$[>$ restart; $t 0:=$ time () :
$\gg H 0:=\operatorname{binomial}(n, k)^{\wedge} 7$;

$$
\begin{equation*}
H 0:=\binom{n}{k}^{7} \tag{1}
\end{equation*}
$$

$\overline{=}>H:=H 0 /(2 * n+3 * k)$;

$$
\begin{equation*}
H:=\frac{\binom{n}{k}^{7}}{2 n+3 k} \tag{2}
\end{equation*}
$$

The telescoper L in $\mathrm{Q}(\mathrm{n})[\mathrm{Sn}]$ of H is very large. Instead of computing L all at once, lets try to find factors of L, one at a time.

Factors correspond to submodules or quotient modules. Lets try to find some.

Finding a natural submodule \mathbf{N} of \mathbf{M}.

$\left[\right.$ Let Omega $=\mathrm{Q}(\mathrm{n}, \mathrm{k}) * \mathrm{H} 0$. This is a $\mathrm{Q}(\mathrm{n}, \mathrm{k})\left[\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1),{\left.\mathrm{Sk}, \mathrm{Sk}^{\wedge}(-1)\right] \text {-module. }}^{\text {. }}\right.$
Let $\mathrm{M}=$ Omega $/$ Delta_k(Omega $).$ This is a $\mathrm{Q}(\mathrm{n})\left[\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1)\right]$-module.
Goal: compute the telescoper of H , which is the minimal annihilator L for the image of H in M .
If you apply Sn or Sk to an element of Omega, then H 0 gets multiplied by:

$$
\left[\begin{array}{r}
>R 1:=\operatorname{simplify}\left(\text { convert }\left(\frac{\operatorname{subs}(n=n+1, H 0)}{H 0}, \text { GAMMA }\right)\right) \\
R 1:=-\frac{(n+1)^{7}}{(-n+k-1)^{7}} \tag{1.1}
\end{array}\right.
$$

$\overline{=}>R 2:=\operatorname{simplify}\left(\operatorname{convert}\left(\frac{\operatorname{subs}(k=k+1, H 0)}{H 0}\right.\right.$, GAMMA $\left.)\right)$;

$$
\begin{equation*}
R 2:=-\frac{(-n+k)^{7}}{(k+1)^{7}} \tag{1.2}
\end{equation*}
$$

Let N be the image of $\mathrm{Q}(\mathrm{n})[\mathrm{k}]\left[\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1)\right]^{*} \mathrm{H} 0 \quad$ in M .
This is a natural submodule of M that does NOT contain H. To see this, note that $\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1), \mathrm{Sk}, \mathrm{Sk}^{\wedge}(-1)$ can only introduce denominators of the form

$$
\mathrm{n}+\text { integer, } \mathrm{k}+\text { integer, } \mathrm{k}-\mathrm{n}+\text { integer }
$$

but not $2 \mathrm{n}+3 \mathrm{k}+$ integer.
The minimal annihilator of H in M / N is a right-factor R the telescoper L .

Computing the annihilator R of the image of H in M / N.

If $R(H)$ is zero in M / N, then $R(H)$ is in N, which means the denominator $2 n+3 k$ seen in H is gone. To get rid of this denominator, we need to cancel it against something with the same denominator.
$\left[>H_{-}\right.$shift $:=\operatorname{subs}(n=n+3, k=k-2, H) ;$

$$
\begin{equation*}
H_{-} \text {shift }:=\frac{\binom{n+3}{k-2}^{7}}{2 n+3 k} \tag{2.1}
\end{equation*}
$$

H_{-}shift and $\mathrm{Sn}^{\wedge} 3(\mathrm{H})$ have the same image in M because k-shifts act trivially on M .
Next, we want to find r in $Q(n)$ such that $r^{*} H$ has the same residue as H _shift (so that their denominators cancel).
$\overline{>}>$ RatFunction $:=$ simplify $\left(\right.$ convert $\left(H_{-}\right.$shift / H, GAMMA)) :
$r:=$ factor $($ subs $(k=-2 / 3 * n$, RatFunction $)$); \# quotient of residues

$$
\begin{equation*}
r:=\frac{1338925209984(n+2)^{7}(n+1)^{7} n^{7}(2 n+3)^{7}}{78125(5 n+12)^{7}(5 n+9)^{7}(5 n+6)^{7}(5 n+3)^{7}} \tag{2.2}
\end{equation*}
$$

$\overline{\mid>} R:=S n^{\wedge} 3-r ; \quad$ \# should cancel out $2 \cdot n+3 \cdot h$

$$
\begin{equation*}
R:=S n^{3}-\frac{1338925209984(n+2)^{7}(n+1)^{7} n^{7}(2 n+3)^{7}}{78125(5 n+12)^{7}(5 n+9)^{7}(5 n+6)^{7}(5 n+3)^{7}} \tag{2.3}
\end{equation*}
$$

$\overline{\mid}>R:=\operatorname{collect}($ primpart $(R, S n), S n$, factor $) ; \quad \#$ make R fraction-free.
$R:=78125 S n^{3}(5 n+12)^{7}(5 n+9)^{7}(5 n+6)^{7}(5 n+3)^{7}-1338925209984(n+2)^{7}(n$

$$
\begin{equation*}
+1)^{7} n^{7}(2 n+3)^{7} \tag{2.4}
\end{equation*}
$$

Even though the telescoper L of H is very large, we found an order-3
right-factor of L with practically zero CPU time!
The corresponding left-factor is the telescoper of $\mathrm{R}(\mathrm{H})$.
Lets compute this next.
R annihilates H in M / N, therefore, $\mathrm{R}(\mathrm{H})$ is in N .

A basis of \mathbf{N}.

N is the image of $\mathrm{Q}(\mathrm{n})[\mathrm{k}]\left[\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1)\right] * \mathrm{H} 0$ in M .
Reducing modulo Delta_ k (Omega), standard procedure in telescoping algorithms, will simplify every element of N to this form:

$$
\mathrm{R} * \mathrm{H} 0
$$

with R in $\mathrm{Q}(\mathrm{n})[\mathrm{k}]$ and $\operatorname{degree}(\mathrm{R}, \mathrm{k})<=6$. So this is a $\mathrm{Q}(\mathrm{n})$-basis of N :
Basis $=\left\{1, \mathrm{k}, \mathrm{k}^{\wedge} 2, \mathrm{k}^{\wedge} 3, \mathrm{k}^{\wedge} 4, \mathrm{k}^{\wedge} 5, \mathrm{k}^{\wedge} 6\right\} \quad$ (where we omitted the factor H 0$)$.
Conclusion: N is a $\mathrm{Q}(\mathrm{n})[\mathrm{Sn}]$-module of dimension 7.

So any element of N has an annihilator of order $<=7$.
$L=$ the annihilator of $R(H)$ times R.

Reducing $\mathbf{R}(\mathbf{H})$ to express it in terms of a basis of \mathbf{N}.

$\left[\begin{array}{l}>R H:=\text { lcoeff }(R, S n) * \operatorname{subs}(n=n+3, k=k-2, H)+\text { tcoeff }(R, S n) * H ;\end{array} \quad \begin{array}{l}R H \text { (} \quad=\frac{13125(5 n+12)^{7}(5 n+9)^{7}(5 n+6)^{7}(5 n+3)^{7}\binom{n+3}{k-2}^{7}}{2 n+3 k} \\ \quad-\frac{13209984(n+2)^{7}(n+1)^{7} n^{7}(2 n+3)^{7}\binom{n}{k}^{7}}{2 n+3 k}\end{array}\right.$

In order to represent $\mathrm{R}(\mathrm{H})$ with a rational function, we divide RH by H 0 :
$\overline{\gg R H d}:=\operatorname{normal}(\operatorname{simplify}(\operatorname{convert}(\operatorname{subs}(k=n-k, R H / H 0)$, GAMMA $))):$
\# subs($k=n-k .$.$) makes it easier to code the reduction:$
for j from 4 to 0 by -1 do
$G:=\operatorname{add}\left(c[i]^{*} k^{\wedge} i, i=0 . .6\right) /(k+j)^{\wedge}$ if $(j=0,0,7)$;
$G:=\operatorname{subs}(k=k+1, G)^{*}((n-k) /(k+1))^{\wedge} 7-G ;$
eq $:=\left\{\operatorname{coeffs}\left(\operatorname{rem}\left(\right.\right.\right.$ numer $\left(\right.$ normal $\left.\left.\left((R H d-G)^{*}(k+j+1)^{\wedge} 7\right)\right),(k+j+1)^{\wedge} 7, k\right)$, k) \};
$R H d:=\operatorname{normal}(R H d-\operatorname{subs}(\operatorname{solve}(e q,\{\operatorname{seq}(c[i], i=0 . .6)\}), G)) ;$
od:
Above we applied an ad-hoc reduction of $\mathrm{R}(\mathrm{H})$ modulo Delta_k(Omega), to write $\mathrm{R}(\mathrm{H})$ as a $\mathrm{Q}(\mathrm{n})$-linear combination of $\left\{1, \mathrm{k}, \mathrm{k}^{\wedge} 2, \mathrm{k}^{\wedge} 3, \mathrm{k}^{\wedge} 4, \mathrm{k}^{\wedge} 5, \mathrm{k}^{\wedge} 6\right\}$ (times H 0).

We'll actually use a slightly different basis, the reason will be explained in the next section.
$\left[>\right.$ BasisN $:=\left[1, u, u^{2}, u^{3}, v, v \cdot u, v \cdot u^{2}\right] ;$

$$
\begin{equation*}
\operatorname{BasisN}:=\left[1, u, u^{2}, u^{3}, v, v u, v u^{2}\right] \tag{4.2}
\end{equation*}
$$

where
$\overline{\mid>} u:=k^{*}(n-k) ; \quad$ \# Invariant under phi (more details in the next section)
$v:=k-(n-k) ; \quad$ \# Anti-invariant under phi

$$
\begin{gather*}
u:=k(n-k) \\
v:=2 k-n \tag{4.3}
\end{gather*}
$$

$\overline{>}>\left\{\operatorname{coeffs}\left(\operatorname{collect}\left(R H d-\operatorname{add}\left(c[i] * u^{\wedge} i, i=0 . .3\right)+v^{*} \operatorname{add}\left(d[i] * u^{\wedge} i, i=0 . .2\right), k\right), k\right)\right\}:$
Decomp $:=$ factor (solve(\%, $\{\operatorname{seq}(c[i], i=0 . .3), \operatorname{seq}(d[i], i=0 . .2)\}))$:
This computation wrote $\mathrm{R}(\mathrm{H})$ as a linear combination of BasisN (omitting the factor H 0).

Using automorphisms to construct submodules.

The Zeilberger program in Maple takes 31.5 seconds to compute the telescoper L of H.
It has order 10 . That is not surprising because R has order 3 , and $R(H)$ is in N, which is a module of dimension 7 .
We computed this order- 3 right-factor R of L in about 0.01 seconds, a tiny fraction of the time it takes to compute the full telescopers.

The idea was to compute in M / N instead of in M .
Lets try something similar for computing the telescoper of $R(H)$, the left-factor of L that we still have to find.

Let

$$
\text { phi: } \mathrm{N} \text {--> N send k to n-k. }
$$

This is an automorphism of N because $\mathrm{phi}(\mathrm{H} 0)=\mathrm{H} 0$.
It has order 2, so it has eigenvalues +1 and -1 .
Let $\mathrm{N}+$ be the eigenspace for +1 , and N - be the eigenspace for -1 .
If $u=k *(n-k)$ then $\operatorname{phi}(u)=u$. So a basis for $N+$ is: $1, u, u^{\wedge} 2, \ldots$
If $v=k-(n-k)$ then $\operatorname{phi}(v)=-v$. So a basis of $N-$ is: $v, v^{*} u, v^{\wedge} 2 * u, \ldots$
In a previous section, we wrote $\mathrm{R}(\mathrm{H})$ as a linear combination of the basis elements of $\mathrm{N}+$ and N -.
This gives us the projections of $\mathrm{R}(\mathrm{H})$ on $\mathrm{N}+$ and on N -.
Let $\mathrm{L}+$ be the annihilator of the projection of $\mathrm{R}(\mathrm{H})$ on $\mathrm{N}+$.
Let L - be the annihilator for the projection of $\mathrm{R}(\mathrm{H})$ on $\mathrm{N}-$.
To compute $\mathrm{L}+$ we first compute the action of Sn on the basis of $\mathrm{N}+$.
Then we get L+ via a cyclic vector computation.

The action of $\mathbf{S n}$ on a basis of $\mathbf{N}+$

Here we combine the basis elements in $\mathrm{B}+$ by taking a linear combination with variables $\mathrm{c}[\mathrm{i}]$ as weights. This way we can apply Sn to all elements of $\mathrm{B}+$ at once.

$$
\left[\begin{array}{l}
>B P:=\operatorname{add}\left(c[i]^{*} u^{\wedge} i, i=0 . .3\right) ; \\
B P:=c_{0}+c_{1} k(n-k)+c_{2} k^{2}(n-k)^{2}+c_{3} k^{3}(n-k)^{3} \tag{6.1}
\end{array}\right.
$$

Apply Sn to "basis" BP:
$\left[\begin{array}{r}>\operatorname{SnBP}:=\operatorname{subs}(n=n+1, B P) *((n+1) /(n-k+1))^{\wedge} 7: \\ \operatorname{Sn} B P:=\operatorname{subs}(k=n-k \operatorname{Sn} B P) .\end{array}\right.$
$\operatorname{SnBP}:=\operatorname{subs}(k=n-k, \operatorname{SnBP}):$
Take a generic element of Delta_k(Omega) (with the factor H 0 removed)
$\overline{ } \gg G:=\operatorname{add}\left(e[i]^{*} k^{\wedge} i, i=0 . .6\right):$
$\left\lfloor G:=\operatorname{subs}(k=k+1, G)^{*}((n-k) /(k+1))^{\wedge} 7-G:\right.$
Now reduce modulo G; compute the unknown coefficients in G.
$\overline{>}$ sol $:=\operatorname{solve}\left(\left\{\operatorname{coeffs}\left(\operatorname{rem}\left(\operatorname{normal}\left((\operatorname{SnBP}-G)^{*}(k+1)^{\wedge} 7\right),(k+1)^{\wedge} 7, k\right), k\right)\right\}\right.$, indets (G) minus $\{k, n\})$:
$\operatorname{SnBP}:=\operatorname{normal}(\operatorname{SnBP}-\operatorname{subs}(\operatorname{sol}, G)):$
Rewrite in terms of the basis $1, \mathrm{u}, \mathrm{u}^{\wedge} 2, \ldots$ of $\mathrm{N}+$ instead of the basis $1, \mathrm{k}, \mathrm{k}^{\wedge} 2, \ldots$ of N .
Then we can read off the matrix M.
[>SnBP:=evala $(\operatorname{subs}(k=\operatorname{RootOf}(u-U, k), \operatorname{SnBP})): \#$ Write SnBP in terms of u instead of k. $M:=\operatorname{Matrix}([\operatorname{seq}([\operatorname{seq}(f a c t o r(\operatorname{coeff}(\operatorname{coeff}(\operatorname{SnBP}, c[i]), U, j)), i=0 . .3)], j=0 . .3)])$;
$M:=\left[\left[\frac{1717 n^{6}+1293 n^{5}+730 n^{4}+306 n^{3}+93 n^{2}+19 n+2}{(n+1)^{6}}\right.\right.$, $\frac{\left(462 n^{5}+330 n^{4}+165 n^{3}+55 n^{2}+11 n+1\right) n}{(n+1)^{4}}$,
$\left.\frac{\left(126 n^{4}+84 n^{3}+36 n^{2}+9 n+1\right) n^{2}}{(n+1)^{2}},\left(35 n^{3}+21 n^{2}+7 n+1\right) n^{3}\right]$,
$\left[-\frac{14\left(643 n^{4}+355 n^{3}+138 n^{2}+34 n+4\right)}{(n+1)^{6}}\right.$,
$-\frac{2441 n^{4}+1315 n^{3}+485 n^{2}+111 n+12}{(n+1)^{4}},-\frac{672 n^{4}+348 n^{3}+117 n^{2}+23 n+2}{(n+1)^{2}}$,
$\left.-\left(189 n^{3}+91 n^{2}+25 n+3\right) n\right]$,
$\left[\frac{42\left(263 n^{2}+75 n+10\right)}{(n+1)^{6}}, \frac{14\left(215 n^{2}+61 n+8\right)}{(n+1)^{4}}, \frac{5\left(167 n^{2}+47 n+6\right)}{(n+1)^{2}}, 238 n^{2}\right.$
$+66 n+8]$,
$\left.\left[-\frac{1848}{(n+1)^{6}},-\frac{504}{(n+1)^{4}},-\frac{140}{(n+1)^{2}},-40\right]\right]$
M gives the action of Sn on the basis $\mathrm{B}+$

Computing L+ with a cyclic vector computation using matrix M.

The projection of $\mathrm{R}(\mathrm{H})$ on $\mathrm{N}+$ written in terms of basis $\mathrm{B}+$ is given by:
$[>\quad V[0]:=[\operatorname{seq}(\operatorname{subs}(\operatorname{Decomp}, c[i]), i=0 . .3)]:$

Use matrix M (the action of Sn on $\mathrm{B}+$) to apply Sn four times:
$[>\boldsymbol{f o r} i \boldsymbol{t o} 4$ do
$V[i]:=\operatorname{map}($ factor, $\operatorname{convert}(M . \operatorname{Vector}(\operatorname{subs}(n=n+1, V[i-1]))$, list $))$
od:

A linear relation between $\mathrm{V}[0]$.. $\mathrm{V}[4]$ gives L _plus:
$\overline{>}$ L_plus $:=\operatorname{subs}\left(\operatorname{solve}\left(\left\{\operatorname{op}\left(\operatorname{add}\left(c[i]^{*} \sim V[i], i=0 . .4\right)\right)\right\},\{\operatorname{seq}(c[i], i=0 . .4)\}\right), \operatorname{add}\left(c[i]^{*} \operatorname{Sn}\right.\right.$ ^ $i, i=0 . .4)$):
L_plus $:=\operatorname{collect}\left(\right.$ primpart $\left.\left(L _p l u s, S n\right), S n\right): \#$ Large expression, use ; instead of : to view it

The same computation for L -

```
> BM := \(v^{*} \operatorname{add}\left(d[i]^{*} u^{\wedge} i, i=0 . .2\right): \#\) Basis for \(N\) -
    \# Applying Sn:
    \(\operatorname{SnBM}:=\operatorname{subs}(n=n+1, B M) *((n+1) /(n-k+1))^{\wedge} 7:\)
    \(\operatorname{SnBM}:=\operatorname{subs}(k=n-k, \operatorname{SnBM}):\)
    sol \(:=\operatorname{solve}\left(\left\{\operatorname{coeffs}\left(\operatorname{rem}\left(\right.\right.\right.\right.\) normal \(\left.\left.\left.\left((\operatorname{SnBM}-G)^{*}(k+1)^{\wedge} 7\right),(k+1)^{\wedge} 7, k\right), k\right)\right\}\),
    indets \((G) \operatorname{minus}\{k, n\})\) :
    \(\operatorname{SnBM}:=\operatorname{normal}(\operatorname{SnBM}-\operatorname{subs}(\operatorname{sol}, G)): \#\) Reduction mod Delta_k(Omega \().\)
    \(\operatorname{SnBM}:=\operatorname{evala}(\operatorname{subs}(k=\operatorname{RootOf}(u-U, k),-\operatorname{SnBM} / v)): \#\) Write SnBM in terms of \(B-\)
    \(M:=\operatorname{Matrix}([\operatorname{seq}([\operatorname{seq}(f a c t o r(\operatorname{coeff}(\operatorname{coeff}(\operatorname{SnBM}, d[i]), U, j)), i=0 . .2)], j=0 . .2)])\);
    \(M:=\left[\left[-\frac{131 n^{4}+160 n^{3}+100 n^{2}+34 n+5}{(n+1)^{4}},-\frac{42 n^{4}+48 n^{3}+27 n^{2}+8 n+1}{(n+1)^{2}}\right.\right.\),
    \(\left.-\left(14 n^{3}+14 n^{2}+6 n+1\right) n\right]\),
    \(\left[\frac{14\left(17 n^{2}+10 n+2\right)}{(n+1)^{4}}, \frac{79 n^{2}+46 n+9}{(n+1)^{2}}, 28 n^{2}+16 n+3\right]\),
    \(\left.\left[-\frac{42}{(n+1)^{4}},-\frac{14}{(n+1)^{2}},-5\right]\right]\)
```

This matrix gives the action of Sn on the basis B-
Use it to compute L-, the annihilator of the projection of $\mathrm{R}(\mathrm{H})$ on N -.
$>V[0]:=[\operatorname{seq}(\operatorname{subs}($ Decomp,$d[i]), i=0 . .2)]:$
\# Projection of $R(H)$ on N - written in terms of basis B -
for i to 3 do
$V[i]:=\operatorname{map}($ factor, $\operatorname{convert}(M . \operatorname{Vector}(\operatorname{subs}(n=n+1, V[i-1]))$, list $))$
od:
L_{-}minus $:=\operatorname{subs}(\operatorname{solve}(\{\operatorname{op}(\operatorname{add}(d[i] * \sim V[i], i=0 . .3))\},\{\operatorname{seq}(d[i], i=0 . .3)\}), \operatorname{add}(d[i]$ * $\left.\left.S n^{\wedge} i, i=0 . .3\right)\right):$

L_minus $:=\operatorname{collect}\left(\operatorname{primpart}\left(L _m i n u s, S n\right), S n\right):$

The complete telescoper for \mathbf{H}.

We started by computing a right-factor R of the telescoper.
This R was the minimal operator that can remove the $2 \mathrm{n}+3 \mathrm{k}$ denominator, i.e. the minimal operator for which $R(H)$ is in N.

The corresponding left-factor is the telescoper of $\mathrm{R}(\mathrm{H})$.
Because we found an automorphism, we could decompose N as a direct sum of two submodules, $\mathrm{N}+$ and N-.
Annihilating $\mathrm{R}(\mathrm{H})$ is equivalent to annihilating both of its components.
The annihilators of these components were L+ and L-
Hence: The telescoper of $R(H)$ is $\quad \operatorname{LCLM}(\mathrm{L}+, \mathrm{L}-)$.
and: \quad The telescoper of H is $\quad \mathrm{LCLM}(\mathrm{L}+, \mathrm{L}-)$ times R .
This telescoper is of the form: $\mathrm{L}=\mathrm{LCLM}$ (order4, order3) times order3.
We computed these factors $\mathrm{R}, \mathrm{L}+$, and $\mathrm{L}-$ in this amount of time:
$[>\operatorname{time}()-t 0$;

$$
\begin{equation*}
1.874 \tag{9.1}
\end{equation*}
$$

Which is many times faster than Maple's Zeilberger algorithm takes to compute L .
Moreover, the factored form is more useful since it is much smaller in size.
Elements of N - are anti-symmetric and contribute 0 to the sequence $\operatorname{sum}(\mathrm{H}, \mathrm{k}=0 . . \mathrm{n})(\mathrm{n}=1,2, \ldots)$.
So L- contributes 0 to the sequence.
Hence: L+ times R will also annihilate the sequence.
It has order 7 and is the minimal recurrence.

Exercises

Let $\mathrm{H} 0=\operatorname{binomial}(\mathrm{n}, \mathrm{k})^{\wedge} \mathrm{s}$.
Let Omega $=\mathrm{Q}(\mathrm{n}, \mathrm{k}) * \mathrm{H} 0$.
Let $\mathrm{M}=$ Omega $/$ Delta_ $^{\mathrm{k}} \mathrm{k}($ Omega $)$.
Let $\mathrm{N}=$ image of $\mathrm{Q}(\mathrm{n})\left[\mathrm{Sn}, \mathrm{Sn}^{\wedge}(-1)\right]^{*} \mathrm{H} 0$ in M .
Let $\mathrm{r}=$ floor $(\mathrm{s}+1) / 2)$.
(1) Show that Delta_k(Omega) contains polynomials with k-degrees $2 * r-1,2 * r, 2 * r+1, \ldots$
(2) Show that $\left\{1, \mathrm{k}, \mathrm{k}^{\wedge} 2, \ldots, \mathrm{k}^{\wedge}\left(2^{*} \mathrm{r}-2\right)\right\}$ (times H 0$)$ is a basis of N , so $\operatorname{dim}(\mathrm{N})=2 * \mathrm{r}-1$.
(3) Show that $\left\{1, u, u^{\wedge} 2, \ldots, u^{\wedge}(r-1)\right\}$ (times H0) is a basis of $N+$,
so $\operatorname{dim}(\mathrm{N}+)=\mathrm{r}$.
(4) Show that the telescoper of H 0 has order at most r . (Theorem 1.1 in [Straub, Zudilin] says that the order is at least r)
(5) Show that $\left\{v, u^{*} v, \ldots, u^{\wedge}(r-2)^{*} v\right\}$ (times H0) is a basis of $N-$, so $\operatorname{dim}(\mathrm{N}-)=\mathrm{r}-1$.
(6) Show that the telescoper of v * H 0 has order at most $\mathrm{r}-1$, where $\mathrm{v}=2 * \mathrm{k}-\mathrm{n}$.

Research questions

The characteristic polynomials of $\mathrm{L}+$ and $\mathrm{L}-$ are:
$\left[>\operatorname{factor}\left(\operatorname{primpart}\left(l \operatorname{coeff}\left(L _\right.\right.\right.\right.$plus, $\left.\left.\left.n\right)\right)\right)$; factor $\left(\operatorname{primpart}\left(l \operatorname{lcoeff}\left(L_{-}\right.\right.\right.$minus, $\left.\left.\left.n\right)\right)\right)$;

$$
\begin{gather*}
(S n-128)\left(S n^{3}+57 S n^{2}-289 S n-1\right) \\
S n^{3}+57 S n^{2}-289 S n-1 \tag{11.1}
\end{gather*}
$$

The roots of the characteristic polynomial of Telescoper ($\left.\operatorname{binomial}(\mathrm{n}, \mathrm{k})^{\wedge} \mathrm{s}\right)$ are $\left\{\left(z+z^{\wedge}(-1)\right)^{\wedge} \mid z^{\wedge} s=1, z \neq-1, z^{\wedge} 2 \neq-1\right\}$, where the root $2^{\wedge} s$ appears only in $L+$ but not in L-.
(1): If L is the telescoper of H , how to compute invariant data (like the characteristic polynomial, or the p-curvature) directly from H , without computing L ?
(2): Apart from denominators or automorphisms, what other ways can we find submodules?
(3): Let M0 consist of those elements h in M for which sum_ $k(h)=0$ for all $n \gg 0$.

In our example, N - is a submodule of M0.
But in general, how do we decide if M 0 is $\{0\}$ or not? How do we find elements?
Let L _min $:=$ MinimalRecurrence($\operatorname{sum} k(h)$). If $L \neq L_{-} \min$ then we found a non-zero element L_min(h) in M0, but found it too late to expedite the computation of L.
(4): How to best implement submodules for hypergeometric/hyperexponential/D-finite telescoping?
[>

