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Recall: Sister Celine’s method.

• f(n, k) is a given hypergeometric term.

• f(n+1,k)
f(n,k) and f(n,k+1)

f(n,k) are rational functions in n and k.

• We want a recurrence for the sum S(n) =
∑
k f(n, k).

• Such a recurrence is obtained from a k-free recurrence for f(n, k).

• More precisely, we construct an annihilating operator for
f(n, k) of the form

“Telescoper”

P(n, Sn) − ∆kQ(n, k,∆k, Sn)

“Certificate”

where

◦ P is nonzero and free of k, Sk, ∆k.
◦ Q may be zero and may involve any variables or operators.

• Then P(n, Sn) is an annihilating operator for S(n).
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Note:

• A hypergeometric term f(n, k) is said to telescope (w.r.t. k)
if there is a hypergeometric term g(n, k) such that

f(n, k) = g(n, k+ 1) − g(n, k).

• The application of a telescoper turns f(n, k) into a
telescoping term. (Hence the name.)

• If we only have P, it is not obvious whether P · f telescopes,
i.e., whether P is really a telescoper.

• If we have both P and Q, then checking (P − ∆kQ) · f ?
= 0 is

easy. Thus Q certifies that P is a telescoper.
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Example.
∑
k

(
n

k

)2
=

(
2n

n

)

(
(n+ 1)Sn − (4n+ 2)

)
·
(
n

k

)2
= ∆k ·

k2(2k− 3n− 3)

(n+ 1)2

(
n+ 1

k

)2

So (n+ 1)Sn − (4n+ 2) is a telescoper for

(
n

k

)2
.

It follows that (n+ 1)Sn− (4n+ 2) is an annihilator for
∑
k

(
n

k

)2
.

The operator
k2(2k− 3n− 3)

(n+ 1)2
Sn is a certificate for the telescoper.
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The concept of telescopers applies more generally.

Example. Wn =

∫π/2
0

(
sin(x)

)n
dx (Walli’s integral; 1656)

•
∫

sin(x)n dx =

?not easily expressible

•
∫(

(n+ 1) sin(x)n − (n+ 2) sin(x)n+2
)
dx =

?sin(x)n+1 cos(x)
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•
∫(

(n+ 1) sin(x)n − (n+ 2) sin(x)n+2
)
dx =

?

sin(x)n+1 cos(x)

Therefore:

(n+ 1)Wn − (n+ 2)Wn+2 =
[
sin(x)n+1 cos(x)

]π/2
0

= 0.

This recurrence together with the initial values W0 =
π
2 and W1 = 1

determines the whole sequence.
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The operator
(n+ 1) − (n+ 2)Sn

is a telescoper for sin(x)n.

It maps this function to one that can be explicitly integrated.
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Example.
∞∑
n=0

(
2n

n

)
xn

?
=

1√
1− 4x

•
N∑
n=0

(
2n

n

)
xn = not easily expressible

•
N∑
n=0

(
2

(
2n

n

)
xn−(1−4x)

(
2n

n

)
(xn) ′

)
= (N+1)

(
2N+ 2

N+ 1

)
xN+1

5



Example.
∞∑
n=0

(
2n

n

)
xn

?
=

1√
1− 4x

•
N∑
n=0

(
2n

n

)
xn = not easily expressible

•
N∑
n=0

(
2

(
2n

n

)
xn−(1−4x)

(
2n

n

)
(xn) ′

)
= (N+1)

(
2N+ 2

N+ 1

)
xN+1

5



Example.
∞∑
n=0

(
2n

n

)
xn

?
=

1√
1− 4x

•
N∑
n=0

(
2n

n

)
xn = not easily expressible

•
N∑
n=0

(
2

(
2n

n

)
xn−(1−4x)

(
2n

n

)
(xn) ′

)
= (N+1)

(
2N+ 2

N+ 1

)
xN+1

5



Example.
∞∑
n=0

(
2n

n

)
xn

?
=

1√
1− 4x

•
N∑
n=0

(
2n

n

)
xn = not easily expressible

•
N∑
n=0

(
2

(
2n

n

)
xn−(1−4x)

(
2n

n

)
(xn) ′

)
= (N+1)

(
2N+ 2

N+ 1

)
xN+1

Therefore:

2S(x) − (1− 4x)S ′(x) = lim
N→∞(N+ 1)

(
2N+ 2

N+ 1

)
xN+1 = 0.

This differential equation together with the initial value S(0) = 1

implies the claimed identity.
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Example. K(t) =

∫ 1
0

1√
(1− x2)(1− tx2)︸ ︷︷ ︸

=:f(x,t)

dx

•
∫
f(x, t)dx = not easily expressible

•
∫(
4(1− t)t ∂

2

∂t2
f+ 4(1− 2t) ∂∂tf− f

)
dx = −x

√
1− x2

(1− tx2)3
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2

∂t2
f+ 4(1− 2t) ∂∂tf− f

)
dx = −x
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(1− tx2)3
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4(1−t)tK ′′(t)+4(1−2t)K ′(t)−K(t) =

[
−x

√
1− x2

(1− tx2)3

]1
x=0

= 0.

This differential equation together with the initial values K(0) = π
2 ,

K ′(0) = π
8 uniquely describes K(t).
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It maps the function to one that can be integrated explicitly.
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The search for a telescoper is called

Creative Telescoping.

The version for integration is also known as

Differentiating under
the Integral Sign.
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Sister Celine’s method is a rudimentary creative telescoping
algorithm for hypergeometric terms.

In the next two segments, we will see that there are better
algorithms for this case.

In the present segment, let’s focus on the differential case, and
rational functions.
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Task.

• Given: a rational function f ∈ C(x, y)
• Find: operators P(x,Dx) 6= 0 and Q(x, y,Dx, Dy) such that

(P −DyQ) · f = 0

telescoper certificate

Equivalently:

• Find: an operator P(x,Dx) 6= 0 and a rational function
g(x, y) ∈ C(x, y) such that

P · f = Dy · g

telescoper certificate
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Recall: Hermite reduction.

For every f ∈ C(y) we can find g ∈ C(y) and h ∈ C(y) such that

1 f = Dy · g+ h
2 the denominator den(h) of h is square free

3 degx num(h) < degx den(h).

f is integrable in C(y) if and only if h = 0.
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Now consider a bivariate rational function f ∈ C(x, y).

f = Dy · g

0

+ h

0

Dt · f = Dy · g1 + h1
D2t · f = Dy · g2 + h2
D3t · f = Dy · g3 + h3

...

Idea: find a C(x)-linear relation among h0, h1, h2, . . .
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Example. f =
1

xy3 + y+ 1
.

f = Dy · 0 +6 1
1+x+y+xy3

Dx · f = Dy · 3xy2+9xy+2y+2
x(27x+4)(xy3+y+1)

++ 2(27x+ 1) 3(y−3)
(27x+4)(xy3+y+1)

D2x · f = Dy ·
−162x3y5+···−8y2−16y−8
x2(27x+4)2(xy3+y+1)2

++ x(27x+ 4) 6(54x−27xy−y−1)
x(27x+4)2(xy3+y+1)

= 0

Therefore,(
6+ 2(27x+ 1)Dx + x(27x+ 4)D

2
x

)
· f

= Dy · 2(3x
2y6+3xy6−21xy4−21xy3−y4−y3+3y2+6y+3)

(xy3+y+1)3
+ 0
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Reduction-based creative telescoping for rational functions

INPUT: f ∈ C(x, y)

OUTPUT: a telescoper for f.

1 for r = 0, 1, 2, . . . , do:

2 using Hermite reduction, compute gr, hr such that
Drx · f = Dy · gr + hr

3 if there are c0, . . . , cr ∈ C(x), not all zero, such that

c0h0 + · · ·+ crhr = 0

then return c0 + c1Dx + · · ·+ crDrx
Exercise. In step 2, we can use Dx · hr−1 instead of Drx · f. Why is
this better?
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Theorem.

1 The algorithm is correct.

2 The algorithm terminates.

3 The algorithm finds the telescoper of smallest order.

4 There is always a telescoper of order at most degy den(f).
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Another approach.

Consider again a rational function f(x, y) = p(x,y)
q(x,y) ∈ C(x, y).
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For undetermined a0, . . . , ar and b0, . . . , bs, enforce

︸ ︷︷ ︸
degy≤r degy q+degy p

qr+1

(a0 + a1Dx + · · ·+ arDrx) · f
!
= Dyg

qr+1︸ ︷︷ ︸
degy≤r degy q+degy p

Comparing coefficients with respect to y leads to a linear system with

•

(r+ 1) + (s+ 1) variables(r+ 1) + ((r− 1) degy q+ degy p+ 2) variables

• 1+ r degy q+ degy p equations

It will have a nontrivial solution as soon as r ≥ degy q− 1.

Exercise. Does every nonzero solution give rise to a nonzero
telescoper?
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Example. f =
1

xy3 + y+ 1
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xy3 + y+ 1

(a0 + a1Dx + a2D
2
x) · f

= (a0x
2−a1x+2a2)y

6+(2a0x−a1)y
4+(2a0x−a1)y

3+a0y
2+2a0y+a0

(xy3+y+1)3
.

The y-derivative of g =
b0 + b1y+ b2y

2 + b3y
3 + b4y

4

(xy3 + y+ 1)2
is

−2b4xy
6−3b3xy
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Example. f =
1

xy3 + y+ 1

x2 −x 2 0 0 0 0 2x

0 0 0 0 0 0 3x 0

2x −1 0 0 0 4x 0 −2
2x −1 0 0 5x 0 −1 −4
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1 0 0 2 −1 0 0 0
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= 0
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Example. f =
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a0
a1
a2
b0
b1
b2
b3
b4


∈ 〈



6x

2x(27x+ 1)
x2(27x+ 4)

−1
2(3x− 1)
9x− 1
0

−3x(x+ 1)


〉
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Example. f =
1

xy3 + y+ 1

(
6x+ 2x(27x+ 1)Dx + x

2(27x+ 4)D2x
)
· f

= Dy ·
−1+ 2(3x− 1)y+ (9x− 1)y2 − 3x(x+ 1)y4

(xy3 + y+ 1)2
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The Apagodu-Zeilberger Algorithm

INPUT: f ∈ C(x, y)

OUTPUT: a telescoper and a certificate for f

1 r = degy den(f)

2 s = (r− 1) degy q+ degy p+ 1

3 make an ansatz P = a0 + a1Dx + · · ·+ arDrx
4 make an ansatz g = (b0 + b1y+ · · ·+ bsys)/ den(f)r

5 equate the y-coefficients of den(f)r+1(P · f−Dy · g) to zero
and solve the resulting linear system

6 for a solution vector (a0, . . . , ar, b0, . . . , bs) with at least one
nonzero ai, return P and g

18
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Summary.

P(

x

n, Sn

Dx

)︸ ︷︷ ︸
telescoper (nonzero!)

− ∆k

Dy

Q(

x

n,

y

y,∆k

Dy

, Sn

Dx

)︸ ︷︷ ︸
certificate

• Creative telescoping is the search for a telescoper (with or
without a corresponding certificate).

• Sister Celine’s algorithm is a creative telescoping algorithm for
hypergeometric terms.

• For rational functions in the differential case, we have two
creative telescoping algorithms:

Reduction-based telescoping Apagodu-Zeilberger algorithm

Hermite reduction
+ small linear system

large linear system

19
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