{2^{k}-\sum_{i=1}^{k} \frac{1}{k}}{k!+\sum_{i=1}^{k} \frac{1}{k^{2}}}$
A difference field is a field K together with an automorphism $\sigma: K \rightarrow K$.

Liouvillean functions and $\Pi \Sigma$ expressions

There is also a summation analog of all this.
Example: $\sum_{k=1}^{n} \frac{2^{k}-\sum_{i=1}^{k} \frac{1}{k}}{k!+\sum_{i=1}^{k} \frac{1}{k^{2}}}$
A difference field is a field K together with an automorphism $\sigma: K \rightarrow K$.

Example: On $K=\mathbb{Q}\left(t_{1}, t_{2}, \ldots\right)$ we can define σ via

$$
\begin{array}{ll}
\sigma\left(t_{1}\right)=t_{1}+1 & t_{1} \sim n \\
\sigma\left(t_{2}\right)=2 t_{2} & t_{2} \sim 2^{n} \\
\sigma\left(t_{3}\right)=\left(t_{1}+1\right) t_{3} & t_{3} \sim n! \\
\sigma\left(t_{4}\right)=t_{4}+\frac{1}{t_{1}+1} & \\
t_{4} \sim \sum_{k=1}^{n} \frac{1}{k}, \quad \text { etc. }
\end{array}
$$

Liouvillean functions and $\Pi \Sigma$ expressions

Liouvillean functions and $\Pi \Sigma$ expressions
Def. A difference field $K=C\left(t_{1}, \ldots, t_{d}\right)$ is called $\Pi \Sigma$ if the difference subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is $\Pi \Sigma$ and

- $\sigma\left(t_{d}\right)-t_{d} \in C\left(t_{1}, \ldots, t_{d-1}\right)$ (" t_{d} is a sum"), or
- $\sigma\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a product"), and $\sigma(r)=r \Leftrightarrow r \in C$ for all $r \in K$.

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A difference field $K=C\left(t_{1}, \ldots, t_{d}\right)$ is called $\Pi \Sigma$ if the difference subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is $\Pi \Sigma$ and

- $\sigma\left(t_{d}\right)-t_{d} \in C\left(t_{1}, \ldots, t_{d-1}\right)$ (" t_{d} is a sum"), or
- $\sigma\left(\mathrm{t}_{\mathrm{d}}\right) / \mathrm{t}_{\mathrm{d}} \in \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{d}-1}\right)$ (" t_{d} is a product"), and $\sigma(r)=r \Leftrightarrow r \in C$ for all $r \in K$.

Karr's algorithm solves the summation problem in such fields:

- Given a $\Pi \Sigma$ field K and an element $f \in K$
- Construct a $\Pi \Sigma$ field E with $K \subseteq E$ and an element $g \in E$ such that $\sigma(\mathrm{g})-\mathrm{g}=\mathrm{f}$, or prove that no such E exists.

Liouvillean functions and $\Pi \Sigma$ expressions

Def. A difference field $K=C\left(t_{1}, \ldots, t_{d}\right)$ is called $\Pi \Sigma$ if the difference subfield $C\left(t_{1}, \ldots, t_{d-1}\right)$ is $\Pi \Sigma$ and

- $\sigma\left(t_{d}\right)-t_{d} \in C\left(t_{1}, \ldots, t_{d-1}\right)$ (" t_{d} is a sum"), or
- $\sigma\left(t_{d}\right) / t_{d} \in C\left(t_{1}, \ldots, t_{d-1}\right)$ (" t_{d} is a product"), and $\sigma(r)=r \Leftrightarrow r \in C$ for all $r \in K$.

Karr's algorithm solves the summation problem in such fields:

- Given a $\Pi \Sigma$ field K and an element $f \in K$
- Construct a $\Pi \Sigma$ field E with $K \subseteq E$ and an element $g \in E$ such that $\sigma(\mathrm{g})-\mathrm{g}=\mathrm{f}$, or prove that no such E exists.
Example: $\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{k}=(n+1) \sum_{k=1}^{n} \frac{1}{k}-n$

Liouvillean functions and $\Pi \Sigma$ expressions

Liouvillean functions and $\Pi \Sigma$ expressions
Like Risch's algorithm, Karr's algorithm proceeds recursively.

Liouvillean functions and $\Pi \Sigma$ expressions

Like Risch's algorithm, Karr's algorithm proceeds recursively.
For the recursion, it solves a parameterized version of the summation problem.

Liouvillean functions and $\Pi \Sigma$ expressions

Like Risch's algorithm, Karr's algorithm proceeds recursively.
For the recursion, it solves a parameterized version of the summation problem.

Schneider uses it to do creative telescoping and lots of other things.

Liouvillean functions and $\Pi \Sigma$ expressions

	hypergeometric summation	liouvillean integration	$\Pi \Sigma$ summation
indefinite	Gosper	Risch	Karr
definite (CT)	Zeilberger	Raab	Schneider

What did we not cover in this course?

- Liouvillean functions and $\Pi \Sigma$ expressions
- Reduction-based creative telescoping for D-finite functions

Reduction-based creative telescoping for D-finite functions Recall:

Reduction-based creative telescoping for D-finite functions

Recall:

- Celine-like algorithms are based on elimination ("k-free recurrence")

Reduction-based creative telescoping for D-finite functions

Recall:

- Celine-like algorithms are based on elimination (" k-free recurrence")
- Zeilberger-like algorithms are based on an indefinite summation/integration algorithm

Reduction-based creative telescoping for D-finite functions

Recall:

- Celine-like algorithms are based on elimination (" k-free recurrence")
- Zeilberger-like algorithms are based on an indefinite summation/integration algorithm
- Apagodu-Zeilberger-like algorithms are based on an ansatz for telescoper and certificate and solving a linear system

Reduction-based creative telescoping for D-finite functions

Recall:

- Celine-like algorithms are based on elimination (" k-free recurrence")
- Zeilberger-like algorithms are based on an indefinite summation/integration algorithm
- Apagodu-Zeilberger-like algorithms are based on an ansatz for telescoper and certificate and solving a linear system
- Reduction-based algorithms are based on extracting maximal summable/integrable parts

Reduction-based creative telescoping for D-finite functions
Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
f=D(g)+h
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.

- Algebraic functions
(Trager; Chen, Kauers, Koutschan)

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.

- Algebraic functions
(Trager; Chen, Kauers, Koutschan)
- Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.

- Algebraic functions
(Trager; Chen, Kauers, Koutschan)
- Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)
- Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.

- Algebraic functions
(Trager; Chen, Kauers, Koutschan)
- Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)
- Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)
- D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven, Lairez, Kauers, Koutschan, Salvy, Wang)

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.
Example:

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \frac{k^{4}+5 k^{3}-k^{2}-5 k-2}{k^{2}(k+1)^{3}(k+2)}\binom{2 k}{k} \\
& =-\frac{n^{2}-6}{6 n^{2}(n+1)}\binom{2 n}{n}+\frac{5}{6}+\sum_{k=1}^{n-1} \frac{1}{2(k+1)}\binom{2 k}{k} .
\end{aligned}
$$

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.
Example:

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \frac{k^{4}+5 k^{3}-k^{2}-5 k-2}{k^{2}(k+1)^{3}(k+2)}\binom{2 k}{k} \\
& =-\frac{n^{2}-6}{6 n^{2}(n+1)}\binom{2 n}{n}+\frac{5}{6}+\sum_{k=1}^{n-1} \underbrace{\frac{1}{2(k+1)}\binom{2 k}{k}}_{\substack{\text { not summable } \\
\text { and "minimal" }}} .
\end{aligned}
$$

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.
We obtain reduction-based creative telescoping algorithms.

Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given $f \in C(x, y)$ into

$$
\mathrm{f}=\mathrm{D}(\mathrm{~g})+\mathrm{h}
$$

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.
We obtain reduction-based creative telescoping algorithms.
These techniques are still subject of ongoing research.

What did we not cover in this course?

- Liouvillean functions and $\Pi \Sigma$ expressions
- Reduction-based creative telescoping for D-finite functions

What did we not cover in this course?

- Liouvillean functions and $\Pi \Sigma$ expressions
- Reduction-based creative telescoping for D-finite functions

What remains to be done in the future?

Some Open Problems Related to Creative Telescoping*

CHEN Shaoshi • KAUERS Manuel

```
DOI: 10.1007/s11424-017-6202-9
Received: 14 September 2016 / Revised: 30 October 2016
(c) The Editorial Office of JSSC \& Springer-Verlag Berlin Heidelberg 2017
Abstract Creative telescoping is the method of choice for obtaining information about definite sums or integrals. It has been intensively studied since the carly 1990 s, and can now be considered as a classical technique in computer algebra. At the same time, it is still a subject of ongoing research. This paper presents a selection of open problems in this context. The authors would be curious to hear about any substantial progress on any of these problems.
Keywords Computer algebra, creative telescoping, differential a lgebra, linear operators, ore algebras, symbolic integration, symbolic summation.
```


1 Introduction

Summation and integration problems arise in all areas of mathematics, especially in discrete mathematios, special fumetions, combinatorics, engineertug, and physics. Nowadays, many of

- Reduction-based telescoping for further function classes.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Stability problems.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Stability problems.
- Multivariate indefinite summation/integration.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Stability problems.
- Multivariate indefinite summation/integration.
- Integration of D-algebraic functions.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Stability problems.
- Multivariate indefinite summation/integration.
- Integration of D-algebraic functions.
- The inverse problem of definite summation/integration.
- Reduction-based telescoping for further function classes.
- Bounds on the sizes of telescopers and certificates.
- Predict singularities of telescopers without computing them.
- Proper handling of singularities in certificates.
- Existence of telescopers for differential/difference fields.
- Stability problems.
- Multivariate indefinite summation/integration.
- Integration of D-algebraic functions.
- The inverse problem of definite summation/integration.
- Software that can handle problems out of reach of available code.

