Advanced Closure Properties

Manuel Kauers · Institute for Algebra · JKU

• A left ideal $I \subseteq C(x, y)[D_x, D_y]$ is called D-finite if

 $\dim_{C(x,y)} C(x,y)[D_x,D_y]/I < \infty.$

- A left ideal $I\subseteq C(x,y)[D_x,D_y]$ is called D-finite if

 $\overline{\dim_{C(x,y)} C(x,y)}[D_x,D_y]/I < \infty.$

• A function f(x, y) is called **D**-finite if its annihilator

ann f(x,y) =
$$\left\{ L \in C(x,y)[D_x,D_y] : L \cdot f = 0 \right\}$$

is D-finite.

• A left ideal $I\subseteq C(x,y)[D_x,D_y]$ is called D-finite if

 $\dim_{C(x,y)} C(x,y)[D_x,D_y]/I < \infty.$

• A function f(x, y) is called D-finite if its annihilator

ann f
$$(x, y) = \left\{ L \in C(x, y)[D_x, D_y] : L \cdot f = 0 \right\}$$

is D-finite.

• The notion extends naturally to more variables, and to shifts and other kinds of operators besides derivations.

- A left ideal $I\subseteq C(x,y)[D_x,D_y]$ is called D-finite if

 $\dim_{C(x,y)} C(x,y)[D_x,D_y]/I < \infty.$

• A function f(x, y) is called **D**-finite if its annihilator

ann f(x,y) =
$$\left\{ L \in C(x,y)[D_x,D_y] : L \cdot f = 0 \right\}$$

is D-finite.

• The notion extends naturally to more variables, and to shifts and other kinds of operators besides derivations.

- A left ideal $I\subseteq C[x,y][D_x,D_y]$ is called holonomic if $I\cap C[U]\neq \emptyset$

for every $U \subseteq \{x, y, D_x, D_y\}$ with |U| > 2.

• A left ideal $I \subseteq C[x,y][D_x,D_y]$ is called holonomic if

 $I\cap C[U]\neq \emptyset$

for every $U \subseteq \{x, y, D_x, D_y\}$ with |U| > 2.

• A function f(x, y) is called holonomic if its annihilator is holonomic.

• A left ideal $I \subseteq C[x, y][D_x, D_y]$ is called holonomic if

 $I\cap C[U]\neq \emptyset$

for every $U \subseteq \{x, y, D_x, D_y\}$ with |U| > 2.

- A function f(x, y) is called holonomic if its annihilator is holonomic.
- The notion extends naturally to more variables, and to shifts and other kinds of operators besides derivations.

• If f and g are D-finite/holonomic, then so are f + g and $f \cdot g$.

- If f and g are D-finite/holonomic, then so are f + g and $f \cdot g$.
- These are examples of closure properties.

- If f and g are D-finite/holonomic, then so are f + g and $f \cdot g$.
- These are examples of closure properties.
- They are based on linear algebra.

- If f and g are D-finite/holonomic, then so are f + g and $f \cdot g$.
- These are examples of closure properties.
- They are based on linear algebra.

Next goal:

• Additional closure properties based on creative telescoping.

 $P(n, S_n) - \Delta_k Q(n, k, \Delta_k, S_n)$ telescoper (nonzero!) certificate

 $P(\mathbf{x}, \mathbf{D}_{\mathbf{x}}) - \Delta_{\mathbf{k}} Q(\mathbf{x}, \mathbf{k}, \Delta_{\mathbf{k}}, \mathbf{D}_{\mathbf{x}})$ telescoper (nonzero!) certificate

 $P(n, S_n) - D_y Q(n, y, D_y, S_n)$ telescoper (nonzero!) certificate

 $P(x, D_x) - D_y Q(x, y, D_y, D_x)$ telescoper (nonzero!) certificate

$$\underbrace{P(x, D_x)}_{\text{telescoper (nonzero!)}} - D_y \underbrace{Q(x, y, D_y, D_x)}_{\text{certificate}}$$

Theorem. If $I \subseteq C[x,y][\partial_x,\partial_y]$ is holonomic, then there exist

- $\bullet \ P \in C[x][\partial_x] \setminus \{0\}$
- $Q \in C[x,y][\partial_x,\partial_y]$

such that

$$P - \partial_y Q \in I.$$

$$\underbrace{P(x, D_x)}_{\text{certificate}} - D_y \underbrace{Q(x, y, D_y, D_x)}_{\text{certificate}}$$

Theorem. If $I \subseteq C[x,y][\partial_x,\partial_y]$ is holonomic, then there exist

- $\bullet \ P \in C[x][\partial_x] \setminus \{0\}$
- $Q \in C[x,y][\partial_x,\partial_y]$

such that

$$P - \partial_y Q \in I.$$

Given a basis of I, such P and Q can be computed.

Example: $\int_0^\infty \cos(xy) \exp(-y^2/2) \, dy$

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^2/2)}_{=:f(x,y)} dy$$

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^{2}/2)}_{=:f(x,y)} dy$$

 $\bullet \ \ \text{Consider} \ \ I=\langle yD_y-xD_x+y^2,D_x^2+y^2\rangle\subseteq C(x,y)[D_x,D_y].$

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^{2}/2)}_{=:f(x,y)} dy$$

- Consider $I=\langle yD_y-xD_x+y^2,D_x^2+y^2\rangle\subseteq C(x,y)[D_x,D_y].$
- This ideal I annihilates f(x, y).

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^{2}/2)}_{=:f(x,y)} dy$$

- $\bullet \ \ \text{Consider} \ \ I=\langle yD_y-xD_x+y^2,D_x^2+y^2\rangle\subseteq C(x,y)[D_x,D_y].$
- This ideal I annihilates f(x, y).
- For $P = D_x + x$; $Q = -x^{-1}(D_y + y)$ we have $P D_y Q \in I$.

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^{2}/2)}_{=:f(x,y)} dy$$

 $\bullet \ \ \text{Consider} \ \ I=\langle yD_y-xD_x+y^2,D_x^2+y^2\rangle\subseteq C(x,y)[D_x,D_y].$

• This ideal I annihilates f(x, y).

• For $P = D_x + x$; $Q = -x^{-1}(D_y + y)$ we have $P - D_y Q \in I$. Therefore:

$$P \cdot \int_0^\infty f(x,y) dy = \left[Q \cdot f(x,y) \right]_{y=0}^\infty = 0.$$

Example:
$$\int_{0}^{\infty} \underbrace{\cos(xy) \exp(-y^{2}/2)}_{=:f(x,y)} dy$$

• Consider $I = \langle yD_y - xD_x + y^2, D_x^2 + y^2 \rangle \subseteq C(x,y)[D_x,D_y].$

• This ideal I annihilates f(x, y).

• For $P = D_x + x$; $Q = -x^{-1}(D_y + y)$ we have $P - D_y Q \in I$. Therefore:

$$\mathbf{P} \cdot \int_0^\infty \mathbf{f}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \left[\mathbf{Q} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) \right]_{\mathbf{y}=0}^\infty = \mathbf{0}.$$

P is an annihilating operator for the definite integral.

Example: $\sum_{k} \sum_{i} k \binom{n}{i} \binom{i}{k}$

 $\sum_{k}\sum_{i} k \binom{n}{i} \binom{i}{k}$ Example: =:f(n,k)

• The ideal $I = \langle 2kS_k + (k - n - 1)S_n + (n + k + 2), (k - n - 2)S_n^2 + (3n + 5 - k)S_n - (2n + 2) \rangle \subseteq C(n, k)[S_n, S_k]$ annihilates f(n, k).

- The ideal $I = \langle 2kS_k + (k n 1)S_n + (n + k + 2), (k n 2)S_n^2 + (3n + 5 k)S_n (2n + 2) \rangle \subseteq C(n, k)[S_n, S_k]$ annihilates f(n, k).
- For $P=nS_n-(3n+3)$ and $Q=\frac{2kn+k-n-1}{2k}S_n+\frac{n+1-2kn-2k}{k}$ we have $P-\Delta_kQ\in I$

- The ideal $I = \langle 2kS_k + (k-n-1)S_n + (n+k+2), (k-n-2)S_n^2 + (3n+5-k)S_n (2n+2) \rangle \subseteq C(n,k)[S_n,S_k]$ annihilates f(n,k).
- For $P=nS_n-(3n+3)$ and $Q=\frac{2kn+k-n-1}{2k}S_n+\frac{n+1-2kn-2k}{k}$ we have $P-\Delta_kQ\in I$

Therefore:

$$P \cdot \sum_{k} f(n,k) = \left[Q \cdot f(n,k) \right]_{k=-\infty}^{\infty} = 0$$

- The ideal $I = \langle 2kS_k + (k-n-1)S_n + (n+k+2), (k-n-2)S_n^2 + (3n+5-k)S_n (2n+2) \rangle \subseteq C(n,k)[S_n,S_k]$ annihilates f(n,k).
- For $P=nS_n-(3n+3)$ and $Q=\frac{2kn+k-n-1}{2k}S_n+\frac{n+1-2kn-2k}{k}$ we have $P-\Delta_kQ\in I$

Therefore:

$$P \cdot \sum_{k} f(n,k) = \left[Q \cdot f(n,k) \right]_{k=-\infty}^{\infty} = 0.$$

P is an annihilating operator for the definite sum.

Example: regardless of Q, we have $\left[Q \cdot {n \choose k}\right]_{k=-\infty}^{\infty} = 0$.

Example: regardless of Q, we have $\left[Q \cdot {n \choose k}\right]_{k=-\infty}^{\infty} = 0$.

Theorem. The class of holonomic functions is closed under definite summation/integration with natural boundaries.

Example: regardless of Q, we have $\left[Q \cdot {n \choose k}\right]_{k=-\infty}^{\infty} = 0$.

Theorem. The class of holonomic functions is closed under definite summation/integration with natural boundaries.

What about non-natural boundaries?

We have the following creative telescoping relation:

$$(S_n-4)\cdot \binom{2n}{k} = \Delta_k \frac{k(2k-6n-5)}{(k-2n-1)(k-2n-2)} \binom{2n}{k}$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$\sum_{k=0}^{n} \binom{2(n+1)}{k} - 4 \sum_{k=0}^{n} \binom{2n}{k} = \left[\frac{k(2k-6n-5)}{2(2n+1)(n+1)} \binom{2n+2}{k}\right]_{k=0}^{n+1}$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$\sum_{k=0}^{n} \binom{2(n+1)}{k} - 4 \sum_{k=0}^{n} \binom{2n}{k} = -\frac{4n+3}{4n+2} \binom{2n+2}{n+1}$$

Example: $\sum_{k=0}^{n} {2n \choose k}$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$\sum_{k=0}^{n} \binom{2(n+1)}{k} - 4 \underbrace{\sum_{k=0}^{n} \binom{2n}{k}}_{=S(n)} = -\frac{4n+3}{4n+2} \binom{2n+2}{n+1}$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$\sum_{k=0}^{n} \binom{2(n+1)}{k} - 4 \underbrace{\sum_{k=0}^{n} \binom{2n}{k}}_{=S(n)} = -\frac{4n+3}{4n+2} \binom{2n+2}{n+1}$$

Example: $\sum_{k=0}^{n} {2n \choose k}$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$\sum_{k=0}^{n} \binom{2(n+1)}{k} - 4 \sum_{k=0}^{n} \binom{2n}{k} = -\frac{4n+3}{4n+2} \binom{2n+2}{n+1} = S(n)$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

$$S(n+1) - 4S(n) = -\frac{1}{4n+2} {2n+2 \choose n+1}$$

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

Summing this equation over $k=0,\ldots,n$ gives

$$S(n+1) - 4S(n) = -\frac{1}{4n+2} {2n+2 \choose n+1}$$

We can apply the operator $(n+2)S_n-\left(4n+2\right)$ to kill the right hand side.

We have the following creative telescoping relation:

$$(S_n - 4) \cdot {\binom{2n}{k}} = \Delta_k \frac{k(2k - 6n - 5)}{2(2n + 1)(n + 1)} {\binom{2n + 2}{k}}$$

Summing this equation over $k = 0, \ldots, n$ gives

$$S(n+1) - 4S(n) = -\frac{1}{4n+2} {2n+2 \choose n+1}$$

We can apply the operator $(n+2)S_n - (4n+2)$ to kill the right hand side. Finally,

(n+2)S(n+2) - (8n+10)S(n+1) + (16n+8)S(n) = 0.

 $P \cdot F = \overline{[Q \cdot f]_{\Omega}}$

$$\mathsf{P}\cdot\mathsf{F}=[\mathsf{Q}\cdot\mathsf{f}]_{\Omega}$$

If the right hand side is annihilated by L, then LP annihilates F.

$$\mathsf{P}\cdot\mathsf{F}=[\mathsf{Q}\cdot\mathsf{f}]_{\Omega}$$

If the right hand side is annihilated by L, then LP annihilates F. **Question:** Does evaluation preserve holonomy?

$$\mathsf{P}\cdot\mathsf{F}=[\mathsf{Q}\cdot\mathsf{f}]_{\Omega}$$

If the right hand side is annihilated by L, then LP annihilates F. Question: Does evaluation preserve holonomy? Answer: yes! **Theorem.** If $I \subseteq C[x,y][\partial_x, \partial_y]$ is holonomic, then there exist

- $P \in C[x][\partial_x] \setminus \{0\}$
- $\bullet \ Q \in C[x,y][\partial_x,\partial_y]$

such that

$$\mathsf{P}- \eth_{\mathtt{y}} Q \in \mathrm{I}.$$

Given a basis of I, such P and Q can be computed.

Theorem. If $I \subseteq C[x, y][\partial_x, \partial_y]$ is holonomic, then there exist

- $P \in C[x][\partial_x] \setminus \{0\}$
- $\bullet \ Q \in C[x,y][\partial_x,\partial_y]$

such that

$$P - yQ \in I.$$

Given a basis of I, such P and Q can be computed.

Theorem. If $I \subseteq C[x,y][\partial_x, \partial_y]$ is holonomic, then there exist

- $P \in C[x][\partial_x] \setminus \{0\}$
- $Q \in C[x,y][\partial_x,\partial_y]$

such that

$$P - yQ \in I.$$

Given a basis of I, such P and Q can be computed.

Corollary. If f(x, y) is holonomic, then so is f(x, 0).

• The annihilating ideal of f(n,k) contains the operator

$$(n+4)(n+2)S_n^2 - 4(n+2)(n+1) - k(k+2)S_n^2$$

• The annihilating ideal of f(n, k) contains the operator

$$(n+4)(n+2)S_n^2 - 4(n+2)(n+1) - k(k+2)S_n^2$$

• Therefore,

$$(n+4)(n+2)f(n+2,k) - 4(n+2)(n+1)f(n,k)$$

= $k(k+2)f(n+2,k).$

• The annihilating ideal of f(n, k) contains the operator

$$(n+4)(n+2)S_n^2 - 4(n+2)(n+1) - k(k+2)S_n^2.$$

• Therefore,

$$(n+4)(n+2)f(n+2,k) - 4(n+2)(n+1)f(n,k)$$

= $k(k+2)f(n+2,k).$

• Setting k = 0 gives

(n+4)(n+2)f(n+2,0) - 4(n+2)(n+1)f(n,0) = 0.

Theorem. Let

• $f(x_1, \ldots, x_p, y_1, \ldots, y_q)$ be holonomic,

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,

- $f(x_1, \ldots, x_p, y_1, \ldots, y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,
- $S(x_1,\ldots,x_p)\subseteq \mathbb{R}^q$ denote the section of S at (x_1,\ldots,x_q) ,

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,
- $S(x_1,...,x_p) \subseteq \mathbb{R}^q$ denote the section of S at $(x_1,...,x_q)$,

Theorem. Let

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,

• $S(x_1, ..., x_p) \subseteq \mathbb{R}^q$ denote the section of S at $(x_1, ..., x_q)$, • $F(x_1, ..., x_p) := \int_{\substack{y \in S(\underline{x})}} f(\underline{x}, \underline{y}) d\underline{y}$.

Theorem. Let

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,

• $S(x_1, ..., x_p) \subseteq \mathbb{R}^q$ denote the section of S at $(x_1, ..., x_q)$, • $F(x_1, ..., x_p) := \int_{\underline{y} \in S(\underline{x})} f(\underline{x}, \underline{y}) d\underline{y}$.

Then $F(x_1, \ldots, x_p)$ is holonomic.

Theorem. Let

- $f(x_1,\ldots,x_p,y_1,\ldots,y_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a semi-algebraic set,

• $S(x_1, ..., x_p) \subseteq \mathbb{R}^q$ denote the section of S at $(x_1, ..., x_q)$, • $F(x_1, ..., x_p) := \int_{\underline{y} \in S(\underline{x})} f(\underline{x}, \underline{y}) d\underline{y}$.

Then $F(x_1, \ldots, x_p)$ is holonomic.

Example:
$$F(x) = \int_{y_1^2 + y_2^2 \le x^2} f(x, y_1, y_2) dy_1 dy_2$$

There is an analogous result for definite summation.

There is an analogous result for definite summation.

- $f(n_1,\ldots,n_p,k_1,\ldots,k_q)$ be holonomic,
- $S\subseteq \mathbb{R}^{p+q}$ be a rational polygonal set,
- $S(n_1,\ldots,n_p)\subseteq \mathbb{R}^q$ be the section of S at $(n_1,\ldots,n_p),$
Theorem. Let

- $f(n_1,\ldots,n_p,k_1,\ldots,k_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a rational polygonal set,
- $S(n_1,\ldots,n_p)\subseteq \mathbb{R}^q$ be the section of S at $(n_1,\ldots,n_p),$

Theorem. Let

- $f(n_1,\ldots,n_p,k_1,\ldots,k_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a rational polygonal set,
- $S(n_1,\ldots,n_p)\subseteq \mathbb{R}^q$ be the section of S at (n_1,\ldots,n_p) ,

•
$$F(n_1,\ldots,n_p) := \sum_{\underline{k} \in S(\underline{n})} f(\underline{n},\underline{k}).$$

Theorem. Let

- $f(n_1,\ldots,n_p,k_1,\ldots,k_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a rational polygonal set,
- $S(n_1,\ldots,n_p)\subseteq \mathbb{R}^q$ be the section of S at $(n_1,\ldots,n_p),$

•
$$F(n_1,\ldots,n_p) := \sum_{\underline{k} \in S(\underline{n})} f(\underline{n},\underline{k}).$$

Then $F(n_1, \ldots, n_p)$ is holonomic.

Theorem. Let

- $f(n_1,\ldots,n_p,k_1,\ldots,k_q)$ be holonomic,
- $S \subseteq \mathbb{R}^{p+q}$ be a rational polygonal set,
- $S(n_1,\ldots,n_p)\subseteq \mathbb{R}^q$ be the section of S at (n_1,\ldots,n_p) ,

•
$$F(n_1,\ldots,n_p) := \sum_{\underline{k} \in S(\underline{n})} f(\underline{n},\underline{k}).$$

Then $F(n_1, \ldots, n_p)$ is holonomic.

Example:
$$F(n_1, n_2) = \sum_{k_1=n_1-n_2}^{5n_1+3n_2} \sum_{k_2=0}^{7n_1+3n_2-k_1} f(n_1, n_2, k_1, k_2)$$

Holonomy	D-finiteness

Holonomy	D-finiteness
elegant theory	

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities
expensive computations	

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities
expensive computations	efficient algorithms

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities
expensive computations	efficient algorithms

Can we combine the best of both worlds?

More precisely:

More precisely:

• If $I \subseteq C(x,y)[D_x, D_y]$ is D-finite, then

 $I\cap C[x,y][D_x,D_y]$

is holonomic.

More precisely:

• If $I \subseteq C(x,y)[D_x, D_y]$ is D-finite, then

 $I\cap C[x,y][D_x,D_y]$

is holonomic.

- If $J\subseteq C[\![x,y]\!][D_x,D_y]$ is holonomic, then

 $\langle J \rangle \subseteq C(x,y)[D_x,D_y]$

is D-finite.

More precisely:

• If $I \subseteq C(x,y)[D_x, D_y]$ is D-finite, then

 $I\cap C[x,y][D_x,D_y]$

is holonomic.

- If $J\subseteq C[\![x,y]\!][D_x,D_y]$ is holonomic, then

 $\langle J \rangle \subseteq C(x,y)[D_x,D_y]$

is D-finite.

In particular, telescoper/certificate pairs exist in D-finite ideals.

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\operatorname{res}_{y} f(x,y) := \sum_{n \in \mathbb{Z}} a_{n,-1} x^{n}$$

is called the residue of f(x, y) (w.r.t. y).

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\operatorname{res}_{y} f(x,y) := \sum_{n \in \mathbb{Z}} a_{n,-1} x^{n}$$

is called the residue of f(x, y) (w.r.t. y).

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\operatorname{res}_{y} f(x,y) := \sum_{n \in \mathbb{Z}} a_{n,-1} x^{n}$$

is called the residue of f(x, y) (w.r.t. y).

Note: $\operatorname{res}_{y} D_{y} g(x, y) = 0$ for every series g(x, y).

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\operatorname{res}_{y} f(x,y) := \sum_{n \in \mathbb{Z}} a_{n,-1} x^{n}$$

is called the residue of f(x, y) (w.r.t. y).

Note: $\operatorname{res}_{y} D_{y} g(x, y) = 0$ for every series g(x, y). Therefore,

$$(P - D_y Q) \cdot f = 0 \implies P \cdot \operatorname{res}_y f = 0$$

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\mathsf{res}_{y}\,\mathsf{f}(x,y) := \sum_{n\in\mathbb{Z}} a_{n,-1}x^n$$

is called the residue of f(x, y) (w.r.t. y).

Note: $\operatorname{res}_{y} D_{y} g(x, y) = 0$ for every series g(x, y). Therefore,

$$(P - D_y Q) \cdot f = 0 \implies P \cdot res_y f = 0$$

In particular, the residue of a D-finite series is D-finite.

Def. Let $f(x,y):=\sum_{n,k\in\mathbb{Z}}a_{n,k}x^ny^k.$ Then

$$\mathsf{res}_{y}\,\mathsf{f}(x,y):=\sum_{n\in\mathbb{Z}}a_{n,-1}x^{n}$$

is called the residue of f(x, y) (w.r.t. y).

Note: $\operatorname{res}_y D_y g(x, y) = 0$ for every series g(x, y). Therefore,

$$(P - D_y Q) \cdot f = 0 \implies P \cdot res_y f = 0$$

In particular, the residue of a D-finite series is D-finite. Really?

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

What is the meaning of $\mathsf{P}\cdot\mathsf{f}$ if

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

• They clearly form a $C[x, y][D_x, D_y]$ -module.

What is the meaning of $\mathsf{P}\cdot\mathsf{f}$ if

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

- They clearly form a $C[x, y][D_x, D_y]$ -module.
- But not a ring.

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

- They clearly form a $C[x, y][D_x, D_y]$ -module.
- But not a ring.

Want:

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

- They clearly form a $C[x, y][D_x, D_y]$ -module.
- But not a ring.

Want:

• Interpretations of rational functions as infinite series

- $P \in C(x, y)[D_x, D_y]$ and
- f is a bilateral infinite series?

Where do these series live?

- They clearly form a $C[x, y][D_x, D_y]$ -module.
- But not a ring.

Want:

- Interpretations of rational functions as infinite series
- A way to multiply them

Example:
$$f(x) = \sum_{n \in \mathbb{Z}} x^n$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right)$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k}$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k} = \sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} 1\right) x^n$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k} = \sum_{n \in \mathbb{Z}} \underbrace{\left(\sum_{k \in \mathbb{Z}} 1\right)}_{Oups!} x^n$$

Example:
$$f(x) = \sum_{n \in \mathbb{Z}} x^n$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k} = \sum_{n \in \mathbb{Z}} \underbrace{\left(\sum_{k \in \mathbb{Z}} 1\right)}_{Oups!} x^n$$

Recall: The field C((x)) of formal Laurent series consists of all series having a minimal exponent.

$$f(x) = \sum_{n=n_0}^{\infty} a_n x^n$$

Example:
$$f(x) = \sum_{n \in \mathbb{Z}} x^n$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k} = \sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} 1\right) x^n$$

Recall: The field C((x)) of formal Laurent series consists of all series having a minimal exponent.

$$f(x) = \sum_{n=n_0}^{\infty} a_n x^n$$

With this restriction, multiplication is well defined.
Example:
$$f(x) = \sum_{n \in \mathbb{Z}} x^n$$

$$f(x)^2 = \left(\sum_{n \in \mathbb{Z}} x^n\right) \left(\sum_{k \in \mathbb{Z}} x^k\right) = \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x^{n+k} = \sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} 1\right) x^n$$

Recall: The field C((x)) of formal Laurent series consists of all series having a minimal exponent.

$$f(x) = \sum_{n=n_0}^{\infty} a_n x^n$$

With this restriction, multiplication is well defined.

We can apply a similar restriction in the case of several variables.

									k											
									↑											
									ł											
									ł											
									ł											
									ł											
									ł											
									ł											
									ł											
									ł											
									Ļ											
 							-•			-•-									\rightarrow	n.
•	•	•	•	•	•	•	•	•	╁	•	•	•	•	•	•	•	•	•	\rightarrow	n
•	•	•	•	•	•	•	•	•	ł	•	•	•	•	•	•	•	•	•	\rightarrow	n
 •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	• • •	•	→	n
• • • •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	→	n
• • • •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	→	n
 • • • • • •	•	• • • •	• • • •	•	•	• • • •	•	•	•	•	•	• • • •	•	•	•	• • •	•	•	\rightarrow	n
• • • • • • • •	•	• • • • • •	• • • • • •	•	•	• • • • • •	•	• • • • • • • • •	•	•	• • • • • • • •	• • • • • •	•	• • • • • • • •	• • • • • •	• • • • • •	•	• • • • • •	\rightarrow	n
•	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	•	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • •	•	•	•	•	•	•	•	•	•	•	•	→	n
•	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	→	n

Fact. This is a field.

Fact. This is a field.

Def. It is called the field of bivariate formal Laurent series (w.r.t. H).

Fact. This is a field.

Def. It is called the field of bivariate formal Laurent series (w.r.t. H).

Feature: C((x, y)) is a $C(x, y)[D_x, D_y]$ -module.

Fact. This is a field.

Def. It is called the field of bivariate formal Laurent series (w.r.t. H). **Feature:** C((x,y)) is a $C(x,y)[D_x,D_y]$ -module.

We can reasonably talk about elements of C((x,y)) being D-finite.

Fact. This is a field.

Def. It is called the field of bivariate formal Laurent series (w.r.t. H). **Feature:** C((x,y)) is a $C(x,y)[D_x, D_y]$ -module.

We can reasonably talk about elements of C((x, y)) being D-finite. **Now really:** Residues of D-finite formal Laurent series are D-finite.

Example:
$$f(x,y) = \frac{1}{xy^3 + y + 1}$$
.

Example:
$$f(x,y) = \frac{1}{xy^3 + y + 1}$$
.
(6+2(27x+1)D_x + x(27x+4)D_x²)·f = D_y · rat(x,y)

Example:
$$f(x, y) = \frac{1}{xy^3 + y + 1}$$
.

$$\begin{aligned} (6+2(27x+1)D_x+x(27x+4)D_x^2)\cdot f &= D_y \cdot \mathsf{rat}(x,y) \\ (6+2(27x+1)D_x+x(27x+4)D_x^2)\cdot \mathsf{res}_y \ f &= 0 \end{aligned}$$

Example:
$$f(x,y) = \frac{1}{xy^3 + y + 1}$$
.
 $(6 + 2(27x + 1)D_x + x(27x + 4)D_x^2) \cdot f = D_y \cdot rat(x, -1)$
 $(6 + 2(27x + 1)D_x + x(27x + 4)D_x^2) \cdot results = 0$

Exercise: In general, the residue of a multivariate rational function depends on how we expand it into a multivariate Laurent series, i.e., on the choice of the halfplane H. How does creative telescoping know which H we have in mind?

Why should we care about computing residues?

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
diag $f(x,y) = \sum_n a_{n,n} x^n$ is called the diagonal of f

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
diag $f(x,y) = \sum_n a_{n,n} x^n$ is called the diagonal of f.

diag
$$f(x, y) = \operatorname{res}_y y^{-1} f(y, x/y)$$

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
diag $f(x,y) = \sum_n a_{n,n} x^n$ is called the diagonal of f.

diag
$$f(x, y) = \operatorname{res}_y y^{-1} f(y, x/y)$$

In particular, taking diagonals preserves D-finiteness.

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
 and $g(x,y) = \sum_{n,k} b_{n,k} x^n y^k$.

Let
$$f(x, y) = \sum_{n,k} a_{n,k} x^n y^k$$
 and $g(x, y) = \sum_{n,k} b_{n,k} x^n y^k$.
 $f \odot_{x,y} g := \sum_{n,k} a_{n,k} b_{n,k} x^n y^k$ is the Hadamard product of f and g.

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
 and $g(x,y) = \sum_{n,k} b_{n,k} x^n y^k$.
 $f \odot_{x,y} g := \sum_{n,k} a_{n,k} b_{n,k} x^n y^k$ is the Hadamard product of f and g.

$$f \odot_{x,y} g = \mathsf{res}_{x'} \mathsf{res}_{y'} (x'y')^{-1} f(x',y') g(x/x',y/y')$$

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
 and $g(x,y) = \sum_{n,k} b_{n,k} x^n y^k$.
 $f \odot_{x,y} g := \sum_{n,k} a_{n,k} b_{n,k} x^n y^k$ is the Hadamard product of f and g.

$$f \odot_{x,y} g = \mathsf{res}_{x'} \mathsf{res}_{y'} (x'y')^{-1} f(x',y') g(x/x',y/y')$$

In particular, taking Hadamard products preserves D-finiteness.

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
 $[x^>y^>]f(x,y) = \sum_{n,k>0} a_{n,k} x^n y^k$ is called the positive part of f.

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
 $[x^>y^>]f(x,y) = \sum_{n,k>0} a_{n,k} x^n y^k$ is called the positive part of f.

$$[x^{>}y^{>}]f = \frac{x}{1-x}\frac{y}{1-y} \odot_{x,y} f(x,y)$$

Let
$$f(x,y) = \sum_{n,k} a_{n,k} x^n y^k$$
.
 $[x^>y^>]f(x,y) = \sum_{n,k>0} a_{n,k} x^n y^k$ is called the positive part of f.

$$[x^{>}y^{>}]f = \frac{x}{1-x}\frac{y}{1-y} \odot_{x,y} f(x,y)$$

In particular, taking positive parts preserves D-finiteness.

Example:
$$f(x,y) = \frac{1}{1 - (x + y)}$$

Example: $f(x,y) = \frac{1}{1 - (x + y)}$

y ⁶	1	7	28	84	210	462	924
y ⁵	1	6	21	56	126	252	462
y ⁴	1	5	15	35	70	126	210
y ³	1	4	10	20	35	56	84
y²	1	3	6	10	15	21	28
y ¹	1	2	3	4	5	6	7
y ⁰	1	1	1	1	1	1	1
	x ⁰	x1	x ²	x ³	x^4	x ⁵	x ⁶

 $\frac{1}{x^6}$

Example: $[y^0] \frac{1}{1 - (x/y + y)}$

y ⁶	1	8	45	220	1001	4368	18564
y ⁵	1	7	36	165	715	3003	12376
y^4	1	6	28	120	495	2002	8008
y ³	1	5	21	84	330	1287	5005
y²	1	4	15	56	210	792	3003
y ¹	1	3	10	35	126	462	1716
y ⁰	1	2	6	20	70	252	924
y_1	0	1	3	10	35	126	462
y ⁻²	0	0	1	4	15	56	210
y ⁻³	0	0	0	1	5	21	84
y^{-4}	0	0	0	0	1	6	28
y ⁻⁵	0	0	0	0	0	1	7
y ⁻⁶	0	0	0	0	0	0	1
	x ⁰	x^1	x ²	x ³	x^4	x^5	x ⁶

Example: $[y^{-1}]\frac{1}{y}\frac{1}{1-(x/y+y)}$

y ⁶	1	9	55	286	1365	6188	27132
y ⁵	1	8	45	220	1001	4368	18564
y ⁴	1	7	36	165	715	3003	12376
y ³	1	6	28	120	495	2002	8008
y²	1	5	21	84	330	1287	5005
y ¹	1	4	15	56	210	792	3003
y ⁰	1	3	10	35	126	462	1716
y_1	1	2	6	20	70	252	924
y ⁻²	0	1	3	10	35	126	462
y^{-3}	0	0	1	4	15	56	210
y^{-4}	0	0	0	1	5	21	84
y ⁻⁵	0	0	0	0	1	6	28
y ⁻⁶	0	0	0	0	0	1	7
	x ⁰	x^1	x^2	x ³	χ^4	χ^5	χ^6

Example: diag $\frac{1}{1-(x+y)} = \operatorname{res}_{y} \frac{1}{y} \frac{1}{1-(x/y+y)}$

y ⁶	1	9	55	286	1365	6188	27132
y ⁵	1	8	45	220	1001	4368	18564
y ⁴	1	7	36	165	715	3003	12376
y ³	1	6	28	120	495	2002	8008
y²	1	5	21	84	330	1287	5005
yl	1	4	15	56	210	792	3003
y ⁰	1	3	10	35	126	462	1716
y_1	1	2	6	20	70	252	924
y ⁻²	0	1	3	10	35	126	462
y^{-3}	0	0	1	4	15	56	210
y^{-4}	0	0	0	1	5	21	84
y^{-5}	0	0	0	0	1	6	28
y ⁻⁶	0	0	0	0	0	1	7
	x ⁰	x^1	x^2	x ³	x^4	x^5	x ⁶
Holonomy	D-finiteness						
---------------------------	--						
elegant theory	trouble with existence and singularities						
expensive computations	efficient algorithms						

Can we combine the best of both worlds?

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities
expensive computations	efficient algorithms

Can we combine the best of both worlds?

Yes, for formal series in the differential case.

Holonomy	D-finiteness
elegant theory	trouble with existence and singularities
expensive computations	efficient algorithms

Can we combine the best of both worlds?

Yes, for formal series in the differential case.

What about summation?

Example:
$$f(n,k) = \frac{1}{n^2 + k^2}$$

Example:
$$f(n,k) = \frac{1}{n^2 + k^2}$$

Example: $f(n,k) = \frac{1}{n^2 + k^2}$

Facts:

• f is hypergeometric but not proper hypergeometric.

Example: $f(n,k) = \frac{1}{n^2 + k^2}$

Facts:

- f is hypergeometric but not proper hypergeometric.
- f is D-finite but not holonomic.

Example: $f(n,k) = \frac{1}{n^2 + k^2}$

Facts:

- f is hypergeometric but not proper hypergeometric.
- f is D-finite but not holonomic.
- There is no telescoper/certificate pair for f.

Example: $f(n, k) = \frac{1}{n^2 + k^2}$

Facts:

- f is hypergeometric but not proper hypergeometric.
- f is D-finite but not holonomic.
- There is no telescoper/certificate pair for f.

Not every D-finite sequence has a telscoper/certificate pair.

Example:
$$f(n,k) = {\binom{n}{k}}^2$$

Example:
$$f(n,k) = \binom{n}{k}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Example:
$$f(n,k) = \binom{n}{k}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Example:
$$f(n,k) = \binom{n}{k}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Who has the courage to sum this equation for $k = 0, \ldots, n$?

Example:
$$f(n,k) = \binom{n}{k}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Who has the courage to sum this equation for k = 0, ..., n? Singularities in the certificate must be inspected by hand.

Example:
$$f(n,k) = \binom{n}{k}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Who has the courage to sum this equation for k = 0, ..., n? Singularities in the certificate must be inspected by hand. This is bad news for friends of reduction-based algorithms.

Example:
$$f(n,k) = {\binom{n}{k}}^2$$

$$\left((n+1)S_n - 2(2n+1) - \Delta_k \frac{k^2(2k-3n-3)}{(n-1-k)^2}\right) \cdot f(n,k) = 0$$

Who has the courage to sum this equation for k = 0, ..., n? Singularities in the certificate must be inspected by hand. This is bad news for friends of reduction-based algorithms. But there is good news, too.

Iournal of Symbolic Computation 80 (2017) 351-386 Contents lists available at ScienceDirect

Journal of Symbolic Computation

Alin Bostan^a, Pierre Lairez^b, Bruno Salvy^c

* Inria Saclay Île-de-France, Bâtiment Alan Turing, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France ^b Technische Universität Berlin, Fakultät II, Sekretariat 3-2, Straße des 17, Juni 136, 10623 Berlin, Germany ^c Inria, LIP (U. Lyon, CNRS, ENS Lyon, UCBL), France

ARTICLE INFO

ABSTRACT

Article history: Received 26 October 2015 Accepted 2 April 2016 Available online 23 June 2016

of binomial coefficients and also all the sequences with algebraic

Multiple binomial sums form a large class of multi-indexed

sequences, closed under partial summation, which contains most

of the sequences obtained by multiple summation of products

•
$$\sum_{n=0}^{\infty} 3^n x^n = \frac{1}{1-3x}$$

•
$$\sum_{n=0}^{\infty} 3^n x^n = \frac{1}{1-3x}$$

• $\sum_{n,k=0}^{\infty} {n \choose k} x^n y^k = \frac{1}{1-(1+y)x^{n-1}}$

Using these and similar formulas, translate a given expression into a multivariate rational generating function.

Using these and similar formulas, translate a given expression into a multivariate rational generating function.

During this translation, make sums indefinite by introducing new variables.

Using these and similar formulas, translate a given expression into a multivariate rational generating function.

During this translation, make sums indefinite by introducing new variables.

In the end, identify variables as needed.

$$\sum_{n,k=0}^{\infty} \binom{n}{k} x^n y^k = \frac{1}{1 - (1+y)x}$$

$$\sum_{n,m=0}^{\infty} \left(\sum_{k=0}^{m} \binom{n}{k} \right) x^{n} z^{m} = \frac{1}{1-z} \frac{1}{1-(1+z)x}$$

$$\sum_{n,m=0}^{\infty} \left(\sum_{k=0}^{m} \binom{n}{k} \right) x^{n} z^{m} = \frac{1}{1-z} \frac{1}{1-(1+z)x}$$

$$\approx \sum_{k=0}^{n} \binom{n}{k}$$
diag $\frac{1}{1-z} \frac{1}{1-(1+z)x}$

Simple example: $\sum_{k=0}^{n} \binom{n}{k}$

e:
$$\sum_{k=0} \left\lfloor \binom{n}{k} \right\rfloor$$
diag
$$\frac{1}{1-z} \frac{1}{1-(1+z)x} = \frac{1}{1-2x}$$

Expressions that can be handled this way are called binomial sums.

Expressions that can be handled this way are called binomial sums. **Theorem:** Binomial sums are D-finite.

Expressions that can be handled this way are called binomial sums. **Theorem:** Binomial sums are D-finite.

Note: There is no trouble with singularities.

• Every holonomic ideal contains a telescoper/certificate pair.

- Every holonomic ideal contains a telescoper/certificate pair.
- Therefore, holonomy is preserved under evaluation and definite summation and integration.

- Every holonomic ideal contains a telescoper/certificate pair.
- Therefore, holonomy is preserved under evaluation and definite summation and integration.
- Integration ranges can be any semialgebraic sets, summation ranges can be any rational polygons.

- Every holonomic ideal contains a telescoper/certificate pair.
- Therefore, holonomy is preserved under evaluation and definite summation and integration.
- Integration ranges can be any semialgebraic sets, summation ranges can be any rational polygons.
- D-finiteness is preserved under residue, diagonal, Hadamard product, and positive part.

- Every holonomic ideal contains a telescoper/certificate pair.
- Therefore, holonomy is preserved under evaluation and definite summation and integration.
- Integration ranges can be any semialgebraic sets, summation ranges can be any rational polygons.
- D-finiteness is preserved under residue, diagonal, Hadamard product, and positive part.
- In the shift case, D-finite ideals may not contain telescoper/certificate pairs.

- Every holonomic ideal contains a telescoper/certificate pair.
- Therefore, holonomy is preserved under evaluation and definite summation and integration.
- Integration ranges can be any semialgebraic sets, summation ranges can be any rational polygons.
- D-finiteness is preserved under residue, diagonal, Hadamard product, and positive part.
- In the shift case, D-finite ideals may not contain telescoper/certificate pairs.
- Nevertheless, at least binomial sums are always D-finite.