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The basic strategy:

1 Given a sum S(n) :=
∑
k f(n, k) construct a linear recurrence

with polynomial coefficients for it, like

p0(n)S(n) + p1(n)S(n+ 1) + · · ·+ pr(n)S(n+ r) = 0

2 Check whether the conjectured closed form satisfies the
recurrence.

3 Check whether the conjectured identity is true for the first few
values of n.

4 Conclude that the identity is true for all n.
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Simple example:
∑
k

(
n

k

)
?
= 2n

1 We have 2S(n) − S(n+ 1) = 0 for all n.

2 2 · 2n − 2n+1 = 0 is true for all n.

3 S(0) = 1 = 20, S(1) = 1+ 1 = 2 = 21,
S(2) = 1+ 2+ 1 = 4 = 22.

4 The identity is true.
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Less simple example:
∑
k

(−1)k
(
2n

k+ n

)2
?
=

(2n)!

n!2

1 16(n+ 1)(2n+ 1)(4n+ 7)S(n) − 2(4n+ 5)(8n2 + 20n+
11)S(n+ 1) + (n+ 2)(2n+ 3)(4n+ 3)S(n+ 2) = 0

2

(· · · )(2n)!
n!2

+ (· · · )(2n+ 2)!

(n+ 1)!2
+ (· · · )(2n+ 4)!

(n+ 2)!2
(2n)!

n!2

(
(· · · )1+ (· · · ) (2n+ 2)!n!2

(2n)!(n+ 1)!2
+ (· · · ) (2n+ 4)!n!2

(2n)!(n+ 2)!2

)
︸ ︷︷ ︸

a rational function in n

= 0

16(n+ 1)(2n+ 1)(4n+ 7)
(2n)!

n!2
− 2(4n+ 5)(8n2 + 20n+

11)
(2n+ 2)!

(n+ 1)!2
+ (n+ 2)(2n+ 3)(4n+ 3)

(2n+ 4)!

(n+ 2)!2

3 S(0) = 1 = (2·0)!
0!2

; S(1) = −1+ 4− 1 = 2!
1!2

4 The identity is true.
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Def. A function F(n) is called a hypergeometric term if there is a
rational function u(n) such that F(n+ 1)/F(n) = u(n) for all n.

6



Def. A function F(n) is called a hypergeometric term if there is a
rational function u(n) such that F(n+ 1)/F(n) = u(n) for all n.

Examples:

• polynomials and rational functions such as n5 or 3n+79n+3

• exponentials such as (−1)n or 555n

• the factorial function n!

• products and quotients of hg terms, e.g. 3n+7
9n+3(−1)

nn!

• if F(n) is hg then so is F(an+ b) for every fixed a, b ∈ N,
e.g. (2n)!,

(
5n+7
3n+2

)
.
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Def. A function F(n) is called a hypergeometric term if there is a
rational function u(n) such that F(n+ 1)/F(n) = u(n) for all n.

Important Facts:

• If u has no roots or poles in Z, then F is uniquely determined
by r and F(0).

• We have F(n) =
n−1∏
k=0

u(k)

• It is easy to check whether a given hg term satisfies a given
linear recurrence with polynomial coefficients.
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Goal: prove summation identities
∑
k f(n, k) = F(n) where the

right hand side is hypergeometric.

Need: an algorithm that finds a recurrence for the sum.

What kinds of sums do we want to consider?

How should the summand f(n, k) be specified as input?

Note: no algorithm can ever take an “arbitrary function” as input.
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Def. A function f(n, k) is called a hypergeometric term if there
are rational functions u(n, k) and v(n, k) such that

F(n+ 1, k)

F(n, k)
= u(n, k) and

F(n, k+ 1)

F(n, k)
= v(n, k) for all n, k.
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F(n+ 1, k)

F(n, k)
= u(n, k) and

F(n, k+ 1)

F(n, k)
= v(n, k) for all n, k.

Examples:

• polynomials and rational functions such as n+ k or n
2k−7k+5n+1
nk2+k−n+9

• exponentials such as 2n or 2k

•
(
n
k

)
• products and quotients of hypergeometric terms

• if f(n, k) is hypergeometric, then so is
f(αn+ βk+ γ, δn+ ϵk+ ζ) for any α,β, δ, ϵ ∈ Z and any
constants γ, ζ.
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Def. A function f(n, k) is called a hypergeometric term if there
are rational functions u(n, k) and v(n, k) such that

F(n+ 1, k)

F(n, k)
= u(n, k) and

F(n, k+ 1)

F(n, k)
= v(n, k) for all n, k.

Note:

• If u and v have has or roots or poles in Z2, then f is uniquely
determined by u, v and f(0, 0).

• Typically, u and v do have roots or poles. In this case, manual
inspection may be required to check the results of a “formal”
computation.

• We must have u(n, k+ 1)v(n, k) = u(n, k)v(n+ 1, k).

• The definition extends naturally to more than two variables.
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Def. A function f(n, k) is called a hypergeometric term if there
are rational functions u(n, k) and v(n, k) such that

F(n+ 1, k)

F(n, k)
= u(n, k) and

F(n, k+ 1)

F(n, k)
= v(n, k) for all n, k.

Example:

(−1)j+k
(
j+ k

k+ l

)(
r

j

)(
n

k

)(
s+ n− j− k

m− j

)

8



Task:

• Given: a hypergeometric term f(n, k)

• Find: a recurrence for the sum
∑
k f(n, k).

Idea: find a recurrence for the summand f(n, k) that can be
translated into a recurrence for the sum.
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Example: f(n, k) =

(
n

k

)

f(n, k) = (−1)k
(
2n

n+ k

)2
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Example: f(n, k) =

(
n

k

)

f(n, k) = (−1)k
(
2n

n+ k

)2

f(n+ 1, k+ 1) − f(n, k) − f(n, k+ 1) = 0

∣∣∣∣ ∑
k
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(
2n

n+ k

)2

16(n+ 1)(2n+ 1)(4n+ 7)S(n)

− 2(4n+ 5)(8n2 + 20n+ 11)S(n+ 1)

+ (n+ 2)(2n+ 3)(4n+ 3)S(n+ 2) = 0
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Have: two recurrence equations

f(n+ 1, k) = u(n, k)f(n, k) f(n, k+ 1) = v(n, k)f(n, k)

whose coefficients may involve n and k.

Want: a recurrence equation (possibly of higher orders r, s)

a0,0(n)f(n, k) + a1,0(n)f(n + 1, k) + · · · + ar,0(n)f(n + r, k)

+a0,1(n)f(n, k + 1) + a1,1(n)f(n + 1, k + 1) + · · · + ar,1(n)f(n + r, k + 1)

+ . . . . . . . . . . . . . . . . . .

+a0,s(n)f(n, k + s) + a1,s(n)f(n + 1, k + s) + · · · + ar,s(n)f(n + r, k + s) = 0

whose coefficients may involve n BUT NOT k.

Such a recurrence can be found with linear algebra.
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For example, take r = 1 and s = 2.

a0,0(n)

f(n, k)

f(n, k)
f(n, k)

+ a1,0(n)

u(n, k)
f(n+ 1, k)

f(n, k)
f(n+ 1, k)

+ a0,1(n)

v(n, k)
f(n, k+ 1)

f(n, k)
f(n, k+ 1)

+ a1,1(n)

u(n, k+ 1)
f(n+ 1, k+ 1)

f(n, k)
f(n+ 1, k+ 1)

+ a0,2(n)

f(n, k+ 2)
f(n, k+ 2)

f(n, k)
v(n, k)v(n, k+ 1)

+ a1,2(n)

f(n+ 1, k+ 2)
f(n+ 1, k+ 2)

f(n, k)
v(n, k)v(n, k+ 1)u(n, k+ 1)

!
= 0

The left hand side is an explicit rational function in n and k whose
numerator depends linearly on the unknown coefficients ai,j(n).

Equate coefficients with respect to k to zero and solve the
resulting linear system.
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Example: f(n, k) =

(
n

k

)
.

13



Example: f(n, k) =

(
n

k

)
.

a0,0

(nk)
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n

k

)
+ a1,0

n+ 1

n+ 1− k
(n+1

k )
(nk)

(
n+ 1

k

)
+ a0,1

n− k

k+ 1

( n
k+1)
(nk)

(
n

k+ 1

)
+ a1,1

n+ 1

k+ 1

(n+1
k+1)
(nk)

(
n+ 1

k+ 1

)
!
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Example: f(n, k) =

(
n

k

)
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) !
= 0.
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Example: f(n, k) =

(
n

k

)
.

−n− 1 −n(n+ 1) −n− 1 −(n+ 1)2

−n 2n+ 1 −n− 1 n+ 1
1 −1 0 0



a0,0
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 !
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Example: f(n, k) =

(
n

k

)
.
a0,0
a0,1
a1,0
a1,1

 ∈ ⟨


−1
−1
0

1

⟩
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Example: f(n, k) =

(
n

k

)
.

−f(n, k) − f(n, k+ 1) + f(n+ 1, k+ 1) = 0
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Sister Celine’s Method

INPUT: a hypergeometric term f(n, k), specified by two rational
functions u(n, k), v(n, k).

OUTPUT: a linear recurrence with polynomial coefficients for the
sum S(n) :=

∑
k f(n, k).

1 choose r, s ∈ N
2 use linear algebra to search for a k-free recurrence of f(n, k) of

order r w.r.t. n and order s w.r.t. k.

3 if there is one, translate it to a recurrence for S(n) and return it.

4 otherwise, increase r and s and try again.
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Questions:

• Does every f(n, k) have a k-free recurrence?

No.

• Does every k-free recurrence translate into a nontrivial
recurrence for S(n)?

No.
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• Does every k-free recurrence translate into a nontrivial
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Fact. Every hypergeometric term f(n, k) can be written in the
form

q(n, k)ϕnψk
M∏
m=1

(amn+ bmk+ cm)!
em

for some rational function q, some constants ϕ,ψ, cm, and some
integers am, bm, em.
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Fact. Every hypergeometric term f(n, k) can be written in the
form

q(n, k)ϕnψk
M∏
m=1

(amn+ bmk+ cm)!
em

for some rational function q, some constants ϕ,ψ, cm, and some
integers am, bm, em.

Example: (
n

k

)
= n!k!−1(n− k)!−1
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Fact. Every hypergeometric term f(n, k) can be written in the
form

q(n, k)ϕnψk
M∏
m=1

(amn+ bmk+ cm)!
em

for some rational function q, some constants ϕ,ψ, cm, and some
integers am, bm, em.

Def. A hypergeometric term is called proper if it can be written as
above, but with q being a polynomial.

Theorem. Every proper hypergeometric term satisfies a k-free re-
currence of some orders r, s.
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Questions:

• Does every f(n, k) have a k-free recurrence? No.

Almost.

• Does every k-free recurrence translate into a nontrivial
recurrence for S(n)? No.
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Example. For f(n, k) =

(
n

k

)
we also have the k-free recurrence

f(n, k) − f(n+ 1, k+ 1)

− f(n, k+ 2) + f(n+ 1, k+ 2) = 0.

For the sum S(n) =
∑
k

(
n

k

)
, it implies

0 = 0.S(n) − S(n+ 1)

− S(n) + S(n+ 1) = 0.
Oups!
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Let’s try a bit harder.

k

f(n, k) −

k

f(n, k+ 2) −

k

f(n+ 1, k+ 1) +

k

f(n+ 1, k+ 2) = 0.

− (k+ 1)f(n, k+ 1) + (k+ 1)f(n, k+ 1) = 0.

− 2f(n, k+ 2) + 2f(n, k+ 2) = 0.

− f(n+ 1, k+ 2) + f(n+ 1, k+ 2) = 0.

Theorem (Wegschaider’s Lemma). This

↑
?

works always.
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0
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Write recurrences in terms of operators.

Sx · f(x) := f(x+ 1)
∆x · f(x) := f(x+ 1) − f(x)
x · f(x) = xf(x)

Note:

∆x = Sx − 1

Sxx = (x+ 1)Sx

x∆x = ∆xx− 1∑
k

∆k · f(n, k) = 0
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Write your k-free recurrence in the form(
P(n, Sn) + ∆kQ(n,∆k, Sn)

)
· f(n, k) = 0.

Then P(n, Sn) · S(n) = 0.

We are in trouble iff P is the zero operator.(
P(n, Sn) +

k

∆k

(∆kk− 1)−Q(n,∆k, Sn)︸ ︷︷ ︸
= P̃(n, Sn) + ∆kQ̃(n,∆k, Sn)

+∆kk

Q(n,∆k, Sn)
)
· f(n, k) = 0.

Iterate if necessary.

After at most deg∆k
Q repetitions, the result is nonzero.
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Questions:

• Does every f(n, k) have a k-free recurrence? Almost.

• Does every k-free recurrence translate into a nontrivial
recurrence for S(n)? No.

Yes.
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Summary.

• Sister Celine’s method applies to hypergeometric terms
f(n, k).

• The main step is the construction of a k-free recurrence
for f(n, k).

• We make an ansatz, reduce it to a rational function, equate
the numerator to zero, and solve a linear system.

• For proper hypergeometric terms, the search will succeed if
the orders of the recurrence are chosen sufficiently large.

• Every k-free recurrence for f(n, k) gives rise to a linear
recurrence for the sum S(n) =

∑
k f(n, k).

• Such a recurrence can be used to prove a conjectural closed
form expression for S(n).
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