Creative Telescoping

Manuel Kauers • Institute for Algebra • JKU

Recall: Sister Celine's method.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.
- $\frac{f(n+1, k)}{f(n, k)}$ and $\frac{f(n, k+1)}{f(n, k)}$ are rational functions in n and k.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.
- $\frac{f(n+1, k)}{f(n, k)}$ and $\frac{f(n, k+1)}{f(n, k)}$ are rational functions in n and k.
- We want a recurrence for the sum $S(n)=\sum_{k} f(n, k)$.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.
- $\frac{f(n+1, k)}{f(n, k)}$ and $\frac{f(n, k+1)}{f(n, k)}$ are rational functions in n and k.
- We want a recurrence for the sum $S(n)=\sum_{k} f(n, k)$.
- Such a recurrence is obtained from a k-free recurrence for $f(n, k)$.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.
- $\frac{f(n+1, k)}{f(n, k)}$ and $\frac{f(n, k+1)}{f(n, k)}$ are rational functions in n and k.
- We want a recurrence for the sum $S(n)=\sum_{k} f(n, k)$.
- Such a recurrence is obtained from a k-free recurrence for $f(n, k)$.
- More precisely, we construct an annihilating operator for $f(n, k)$ of the form

$$
P\left(n, S_{n}\right)-\Delta_{k} Q\left(n, k, \Delta_{k}, S_{n}\right)
$$

where

- P is nonzero and free of $\mathrm{k}, \mathrm{S}_{\mathrm{k}}, \Delta_{\mathrm{k}}$.
- Q may be zero and may involve any variables or operators.

Recall: Sister Celine's method.

- $f(n, k)$ is a given hypergeometric term.
- $\frac{f(n+1, k)}{f(n, k)}$ and $\frac{f(n, k+1)}{f(n, k)}$ are rational functions in n and k.
- We want a recurrence for the sum $S(n)=\sum_{k} f(n, k)$.
- Such a recurrence is obtained from a k-free recurrence for $f(n, k)$.
- More precisely, we construct an annihilating operator for $f(n, k)$ of the form

$$
P\left(n, S_{n}\right)-\Delta_{k} Q\left(n, k, \Delta_{k}, S_{n}\right)
$$

where

- P is nonzero and free of $\mathrm{k}, \mathrm{S}_{\mathrm{k}}, \Delta_{\mathrm{k}}$.
- Q may be zero and may involve any variables or operators.
- Then $P\left(n, S_{n}\right)$ is an annihilating operator for $S(n)$.

$$
P\left(n, S_{n}\right)-\Delta_{k} Q\left(n, k, \Delta_{k}, S_{n}\right)
$$

"Telescoper"

\downarrow
 $P\left(n, S_{n}\right)-\Delta_{k} Q\left(n, k, \Delta_{k}, S_{n}\right)$

 "Certificate"

Note:

Note:

- A hypergeometric term $f(n, k)$ is said to telescope (w.r.t. k) if there is a hypergeometric term $\mathrm{g}(\mathrm{n}, \mathrm{k})$ such that

$$
f(n, k)=g(n, k+1)-g(n, k)
$$

Note:

- A hypergeometric term $f(n, k)$ is said to telescope (w.r.t. k) if there is a hypergeometric term $\mathrm{g}(\mathrm{n}, \mathrm{k})$ such that

$$
f(n, k)=g(n, k+1)-g(n, k) .
$$

- The application of a telescoper turns $f(n, k)$ into a telescoping term. (Hence the name.)

Note:

- A hypergeometric term $f(n, k)$ is said to telescope (w.r.t. k) if there is a hypergeometric term $\mathrm{g}(\mathrm{n}, \mathrm{k})$ such that

$$
f(n, k)=g(n, k+1)-g(n, k) .
$$

- The application of a telescoper turns $f(n, k)$ into a telescoping term. (Hence the name.)
- If we only have P, it is not obvious whether P • f telescopes, i.e., whether P is really a telescoper.

Note:

- A hypergeometric term $f(n, k)$ is said to telescope (w.r.t. k) if there is a hypergeometric term $\mathrm{g}(\mathrm{n}, \mathrm{k})$ such that

$$
f(n, k)=g(n, k+1)-g(n, k) .
$$

- The application of a telescoper turns $f(n, k)$ into a telescoping term. (Hence the name.)
- If we only have P, it is not obvious whether P.f telescopes, i.e., whether P is really a telescoper.
- If we have both P and Q, then checking $\left(P-\Delta_{k} Q\right) \cdot f \stackrel{?}{=} 0$ is easy. Thus Q certifies that P is a telescoper.

Example. $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$

Example. $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$

$$
\left((n+1) S_{n}-(4 n+2)\right) \cdot\binom{n}{k}^{2}=\Delta_{k} \cdot \frac{k^{2}(2 k-3 n-3)}{(n+1)^{2}}\binom{n+1}{k}^{2}
$$

Example. $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$
$\left((n+1) S_{n}-(4 n+2)\right) \cdot\binom{n}{k}^{2}=\Delta_{k} \cdot \frac{k^{2}(2 k-3 n-3)}{(n+1)^{2}}\binom{n+1}{k}^{2}$
So $(n+1) S_{n}-(4 n+2)$ is a telescoper for $\binom{n}{k}^{2}$.

Example. $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$
$\left((n+1) S_{n}-(4 n+2)\right) \cdot\binom{n}{k}^{2}=\Delta_{k} \cdot \frac{k^{2}(2 k-3 n-3)}{(n+1)^{2}}\binom{n+1}{k}^{2}$
So $(n+1) S_{n}-(4 n+2)$ is a telescoper for $\binom{n}{k}^{2}$.
It follows that $(n+1) S_{n}-(4 n+2)$ is an annihilator for $\sum_{k}\binom{n}{k}^{2}$.

Example. $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$
$\left((n+1) S_{n}-(4 n+2)\right) \cdot\binom{n}{k}^{2}=\Delta_{k} \cdot \frac{k^{2}(2 k-3 n-3)}{(n+1)^{2}}\binom{n+1}{k}^{2}$
So $(n+1) S_{n}-(4 n+2)$ is a telescoper for $\binom{n}{k}^{2}$.
It follows that $(n+1) S_{n}-(4 n+2)$ is an annihilator for $\sum_{k}\binom{n}{k}^{2}$.
The operator $\frac{k^{2}(2 k-3 n-3)}{(n+1)^{2}} S_{n}$ is a certificate for the telescoper.

The concept of telescopers applies more generally.

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$?

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} \mathrm{~d} x=$ not easily expressible

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} \mathrm{~d} x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=$?

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=\sin (x)^{n+1} \cos (x)$

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=\sin (x)^{n+1} \cos (x)$

Therefore:

$$
(n+1) W_{n}-(n+2) W_{n+2}=\left[\sin (x)^{n+1} \cos (x)\right]_{0}^{\pi / 2}=0 .
$$

The concept of telescopers applies more generally.
Example. $W_{\mathfrak{n}}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=\sin (x)^{n+1} \cos (x)$

Therefore:

$$
(n+1) W_{n}-(n+2) W_{n+2}=\left[\sin (x)^{n+1} \cos (x)\right]_{0}^{\pi / 2}=0 .
$$

This recurrence together with the initial values $W_{0}=\frac{\pi}{2}$ and $W_{1}=1$ determines the whole sequence.

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=\sin (x)^{n+1} \cos (x)$

The operator

$$
(n+1)-(n+2) S_{n}
$$

is a telescoper for $\sin (x)^{n}$.

The concept of telescopers applies more generally.
Example. $W_{n}=\int_{0}^{\pi / 2}(\sin (x))^{n} d x$ (Walli's integral; 1656)

- $\int \sin (x)^{n} d x=$ not easily expressible
- $\int\left((n+1) \sin (x)^{n}-(n+2) \sin (x)^{n+2}\right) d x=\sin (x)^{n+1} \cos (x)$

The operator

$$
(n+1)-(n+2) S_{n}
$$

is a telescoper for $\sin (x)^{n}$.
It maps this function to one that can be explicitly integrated.

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

- $\sum_{n=0}^{N}\binom{2 n}{n} x^{n}=$ not easily expressible

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

- $\sum_{n=0}^{N}\binom{2 n}{n} x^{n}=$ not easily expressible
- $\sum_{n=0}^{N}\left(2\binom{2 n}{n} x^{n}-(1-4 x)\binom{2 n}{n}\left(x^{n}\right)^{\prime}\right)=(N+1)\binom{2 N+2}{N+1} x^{N+1}$

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

$$
\begin{aligned}
& \text { - } \sum_{n=0}^{N}\binom{2 n}{n} x^{n}=\text { not easily expressible } \\
& \text { - } \sum_{n=0}^{N}\left(2\binom{2 n}{n} x^{n}-(1-4 x)\binom{2 n}{n}\left(x^{n}\right)^{\prime}\right)=(N+1)\binom{2 N+2}{N+1} x^{N+1}
\end{aligned}
$$

Therefore:

$$
2 S(x)-(1-4 x) S^{\prime}(x)=\lim _{N \rightarrow \infty}(N+1)\binom{2 N+2}{N+1} x^{N+1}=0
$$

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

$$
\begin{aligned}
& \text { - } \sum_{n=0}^{N}\binom{2 n}{n} x^{n}=\text { not easily expressible } \\
& \text { - } \sum_{n=0}^{N}\left(2\binom{2 n}{n} x^{n}-(1-4 x)\binom{2 n}{n}\left(x^{n}\right)^{\prime}\right)=(N+1)\binom{2 N+2}{N+1} x^{N+1}
\end{aligned}
$$

Therefore:

$$
2 S(x)-(1-4 x) S^{\prime}(x)=\lim _{N \rightarrow \infty}(N+1)\binom{2 N+2}{N+1} x^{N+1}=0
$$

This differential equation together with the initial value $S(0)=1$ implies the claimed identity.

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

- $\sum_{n=0}^{N}\binom{2 n}{n} x^{n}=$ not easily expressible
- $\sum_{n=0}^{N}\left(2\binom{2 n}{n} x^{n}-(1-4 x)\binom{2 n}{n}\left(x^{n}\right)^{\prime}\right)=(N+1)\binom{2 N+2}{N+1} x^{N+1}$

The operator

$$
2-(1-4 x) D_{x}
$$

is a telescoper for $\binom{2 n}{n} x^{n}$.

Example. $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n} \stackrel{?}{=} \frac{1}{\sqrt{1-4 x}}$

- $\sum_{n=0}^{N}\binom{2 n}{n} x^{n}=$ not easily expressible
- $\sum_{n=0}^{N}\left(2\binom{2 n}{n} x^{n}-(1-4 x)\binom{2 n}{n}\left(x^{n}\right)^{\prime}\right)=(N+1)\binom{2 N+2}{N+1} x^{N+1}$

The operator

$$
2-(1-4 x) D_{x}
$$

is a telescoper for $\binom{2 n}{n} x^{n}$.
It maps the function to one that can be explicitly summed.

Example. $K(t)=\int_{0}^{1} \frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t \chi^{2}\right)}} d x$

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible
- $\int\left(4(1-t) t \frac{\partial^{2}}{\partial t^{2}} f+4(1-2 t) \frac{\partial}{\partial t} f-f\right) d x=-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}$

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible
- $\int\left(4(1-t) t \frac{\partial^{2}}{\partial t^{2}} f+4(1-2 t) \frac{\partial}{\partial t} f-f\right) d x=-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}$

Therefore:
$4(1-t) t K^{\prime \prime}(t)+4(1-2 t) K^{\prime}(t)-K(t)=\left[-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}\right]_{x=0}^{1}=0$.

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible
- $\int\left(4(1-t) t \frac{\partial^{2}}{\partial t^{2}} f+4(1-2 t) \frac{\partial}{\partial t} f-f\right) d x=-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}$

Therefore:
$4(1-t) t K^{\prime \prime}(t)+4(1-2 t) K^{\prime}(t)-K(t)=\left[-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}\right]_{x=0}^{1}=0$.
This differential equation together with the initial values $\mathrm{K}(0)=\frac{\pi}{2}$, $K^{\prime}(0)=\frac{\pi}{8}$ uniquely describes $K(t)$.

Example. $\mathrm{K}(\mathrm{t})=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible
- $\int\left(4(1-t) t \frac{\partial^{2}}{\partial t^{2}} f+4(1-2 t) \frac{\partial}{\partial t} f-f\right) d x=-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}$

The operator

$$
4(1-t) t D_{t}^{2}+4(1-2 t) D_{t}-1
$$

is a telescoper for $f(x, t)$.

Example. $K(t)=\int_{0}^{1} \underbrace{\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-t x^{2}\right)}}}_{=: f(x, t)} d x$

- $\int f(x, t) d x=$ not easily expressible
- $\int\left(4(1-t) t \frac{\partial^{2}}{\partial t^{2}} f+4(1-2 t) \frac{\partial}{\partial t} f-f\right) d x=-x \sqrt{\frac{1-x^{2}}{\left(1-t x^{2}\right)^{3}}}$

The operator

$$
4(1-t) t D_{t}^{2}+4(1-2 t) D_{t}-1
$$

is a telescoper for $f(x, t)$.
It maps the function to one that can be integrated explicitly.

The search for a telescoper is called

Creative Telescoping.

The search for a telescoper is called

Creative Telescoping.

The search for a telescoper is called

> Creative Telescoping.

The version for integration is also known as
Differentiating under the Integral Sign.

The search for a telescoper is called

> Creative Telescoping.

The version for integration is also known as
Differentiating under

NEW YORK TIMES BESTSELLER
"Surely
You're Joking, the Integral Sign.

Sister Celine's method is a rudimentary creative telescoping algorithm for hypergeometric terms.

Sister Celine's method is a rudimentary creative telescoping algorithm for hypergeometric terms.

In the next two segments, we will see that there are better algorithms for this case.

Sister Celine's method is a rudimentary creative telescoping algorithm for hypergeometric terms.

In the next two segments, we will see that there are better algorithms for this case.

In the present segment, let's focus on the differential case, and rational functions.

Task.

Task.

- Given: a rational function $f \in C(x, y)$
- Find: operators $P\left(x, D_{x}\right) \neq 0$ and $Q\left(x, y, D_{x}, D_{y}\right)$ such that

$$
\left(P-D_{y} Q\right) \cdot f=0
$$

Task.

- Given: a rational function $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
- Find: operators $P\left(x, D_{x}\right) \neq 0$ and $Q\left(x, y, D_{x}, D_{y}\right)$ such that

Task.

- Given: a rational function $f \in C(x, y)$
- Find: operators $P\left(x, D_{x}\right) \neq 0$ and $Q\left(x, y, D_{x}, D_{y}\right)$ such that

Equivalently:

- Find: an operator $\mathrm{P}\left(x, \mathrm{D}_{x}\right) \neq 0$ and a rational function $g(x, y) \in C(x, y)$ such that

$$
P \cdot f=D_{y} \cdot g
$$

Task.

- Given: a rational function $f \in C(x, y)$
- Find: operators $P\left(x, D_{x}\right) \neq 0$ and $Q\left(x, y, D_{x}, D_{y}\right)$ such that

Equivalently:

- Find: an operator $\mathrm{P}\left(x, \mathrm{D}_{x}\right) \neq 0$ and a rational function $g(x, y) \in C(x, y)$ such that

$$
\text { telescoper } \xlongequal{\mathrm{f} \cdot \mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}}
$$

Recall: Hermite reduction.

Recall: Hermite reduction.
For every $f \in C(y)$ we can find $g \in C(y)$ and $h \in C(y)$ such that

Recall: Hermite reduction.
For every $f \in C(y)$ we can find $g \in C(y)$ and $h \in C(y)$ such that $1 \mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{g}+\mathrm{h}$

Recall: Hermite reduction.
For every $f \in C(y)$ we can find $g \in C(y)$ and $h \in C(y)$ such that $1 \mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{g}+\mathrm{h}$
2 the denominator den (h) of h is square free

Recall: Hermite reduction.
For every $f \in C(y)$ we can find $g \in C(y)$ and $h \in C(y)$ such that $1 \mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{g}+\mathrm{h}$
2 the denominator den(h) of h is square free
$3 \operatorname{deg}_{x} \operatorname{num}(h)<\operatorname{deg}_{x} \operatorname{den}(h)$.

Recall: Hermite reduction.
For every $f \in C(y)$ we can find $g \in C(y)$ and $h \in C(y)$ such that $1 \mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{g}+\mathrm{h}$
2 the denominator den(h) of h is square free
$3 \operatorname{deg}_{x} \operatorname{num}(h)<\operatorname{deg}_{x} \operatorname{den}(h)$.
f is integrable in $C(y)$ if and only if $h=0$.

Now consider a bivariate rational function $f \in C(x, y)$.

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\mathrm{f}=\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}+\mathrm{h}
$$

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\begin{aligned}
& \quad f=D_{y} \cdot g+h \\
& D_{t} \cdot f
\end{aligned}
$$

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\begin{aligned}
\mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}+\mathrm{h} \\
\mathrm{D}_{\mathrm{t}} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{1}+\mathrm{h}_{1}
\end{aligned}
$$

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\begin{aligned}
\mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}+\mathrm{h} \\
\mathrm{D}_{\mathrm{t}} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{1}+\mathrm{h}_{1} \\
\mathrm{D}_{\mathrm{t}}^{2} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{2}+\mathrm{h}_{2} \\
\mathrm{D}_{\mathrm{t}}^{3} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{3}+\mathrm{h}_{3}
\end{aligned}
$$

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\begin{aligned}
\mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{0}+\mathrm{h}_{0} \\
\mathrm{D}_{\mathrm{t}} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{1}+\mathrm{h}_{1} \\
\mathrm{D}_{\mathrm{t}}^{2} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{2}+\mathrm{h}_{2} \\
\mathrm{D}_{\mathrm{t}}^{3} \cdot \mathrm{f} & =\mathrm{D}_{\mathrm{y}} \cdot \mathrm{~g}_{3}+\mathrm{h}_{3}
\end{aligned}
$$

Now consider a bivariate rational function $f \in C(x, y)$.

$$
\begin{aligned}
f & =D_{y} \cdot g_{0}+h_{0} \\
D_{t} \cdot f & =D_{y} \cdot g_{1}+h_{1} \\
D_{t}^{2} \cdot f & =D_{y} \cdot g_{2}+h_{2} \\
D_{t}^{3} \cdot f & =D_{y} \cdot g_{3}+h_{3}
\end{aligned}
$$

Idea: find a $\mathrm{C}(x)$-linear relation among $h_{0}, h_{1}, h_{2}, \ldots$

Example. $f=\frac{1}{x y^{3}+y+1}$.

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
f=D_{y} \cdot 0
$$

$$
+\frac{1}{1+x+y+x y^{3}}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{aligned}
& \quad f=D_{y} \cdot 0 \\
& D_{x} \cdot f
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{aligned}
f & =D_{y} \cdot 0 & & +\frac{1}{1+x+y+x y^{3}} \\
D_{x} \cdot f & =D_{y} \cdot \frac{3 x y^{2}+9 x y+2 y+2}{x(27 x+4)\left(x y^{3}+y+1\right)} & & +\frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{array}{rlrl}
f & =D_{y} \cdot 0 & & +\frac{1}{1+x+y+x y^{3}} \\
D_{x} \cdot f & =D_{y} \cdot \frac{3 x y^{2}+9 x y+2 y+2}{x(27 x+4)\left(x y^{3}+y+1\right)} & & +\frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
D_{x}^{2} \cdot f & =D_{y} \cdot \frac{-1622^{3} y^{5}+\cdots-8 y^{2}-16 y-8}{x^{2}(27 x+4)^{2}\left(x y^{3}+y+1\right)^{2}} & +\frac{6(54 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}
\end{array}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{aligned}
& \frac{1}{1+x+y+x y^{3}} \\
& \frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
& \frac{6(54 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{aligned}
& \frac{1}{1+x+y+x y^{3}} \\
& \frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
& \frac{6(54 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{aligned}
& 6 \frac{1}{1+x+y+x y^{3}} \\
& +2(27 x+1) \frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
& +x(27 x+4) \frac{6(57 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{gathered}
6 \frac{1}{1+x+y+x y^{3}} \\
+2(27 x+1) \frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
+x(27 x+4) \frac{6(54 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}=0
\end{gathered}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$.

$$
\begin{gathered}
6 \frac{1}{1+x+y+x y^{3}} \\
+2(27 x+1) \frac{3(y-3)}{(27 x+4)\left(x y^{3}+y+1\right)} \\
+x(27 x+4) \frac{6(54 x-27 x y-y-1)}{x(27 x+4)^{2}\left(x y^{3}+y+1\right)}=0
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \left(6+2(27 x+1) D_{x}+x(27 x+4) D_{x}^{2}\right) \cdot f \\
& =D_{y} \cdot \frac{2\left(3 x^{2} y^{6}+3 x y^{6}-21 x y^{4}-21 x y^{3}-y^{4}-y^{3}+3 y^{2}+6 y+3\right)}{\left(x y^{3}+y+1\right)^{3}}+\mathbf{0}
\end{aligned}
$$

Reduction-based creative telescoping for rational functions
INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper for f .

Reduction-based creative telescoping for rational functions
INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper for f.
1 for $r=0,1,2, \ldots$, do:

Reduction-based creative telescoping for rational functions
INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper for f .
1 for $r=0,1,2, \ldots$, do:
2 using Hermite reduction, compute g_{r}, h_{r} such that $D_{x}^{r} \cdot f=D_{y} \cdot g_{r}+h_{r}$

Reduction-based creative telescoping for rational functions
INPUT: $f \in C(x, y)$
OUTPUT: a telescoper for f .
1 for $r=0,1,2, \ldots$, do:
2 using Hermite reduction, compute g_{r}, h_{r} such that $D_{x}^{r} \cdot f=D_{y} \cdot g_{r}+h_{r}$
3 if there are $c_{0}, \ldots, c_{r} \in C(x)$, not all zero, such that

$$
c_{0} h_{0}+\cdots+c_{r} h_{r}=0
$$

then return $c_{0}+c_{1} D_{x}+\cdots+c_{r} D_{x}^{r}$

Reduction-based creative telescoping for rational functions

INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper for f.
1 for $r=0,1,2, \ldots$, do:
2 using Hermite reduction, compute g_{r}, h_{r} such that $D_{x}^{r} \cdot f=D_{y} \cdot g_{r}+h_{r}$
3 if there are $c_{0}, \ldots, c_{r} \in C(x)$, not all zero, such that

$$
c_{0} h_{0}+\cdots+c_{r} h_{r}=0
$$

then return $c_{0}+c_{1} D_{x}+\cdots+c_{r} D_{x}^{r}$
Exercise. In step 2, we can use $D_{x} \cdot h_{r-1}$ instead of $D_{x}^{r} \cdot f$. Why is this better?

Theorem.

Theorem.
1 The algorithm is correct.

Theorem.
1 The algorithm is correct.
2 The algorithm terminates.

Theorem.
1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.

Theorem.

1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.
4 There is always a telescoper of order at most deg_{y} den(f).

Theorem.

1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.
4 There is always a telescoper of order at most deg_{y} den(f).

Theorem.

1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.
4 There is always a telescoper of order at most $\operatorname{deg}_{y} \operatorname{den}(f)$.

Theorem.

1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.
4 There is always a telescoper of order at most $\operatorname{deg}_{y} \operatorname{den}(f)$.

Theorem.

1 The algorithm is correct.
2 The algorithm terminates.
3 The algorithm finds the telescoper of smallest order.
4 There is always a telescoper of order at most $\operatorname{deg}_{y} \operatorname{den}(f)$.

Another approach.

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
f=\frac{p}{q}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
f & =\frac{p}{q} \\
D_{x} \cdot f & =\frac{p^{\prime} q-p q^{\prime}}{q^{2}}
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
& f=\frac{p}{q} \\
& D_{x} \cdot f=\frac{p^{\prime} q-p q^{\prime}}{q^{2}} \\
& D_{x}^{2} \cdot f=\frac{}{q^{3}} \\
& \vdots \\
& D_{x}^{r} \cdot f=\frac{}{q^{r+1}}
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
f & =\frac{p}{q} \leftarrow \operatorname{deg}_{y}=\operatorname{deg}_{y} p \\
D_{x} \cdot f & =\frac{p^{\prime} q-p q^{\prime}}{q^{2}} \\
D_{x}^{2} \cdot f & =\frac{}{q^{3}} \\
& \\
D_{x}^{r} \cdot f & =\frac{}{q^{r+1}}
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
\mathrm{f} & =\frac{\mathrm{p}}{\mathrm{q}} \quad \leftarrow \operatorname{deg}_{y}=\operatorname{deg}_{y} p \\
\mathrm{D}_{x} \cdot \mathrm{f} & =\frac{\mathrm{p}^{\prime} \mathrm{q}-\mathrm{pq}^{\prime}}{q^{2}} \leftarrow \operatorname{deg}_{y} \leq \operatorname{deg}_{y} q+\operatorname{deg}_{y} p \\
\mathrm{D}_{x}^{2} \cdot \mathrm{f} & =\frac{}{q^{3}} \\
\vdots & \\
D_{x}^{r} \cdot \mathrm{f} & =\frac{q^{r+1}}{}
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
& f=\frac{p}{q} \quad \leftarrow \operatorname{deg}_{y}=\operatorname{deg}_{y} p \\
& D_{x} \cdot f=\frac{p^{\prime} q-\mathrm{pq}^{\prime}}{q^{2}} \quad \leftarrow \operatorname{deg}_{y} \leq \operatorname{deg}_{y} q+\operatorname{deg}_{y} p \\
& D_{x}^{2} \cdot f=\frac{\leftarrow \operatorname{qeg}_{y} \leq 2 \operatorname{deg}_{y} q+\operatorname{deg}_{y} p}{} \\
& \vdots \\
& \mathrm{D}_{x}^{r} \cdot f= \\
& \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
& f=\frac{p q^{r}}{q} q^{r} \\
& \leftarrow \operatorname{deg}_{y}=r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p \\
& D_{x} \cdot f=\frac{p^{\prime} q-p q^{\prime}}{q^{2}} \leftarrow \operatorname{deg}_{y} \leq \operatorname{deg}_{y} q+\operatorname{deg}_{y} p \\
& D_{x}^{2} \cdot f=\frac{\leftarrow \operatorname{deg}_{y} \leq 2 \operatorname{deg}_{y} q+\operatorname{deg}_{y} p}{q^{3}} \\
& \vdots \\
& D_{x}^{r} \cdot f= \\
& \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
What happens if we differentiate it a few times?

$$
\begin{aligned}
& f=\frac{p}{q} q^{r} q^{r} \leftarrow \operatorname{deg}_{y}=r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p \\
& D_{x} \cdot f=\frac{\left(p^{\prime} q-p q^{\prime}\right) q^{r-1} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p}{q^{2} q^{r-1}} \\
& D_{x}^{2} \cdot f=\frac{q^{r-2} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p}{q^{3} q^{r-2}}{ }^{\vdots} \\
& \begin{array}{ll}
D_{x}^{r} \cdot f & = \\
\leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p
\end{array}
\end{aligned}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
For every $a_{0}, a_{1}, \ldots, a_{r} \in C(x)$ (free of y), we have

$$
\left(a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}\right) \cdot f=\frac{\square}{q^{r+1}} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
For every $a_{0}, a_{1}, \ldots, a_{r} \in C(x)$ (free of y), we have

$$
\left(a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}\right) \cdot f=\frac{\square}{q^{r+1}} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q
$$

For $b_{0}, \ldots, b_{s} \in C(x)$ (also free of y), consider the rational function

$$
g=\frac{b_{0}+b_{1} y+\cdots+b_{s} y^{s}}{q^{r}}
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
For every $a_{0}, a_{1}, \ldots, a_{r} \in C(x)$ (free of y), we have

$$
\left(a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}\right) \cdot f=\frac{\square}{q^{r+1}} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q
$$

For $b_{0}, \ldots, b_{s} \in C(x)$ (also free of y), consider the rational function

$$
g=\frac{b_{0}+b_{1} y+\cdots+b_{s} y^{s}}{q^{r}}
$$

Then

$$
D_{y} \cdot g=\frac{q^{r+1}}{\square} \leftarrow \operatorname{deg}_{y} \leq \operatorname{deg}_{y} q+s-1
$$

Another approach.

Consider again a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)} \in C(x, y)$.
For every $a_{0}, a_{1}, \ldots, a_{r} \in C(x)$ (free of y), we have

$$
\begin{array}{r}
\left.\left(a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}\right) \cdot f=\frac{\square q^{r+1}}{\leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q} \begin{array}{r}
+\operatorname{deg}_{y} p
\end{array}\right)
\end{array}
$$

For $b_{0}, \ldots, b_{s} \in C(x)$ (also free of y), consider the rational function

$$
g=\frac{b_{0}+b_{1} y+\cdots+b_{s} y^{s}}{q^{r}}
$$

Then, with $s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$,

$$
D_{y} \cdot g=\frac{\square}{q^{r+1}} \leftarrow \operatorname{deg}_{y} \leq r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p
$$

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

$$
\left(a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}\right) \cdot f \stackrel{!}{=} D_{y} g
$$

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

Comparing coefficients with respect to y leads to a linear system with

- $(r+1)+(s+1)$ variables
- $1+r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p$ equations

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

Comparing coefficients with respect to y leads to a linear system with

- $(r+1)+\left((r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+2\right)$ variables
- $1+r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p$ equations

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

Comparing coefficients with respect to y leads to a linear system with

- $(r+1)+\left((r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+2\right)$ variables
- $1+r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p$ equations

It will have a nontrivial solution as soon as $r \geq \operatorname{deg}_{y} q-1$.

For undetermined a_{0}, \ldots, a_{r} and b_{0}, \ldots, b_{s}, enforce

Comparing coefficients with respect to y leads to a linear system with

- $(r+1)+\left((r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+2\right)$ variables
- $1+r \operatorname{deg}_{y} q+\operatorname{deg}_{y} p$ equations

It will have a nontrivial solution as soon as $r \geq \operatorname{deg}_{y} q-1$.
Exercise. Does every nonzero solution give rise to a nonzero telescoper?

Example. $f=\frac{1}{x y^{3}+y+1}$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{aligned}
& \left(a_{0}+a_{1} D_{x}+a_{2} D_{x}^{2}\right) \cdot f \\
& =\frac{\left(a_{0} x^{2}-a_{1} x+2 a_{2}\right) y^{6}+\left(2 a_{0} x-a_{1}\right) y^{4}+\left(2 a_{0} x-a_{1}\right) y^{3}+a_{0} y^{2}+2 a_{0} y+a_{0}}{\left(x y^{3}+y+1\right)^{3}}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{aligned}
& \left(a_{0}+a_{1} D_{x}+a_{2} D_{x}^{2}\right) \cdot f \\
& =\frac{\left(a_{0} x^{2}-a_{1} x+2 a_{2}\right) y^{6}+\left(2 a_{0} x-a_{1}\right) y^{4}+\left(2 a_{0} x-a_{1}\right) y^{3}+a_{0} y^{2}+2 a_{0} y+a_{0}}{\left(x y^{3}+y+1\right)^{3}}
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{aligned}
& \left(a_{0}+a_{1} D_{x}+a_{2} D_{x}^{2}\right) \cdot f \\
& =\frac{\left(a_{0} x^{2}-a_{1} x+2 a_{2}\right) y^{6}+\left(2 a_{0} x-a_{1}\right) y^{4}+\left(2 a_{0} x-a_{1}\right) y^{3}+a_{0} y^{2}+2 a_{0} y+a_{0}}{\left(x y^{3}+y+1\right)^{3}}
\end{aligned}
$$

The y-derivative of $g=\frac{b_{0}+b_{1} y+b_{2} y^{2}+b_{3} y^{3}+b_{4} y^{4}}{\left(x y^{3}+y+1\right)^{2}}$ is
$\frac{-2 b_{4} x y^{6}-3 b_{3} x y^{5}+\left(2 b_{4}-4 b_{2} x\right) y^{4}+\left(b_{3}-5 b_{1} x+4 b_{4}\right) y^{3}+\left(3 b_{3}-6 b_{0} x\right) y^{2}+\left(2 b_{2}-b_{1}\right) y-2 b_{0}+b_{1}}{\left(x y^{3}+y+1\right)^{3}}$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{array}{r}
\left(a_{0} x^{2}-a_{1} x+2 a_{2}+2 b_{4} x\right) y^{6} \\
+3 b_{3} x y^{5} \\
+\left(2 a_{0} x-a_{1}+4 b_{2} x-2 b_{4}\right) y^{4} \\
+\left(2 a_{0} x-a_{1}+5 b_{1} x-b_{3}-4 b_{4}\right) y^{3} \\
+\left(a_{0}+6 b_{0} x-3 b_{3}\right) y^{2} \\
+\left(2 a_{0}+b_{1}-2 b_{2}\right) y \\
+a_{0}+2 b_{0}-b_{1}=0
\end{array}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{aligned}
\left(a_{0} x^{2}-a_{1} x+2 a_{2}+2 b_{4} x\right) & =0 \\
+3 b_{3} x & =0 \\
+\left(2 a_{0} x-a_{1}+4 b_{2} x-2 b_{4}\right) & =0 \\
+\left(2 a_{0} x-a_{1}+5 b_{1} x-b_{3}-4 b_{4}\right) & =0 \\
+\left(a_{0}+6 b_{0} x-3 b_{3}\right) & =0 \\
+\left(2 a_{0}+b_{1}-2 b_{2}\right) & =0 \\
+a_{0}+2 b_{0}-b_{1} & =0
\end{aligned}
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\left(\begin{array}{cccccccc}
x^{2} & -x & 2 & 0 & 0 & 0 & 0 & 2 \chi \\
0 & 0 & 0 & 0 & 0 & 0 & 3 x & 0 \\
2 x & -1 & 0 & 0 & 0 & 4 x & 0 & -2 \\
2 x & -1 & 0 & 0 & 5 x & 0 & -1 & -4 \\
1 & 0 & 0 & 6 x & 0 & 0 & -3 & 0 \\
2 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\
1 & 0 & 0 & 2 & -1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)=0
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\left.\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \in\left(\begin{array}{c}
6 x \\
2 x(27 x+1) \\
x^{2}(27 x+4) \\
-1 \\
2(3 x-1) \\
9 x-1 \\
0 \\
-3 x(x+1)
\end{array}\right)\right\rangle
$$

Example. $f=\frac{1}{x y^{3}+y+1}$

$$
\begin{aligned}
& \left(6 x+2 x(27 x+1) D_{x}+x^{2}(27 x+4) D_{x}^{2}\right) \cdot f \\
& =D_{y} \cdot \frac{-1+2(3 x-1) y+(9 x-1) y^{2}-3 x(x+1) y^{4}}{\left(x y^{3}+y+1\right)^{2}}
\end{aligned}
$$

The Apagodu-Zeilberger Algorithm
INPUT: $f \in C(x, y)$
OUTPUT: a telescoper and a certificate for f

The Apagodu-Zeilberger Algorithm
INPUT: $f \in C(x, y)$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$

The Apagodu-Zeilberger Algorithm
INPUT: $f \in C(x, y)$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$
$2 s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$

The Apagodu-Zeilberger Algorithm
INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$
$2 \quad s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$
3 make an ansatz $P=a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}$

The Apagodu-Zeilberger Algorithm
INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$
$2 \quad s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$
3 make an ansatz $P=a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}$
4 make an ansatz $g=\left(b_{0}+b_{1} y+\cdots+b_{s} y^{s}\right) / \operatorname{den}(f)^{r}$

The Apagodu-Zeilberger Algorithm

INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$
$2 \quad s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$
3 make an ansatz $P=a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}$
4 make an ansatz $g=\left(b_{0}+b_{1} y+\cdots+b_{s} y^{s}\right) / \operatorname{den}(f)^{r}$
5 equate the y-coefficients of $\operatorname{den}(f)^{r+1}\left(P \cdot f-D_{y} \cdot g\right)$ to zero and solve the resulting linear system

The Apagodu-Zeilberger Algorithm

INPUT: $\mathrm{f} \in \mathrm{C}(\mathrm{x}, \mathrm{y})$
OUTPUT: a telescoper and a certificate for f
$1 \quad \mathrm{r}=\operatorname{deg}_{\mathrm{y}} \operatorname{den}(\mathrm{f})$
$2 \quad s=(r-1) \operatorname{deg}_{y} q+\operatorname{deg}_{y} p+1$
3 make an ansatz $P=a_{0}+a_{1} D_{x}+\cdots+a_{r} D_{x}^{r}$
4 make an ansatz $g=\left(b_{0}+b_{1} y+\cdots+b_{s} y^{s}\right) / \operatorname{den}(f)^{r}$
5 equate the y-coefficients of $\operatorname{den}(f)^{r+1}\left(P \cdot f-D_{y} \cdot g\right)$ to zero and solve the resulting linear system
6 for a solution vector $\left(a_{0}, \ldots, a_{r}, b_{0}, \ldots, b_{s}\right)$ with at least one nonzero a_{i}, return P and g

Summary.

Summary.

$$
P\left(n, S_{n}\right)-\Delta_{k} Q\left(n, y, \Delta_{k}, S_{n}\right)
$$

Summary.

$$
\underbrace{P\left(n, S_{n}\right)}_{\text {telescoper (nonzero!) }}-\Delta_{k} \underbrace{Q\left(n, y, \Delta_{k}, S_{n}\right)}_{\text {certificate }}
$$

Summary.

$$
\underbrace{\mathrm{P}\left(x, \mathrm{D}_{\chi}\right)}_{\text {telescoper (nonzero!) }}-\Delta_{\mathrm{k}} \underbrace{\mathrm{Q}\left(x, y, \Delta_{k}, \mathrm{D}_{x}\right)}_{\text {certificate }}
$$

Summary.

$$
\underbrace{P\left(n, S_{n}\right)}_{\text {telescoper (nonzero!) }}-D_{\text {certificate }} \underbrace{Q\left(n, y, D_{y}, S_{n}\right)}_{y}
$$

Summary.

$$
\underbrace{\mathrm{P}\left(x, \mathrm{D}_{x}\right)}_{\text {telescoper (nonzero!) }}-\mathrm{D}_{y} \underbrace{\mathrm{Q}\left(x, y, \mathrm{D}_{y}, \mathrm{D}_{x}\right)}_{\text {certificate }}
$$

Summary.

$$
\underbrace{\mathrm{P}\left(x, \mathrm{D}_{x}\right)}_{\text {telescoper (nonzero! })}-\mathrm{D}_{y} \underbrace{\mathrm{Q}\left(x, y, \mathrm{D}_{y}, \mathrm{D}_{x}\right)}_{\text {certificate }}
$$

- Creative telescoping is the search for a telescoper (with or without a corresponding certificate).

Summary.

$$
\underbrace{\mathrm{P}\left(x, \mathrm{D}_{x}\right)}_{\text {telescoper (nonzero!) }}-\mathrm{D}_{y} \underbrace{\mathrm{Q}\left(x, y, \mathrm{D}_{y}, \mathrm{D}_{x}\right)}_{\text {certificate }}
$$

- Creative telescoping is the search for a telescoper (with or without a corresponding certificate).
- Sister Celine's algorithm is a creative telescoping algorithm for hypergeometric terms.

Summary.

$$
\underbrace{\mathrm{P}\left(x, \mathrm{D}_{x}\right)}_{\text {telescoper (nonzero!) }}-\mathrm{D}_{y} \underbrace{\mathrm{Q}\left(x, y, \mathrm{D}_{y}, \mathrm{D}_{x}\right)}_{\text {certificate }}
$$

- Creative telescoping is the search for a telescoper (with or without a corresponding certificate).
- Sister Celine's algorithm is a creative telescoping algorithm for hypergeometric terms.
- For rational functions in the differential case, we have two creative telescoping algorithms:

Reduction-based telescoping	Apagodu-Zeilberger algorithm

Hermite reduction

+ small linear system
large linear system

