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Some points to remember:

• What is a telescoper?

• What is it good for?

• How can it be computed?
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What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions
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Liouvillean functions and ΠΣ expressions

Example: log(x+
√

1− exp(x)).

In order to do integration, we do not really need functions.

We only need things that can be differentiated.

If K is a field, a function D : K → K is called a derivation if

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b)

for all a, b ∈ K.

The field K together with such a D is called a differential field.
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Liouvillean functions and ΠΣ expressions

Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t1, t2, . . . , td) a
derivation D is uniquely determined by D(ti) for i = 1, . . . , d.

Example: On K = Q(t1, t2, t3, t4) we can define a derivation via

D(t1) = 1 t1 ∼ x

D(t2) = t2 t2 ∼ exp(x)

D(t3) =
−t2
2t3

t3 ∼
√
1− exp(x)

D(t4) =
1− t2

2t3

t1 + t3
t4 ∼ log(x+

√
1− exp(x))
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Liouvillean functions and ΠΣ expressions

Def. A differential field K = C(t1, . . . , td) is called liouvillean if
the differential subfield C(t1, . . . , td−1) is liouvillean and

• D(td) ∈ C(t1, . . . , td−1) (“td is a primitive”), or

• D(td)/td ∈ C(t1, . . . , td−1) (“td is hyperexponential”),

and D(r) = 0 ⇔ r ∈ C for all r ∈ K.

The Risch algorithm solves the integration problem in such fields:

• Given a liouvillean field K and an element f ∈ K

• Construct a liouvillean field E with K ⊆ E and an element
g ∈ E such that D(g) = f, or prove that no such E exists.

Example:

∫
1

1+ exp(x)
= x− log(1+ exp(x))
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Liouvillean functions and ΠΣ expressions
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Liouvillean functions and ΠΣ expressions

Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

• Given: f1, . . . , fr ∈ K

• Find: c1, . . . , cr ∈ C and g ∈ K such that

c1f1 + · · ·+ crfr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.
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Liouvillean functions and ΠΣ expressions

hypergeometric liouvillean

ΠΣ

summation integration

summation

indefinite Gosper Risch

Karr

definite (CT) Zeilberger Raab

Schneider
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Liouvillean functions and ΠΣ expressions

There is also a summation analog of all this.

Example:
n∑

k=1

2k −
∑k

i=1
1
k

k! +
∑k

i=1
1
k2

A difference field is a field K together with an automorphism
σ : K → K.

Example: On K = Q(t1, t2, . . . ) we can define σ via

σ(t1) = t1 + 1 t1 ∼ n

σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = (t1 + 1)t3 t3 ∼ n!

σ(t4) = t4 +
1

t1 + 1
t4 ∼

n∑
k=1

1

k
, etc.
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Liouvillean functions and ΠΣ expressions

Def. A difference field K = C(t1, . . . , td) is called ΠΣ if the
difference subfield C(t1, . . . , td−1) is ΠΣ and

• σ(td) − td ∈ C(t1, . . . , td−1) (“td is a sum”), or

• σ(td)/td ∈ C(t1, . . . , td−1) (“td is a product”),

and σ(r) = r ⇔ r ∈ C for all r ∈ K.

Karr’s algorithm solves the summation problem in such fields:

• Given a ΠΣ field K and an element f ∈ K

• Construct a ΠΣ field E with K ⊆ E and an element g ∈ E

such that σ(g) − g = f, or prove that no such E exists.

Example:
n∑

k=1

k∑
i=1

1

k
= (n+ 1)

n∑
k=1

1

k
− n
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Liouvillean functions and ΠΣ expressions

Like Risch’s algorithm, Karr’s algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.
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Liouvillean functions and ΠΣ expressions

hypergeometric liouvillean ΠΣ

summation integration summation

indefinite Gosper Risch Karr

definite (CT) Zeilberger Raab Schneider
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What did we not cover in this course?

• Liouvillean functions and ΠΣ expressions

• Reduction-based creative telescoping for D-finite functions
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Reduction-based creative telescoping for D-finite functions

Recall:

• Celine-like algorithms are based on elimination (“k-free
recurrence”)

• Zeilberger-like algorithms are based on an indefinite
summation/integration algorithm

• Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

• Reduction-based algorithms are based on extracting maximal
summable/integrable parts
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Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

• Algebraic functions
(Trager; Chen, Kauers, Koutschan)

• Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)

• Hypergeometric terms
(Abramov, Petkovšek; Chen, Huang, Li, Kauers)

• D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)
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Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:

n−1∑
k=1

k4 + 5k3 − k2 − 5k− 2

k2(k+ 1)3(k+ 2)

(
2k

k

)

= −
n2 − 6

6n2(n+ 1)

(
2n

n

)
+

5

6
+

n−1∑
k=1

1

2(k+ 1)

(
2k

k

)
︸ ︷︷ ︸

not summable
and “minimal”

.

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:

n−1∑
k=1

k4 + 5k3 − k2 − 5k− 2

k2(k+ 1)3(k+ 2)

(
2k

k

)

= −
n2 − 6

6n2(n+ 1)

(
2n

n

)
+

5

6
+

n−1∑
k=1

1

2(k+ 1)

(
2k

k

)
︸ ︷︷ ︸

not summable
and “minimal”

.

16



Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f ∈ C(x, y) into

f = D(g) + h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

We obtain reduction-based creative telescoping algorithms.

These techniques are still subject of ongoing research.
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What remains to be done in the future?
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• Reduction-based telescoping for further function classes.

• Bounds on the sizes of telescopers and certificates.

• Predict singularities of telescopers without computing them.

• Proper handling of singularities in certificates.

• Existence of telescopers for differential/difference fields.

• Stability problems.

• Multivariate indefinite summation/integration.

• Integration of D-algebraic functions.

• The inverse problem of definite summation/integration.

• Software that can handle problems out of reach of available code.
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