
Conclusion

Manuel Kauers · Institute for Algebra · JKU



Monday Tuesday Wednesday Thursday Friday

Intro-
duction

Rational
Integration
Theory

Rational
Integration
Coding

Binomial
Summation

Sister
Celine
Theory

Sister
Celine
Coding

Creative
Telescoping

Gosper’s
algorithm

Zeilberger’s
algorithm

D-finite
univariate

D-finite
multivariate

Advanced
Closure

Properties

Chyzak’s
algorithm

Example
Session

Conclusion

1



Some points to remember:

• What is a telescoper?

• What is it good for?

• How can it be computed?

2



What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions

3



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.

4



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1

t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2

t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3

t4 ∼ log(x+
√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))

5



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))

6



Liouvillean functions and ΠΣ expressions

7



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.

8



Liouvillean functions and ΠΣ expressions

hypergeometric liouvillean

ΠΣ

summation integration

summation

indefinite Gosper Risch

Karr

definite (CT) Zeilberger Raab

Schneider

9



Liouvillean functions and ΠΣ expressions

There is also a summation analog of all this.

Example:
n∑

k=1

2k −
∑k

i=1
1
k

k! +
∑k

i=1
1
k2

A difference field is a field K together with an automorphism
σ : K → K.

Example: On K = Q(t1, t2, . . . ) we can define σ via

σ(t1) = t1 + 1 t1 ∼ n

σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = (t1 + 1)t3 t3 ∼ n!

σ(t4) = t4 +
1

t1 + 1
t4 ∼

n∑
k=1

1

k
, etc.

10



Liouvillean functions and ΠΣ expressions

There is also a summation analog of all this.

Example:
n∑

k=1

2k −
∑k

i=1
1
k

k! +
∑k

i=1
1
k2

A difference field is a field K together with an automorphism
σ : K → K.

Example: On K = Q(t1, t2, . . . ) we can define σ via

σ(t1) = t1 + 1 t1 ∼ n

σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = (t1 + 1)t3 t3 ∼ n!

σ(t4) = t4 +
1

t1 + 1
t4 ∼

n∑
k=1

1

k
, etc.

10



Liouvillean functions and ΠΣ expressions

There is also a summation analog of all this.

Example:
n∑

k=1

2k −
∑k

i=1
1
k

k! +
∑k

i=1
1
k2

A difference field is a field K together with an automorphism
σ : K → K.

Example: On K = Q(t1, t2, . . . ) we can define σ via

σ(t1) = t1 + 1 t1 ∼ n

σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = (t1 + 1)t3 t3 ∼ n!

σ(t4) = t4 +
1

t1 + 1
t4 ∼

n∑
k=1

1

k
, etc.

10



Liouvillean functions and ΠΣ expressions

There is also a summation analog of all this.

Example:
n∑

k=1

2k −
∑k

i=1
1
k

k! +
∑k

i=1
1
k2

A difference field is a field K together with an automorphism
σ : K → K.

Example: On K = Q(t1, t2, . . . ) we can define σ via

σ(t1) = t1 + 1 t1 ∼ n

σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = (t1 + 1)t3 t3 ∼ n!

σ(t4) = t4 +
1

t1 + 1
t4 ∼

n∑
k=1

1

k
, etc.

10



Liouvillean functions and ΠΣ expressions

Def. A difference field K = C(t1, . . . , td) is called ΠΣ if the
difference subfield C(t1, . . . , td−1) is ΠΣ and

• σ(td) − td ∈ C(t1, . . . , td−1) (“td is a sum”), or

• σ(td)/td ∈ C(t1, . . . , td−1) (“td is a product”),

and σ(r) = r ⇔ r ∈ C for all r ∈ K.

Karr’s algorithm solves the summation problem in such fields:

• Given a ΠΣ field K and an element f ∈ K

• Construct a ΠΣ field E with K ⊆ E and an element g ∈ E

such that σ(g) − g = f, or prove that no such E exists.

Example:
n∑

k=1

k∑
i=1

1

k
= (n+ 1)

n∑
k=1

1

k
− n

11



Liouvillean functions and ΠΣ expressions

Def. A difference field K = C(t1, . . . , td) is called ΠΣ if the
difference subfield C(t1, . . . , td−1) is ΠΣ and

• σ(td) − td ∈ C(t1, . . . , td−1) (“td is a sum”), or

• σ(td)/td ∈ C(t1, . . . , td−1) (“td is a product”),

and σ(r) = r ⇔ r ∈ C for all r ∈ K.

Karr’s algorithm solves the summation problem in such fields:

• Given a ΠΣ field K and an element f ∈ K

• Construct a ΠΣ field E with K ⊆ E and an element g ∈ E

such that σ(g) − g = f, or prove that no such E exists.

Example:
n∑

k=1

k∑
i=1

1

k
= (n+ 1)

n∑
k=1

1

k
− n

11



Liouvillean functions and ΠΣ expressions

Def. A difference field K = C(t1, . . . , td) is called ΠΣ if the
difference subfield C(t1, . . . , td−1) is ΠΣ and

• σ(td) − td ∈ C(t1, . . . , td−1) (“td is a sum”), or

• σ(td)/td ∈ C(t1, . . . , td−1) (“td is a product”),

and σ(r) = r ⇔ r ∈ C for all r ∈ K.

Karr’s algorithm solves the summation problem in such fields:

• Given a ΠΣ field K and an element f ∈ K

• Construct a ΠΣ field E with K ⊆ E and an element g ∈ E

such that σ(g) − g = f, or prove that no such E exists.

Example:
n∑

k=1

k∑
i=1

1

k
= (n+ 1)

n∑
k=1

1

k
− n

11



Liouvillean functions and ΠΣ expressions

Def. A difference field K = C(t1, . . . , td) is called ΠΣ if the
difference subfield C(t1, . . . , td−1) is ΠΣ and

• σ(td) − td ∈ C(t1, . . . , td−1) (“td is a sum”), or

• σ(td)/td ∈ C(t1, . . . , td−1) (“td is a product”),

and σ(r) = r ⇔ r ∈ C for all r ∈ K.

Karr’s algorithm solves the summation problem in such fields:

• Given a ΠΣ field K and an element f ∈ K

• Construct a ΠΣ field E with K ⊆ E and an element g ∈ E

such that σ(g) − g = f, or prove that no such E exists.

Example:
n∑

k=1

k∑
i=1

1

k
= (n+ 1)

n∑
k=1

1

k
− n

11



Liouvillean functions and ΠΣ expressions

Like Risch’s algorithm, Karr’s algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.

12



Liouvillean functions and ΠΣ expressions

Like Risch’s algorithm, Karr’s algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.

12



Liouvillean functions and ΠΣ expressions

Like Risch’s algorithm, Karr’s algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.

12



Liouvillean functions and ΠΣ expressions

Like Risch’s algorithm, Karr’s algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.

12



Liouvillean functions and ΠΣ expressions

hypergeometric liouvillean ΠΣ

summation integration summation

indefinite Gosper Risch Karr

definite (CT) Zeilberger Raab Schneider

13



What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions

14



Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15



Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15



Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15



Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15



Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:

n−1∑
k=1

k4 + 5k3 − k2 − 5k− 2

k2(k+ 1)3(k+ 2)

(
2k

k

)

= −
n2 − 6

6n2(n+ 1)

(
2n

n

)
+

5

6
+

n−1∑
k=1

1

2(k+ 1)

(
2k

k

)
︸ ︷︷ ︸

not summable
and “minimal”

.

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:

n−1∑
k=1

k4 + 5k3 − k2 − 5k− 2

k2(k+ 1)3(k+ 2)

(
2k

k

)

= −
n2 − 6

6n2(n+ 1)

(
2n

n

)
+

5

6
+

n−1∑
k=1

1

2(k+ 1)

(
2k

k

)
︸ ︷︷ ︸

not summable
and “minimal”

.

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

We obtain reduction-based creative telescoping algorithms.

These techniques are still subject of ongoing research.

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

We obtain reduction-based creative telescoping algorithms.

These techniques are still subject of ongoing research.

16



What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions

What remains to be done in the future?

17



What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions

What remains to be done in the future?

17



18



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19



• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.

19


