;> restart; t0 := time( ) :
> HO0 := binomial(n, k)"7;

HO = (2)7 ()
(> Hi= HO/(2%n +3%k); 7
n

[ The telescoper L in Q(n)[Sn] of H is very large. Instead of computing L all at once,
lets try to find factors of L, one at a time.

| Factors correspond to submodules or quotient modules. Lets try to find some.

Finding a natural submodule N of M.
[ Let Omega = Q(n, k) * HO. This is a Q(n,k)[Sn, Sn”(-1), Sk, Sk”*(-1)]-module.

Let M = Omega / Delta_ k( Omega ). This is a Q(n)[Sn, Sn”(-1)]-module.
Goal: compute the telescoper of H, which is the minimal annihilator L for the image of H in M.

If you apply Sn or Sk to an element of Omega, then HO gets multiplied by:

> Rl = Simphﬁ/[convert( sub S(”:; 0+ L, H0) ,GAMMA] );
Rl = —— (1) - (1.1)
] (—n+k—1)
> R2:= Simpllfj/(convert( Subs(k:}_l[{;_ 1, HO) , GAMMA) J;
R2 = —w (1.2)

Let N be the image of Q(n)[k][ Sn, Sn*(-1) ] * HO in M.

This is a natural submodule of M that does NOT contain H. To see this,
note that Sn, Sn”(-1), Sk, Sk*(-1) can only introduce denominators of the form

n + integer, k + integer, k-n + integer

but not 2n + 3k + integer.

| The minimal annihilator of H in M/N is a right-factor R the telescoper L.

Computing the annihilator R of the image of H in M/N.



If R(H) is zero in M/N, then R(H) is in N, which means the denominator 2n + 3k seen in H is gone.
To get rid of this denominator, we need to cancel it against something with the same denominator.

> H shift == subs(n=n+3,k=k—2,H);

(n + 3)7
. \k—2
H shift == EPIEYS 2.1)
H_shift and Sn”*3(H) have the same image in M because k-shifts act trivially on M.
Next, we want to find r in Q(n) such that r*H has the same residue as H_shift
(so that their denominators cancel).
(> RatFunction = simplify (convert(H_shift | H, GAMMA)) :
r = factor (subs (k= —2/3 * n, RatFunction)); # quotient of residues
1338925209984 (n+2) (n+ 1) n’ (2n+3)’ 2.2)
ro= .
78125 (5n+12) (50 +9) (5n+6) (5n+3)
(> R= Sn"3 —r; # should cancel out 2 -n+3-h
1338925209984 2)’ D'n" 2n+3)
R = S’ — nr2) (¥ 1) n (2n¥3) @.3)
78125 (5n+12) (5n+9) (5n+6) (5n+3)
(> R= collect( primpart(R, Sn), Sn, factor); # make R fraction-free.

R:=7812580" (5n+12) (5n+9) (5n+6) (5n+3) — 1338925209984 (n +2)" (n (2.4)
+ 1) 0 (2n+3)

Even though the telescoper L of H is very large, we found an order-3
right-factor of L with practically zero CPU time!

The corresponding left-factor is the telescoper of R(H).

Lets compute this next.
| R annihilates H in M/N, therefore, R(H) is in N.

A basis of N.

N is the image of Q(n)[k][ Sn, Sn*(-1) ] * HO in M.
Reducing modulo Delta k(Omega), standard procedure in telescoping algorithms,
will simplify every element of N to this form:
R * HO
with R in Q(n)[k] and degree(R, k) <= 6. So this is a Q(n)-basis of N:
Basis = {1, k, k"2, k"3, k"4, k"5, k"6} (where we omitted the factor HO).

Conclusion: N is a Q(n)[Sn]-module of dimension 7.



So any element of N has an annihilator of order <= 7.

L = the annihilator of R(H) times R.

Reducing R(H) to express it in terms of a basis of N.

(> RH = lcoeff (R, Sn) * subs(n=n+ 3, k= k=2, H) + icoeff (R, Sn) * H,
7
78125 (5n+12) (5n+9) (5n+6) (5n+3) (Zf;]

RH := PRy “4.1)

7
1338925209984 (n +2)" (n+ 1)"n" (2n+3)’ [Z]

2n+ 3k

In order to represent R(H) with a rational function, we divide RH by HO:

(> RHA = normal (simplify (convert(subs (k=n—k, RH/H0), GAMMA))) :
# subs(k = n-k ..) makes it easier to code the reduction:

forjfrom 4 to 0 by —1 do
G = add(c[i]*k™i,i=0..6)/(k+ /)i (j=0,0,7);
G :=subs(k=k+1,G)* ((n—k)/ (k+ 1)) — G;
eq = {coeffs (rem (numer (normal( (RHd — G)* (k+j+ 1)*7)), (k+j+ 1)"7, k),
k) )
RHd = normal(RHd — subs(solve(eq, {seq(c[i],i=0..6)}),G));
od:

Above we applied an ad-hoc reduction of R(H) modulo Delta k( Omega ),
to write R(H) as a Q(n)-linear combination of {1, k, k"2, k"3, k"4, k"5, k*6} (times HO).

We'll actually use a slightly different basis, the reason will be explained in the next section.

B . 2 3 2
> BasisN = [l,u,u L, W, V,veu, v ];

BasisN = [1, u, uz, u3, v, Vu, Vv uz] 4.2)
where
(> = k* (n—k);  # Invariant under phi (more details in the next section)
v:i=k — (n—k); # Anti-invariant under phi
u:=k(n—=k)
vi=2k—n 4.3)
[ > {coeffs (collect(RHd — add(c[i]* u™i,i=0.3) + v*add(d[i]*u"i,i=0.2),k), k)}
Decomp = factor (solve(%, {seq(c[i],i=0.3),seq(d[i],i=0.2)})):

| This computation wrote R(H) as a linear combination of BasisN (omitting the factor HO).



Using automorphisms to construct submodules.
The Zeilberger program in Maple takes 31.5 seconds to compute the telescoper L of H.

It has order 10. That is not surprising because R has order 3, and R(H) is in N,
which is a module of dimension 7.

We computed this order-3 right-factor R of L in about 0.01 seconds,

a tiny fraction of the time it takes to compute the full telescopers.

The idea was to compute in M/N instead of in M.
Lets try something similar for computing the telescoper of R(H),
the left-factor of L that we still have to find.

Let
phi: N --> N send k to n-k.

This is an automorphism of N because phi(HO) = HO.
It has order 2, so it has eigenvalues +1 and -1.
Let N+ be the eigenspace for +1, and N- be the eigenspace for -1.

Ifu =k * (n-k) then phi(u) = u. So abasis for N+is: 1,u,u"2, ....
If v =k - (n-k) then phi(v) = -v. So abasis of N-1is: v, v *u, v*2 *u, ...

In a previous section, we wrote R(H) as a linear combination of the basis elements of N+ and N-.
This gives us the projections of R(H) on N+ and on N-.

Let L+ be the annihilator of the projection of R(H) on N+.
Let L- be the annihilator for the projection of R(H) on N-.

To compute L+ we first compute the action of Sn on the basis of N+.
Then we get L+ via a cyclic vector computation.

The action of Sn on a basis of N+

Here we combine the basis elements in B+ by taking a linear combination with variables c[i] as weights.
This way we can apply Sn to all elements of B+ at once.

(> BP = add(c[i]*u’i,i=0.3);
BP:=c,+c k(n—k +c, (n—k’+c, K (n—k)® (6.1)

Apply Sn to "basis" BP:

(> SnBP = subs(n=n+ 1,BP)* ((n+ 1)/ (n—k+ 1))"7:
SnBP := subs(k=n — k, SnBP) :

Take a generic element of Delta_k( Omega) (with the factor HO removed)

(> G = add(e[i]*k"i,i=0.6) :



G :=subs(k=k+1, G)* ( (n—k)/(k+1))*7 — G:

Now reduce modulo G; compute the unknown coefficients in G.

> sol := solve( {coeffs (rem (normal( (SnBP — G) * (k+ 1)*7 ), (k+ 1)"7,k), k) }, indets (G)
minus {k,n}):
SnBP := normal(SnBP — subs(sol, G)) :

Rewrite in terms of the basis 1, u, u”2, ... of N+ instead of the basis 1, k, k"2, ... of N.
Then we can read off the matrix M.

=> SnBP := evala(subs (k= RootOf (u — U, k), SnBP)) : # Write SnBP in terms of u instead of k.
M = Matrix( [seq([seq( factor (coeff (coeff (SnBP, c[i]), U,j)),i=0.3)],j=0.3)]);

Vo 1717n6+1293n5+730n4+386n3—|—93n2+19n—|—2’ 62)
(n+1)
(462 n° +330n" +1650° + 550" + 11n+1)n
(n+1)* ’
126n* +84n° +36n°+9n+1) n’
( norsin n2—|- nt )n,(35n3+21n2+7n+1)n3,
(n+1)
14 (6431 +3551n° + 138 1° + 340 + 4)
(n+1)° ’
2441 n" 413150  +485 0  + 111 n+ 12 672n" +3480° + 1170 +23n+2
(n+1)° ’ (n+1)° ’

— (1897 +91n* +25n+3) n

3

42 (263n° +75n+10) 14 (2150 +61n+8) 5(167n° +47n+6) 238 2
’ 5 . n
(n+1)° (n+1)* (n+1)
+66n+ 8|,
1848 504 140
- 6° 40 7> —40
(n+1) (n+1) (n+1)

| M gives the action of Sn on the basis B+
Computing L+ with a cyclic vector computation using matrix M.
The projection of R(H) on N+ written in terms of basis B+ is given by:

|:> V0] := [seq(subs(Decomp, c[i]),i=0.3)]:



Use matrix M (the action of Sn on B+) to apply Sn four times:

> forito4do
V{i] == map( factor, convert(M . Vector (subs(n=n + 1, V[i—1])), list))
od:

A linear relation between V[0] .. V[4] gives L plus:

[ > L plus := subs (solve({op(add(c[i]*~V[i],i=0.4))}, {seq(c[i],i=0.4)}),add(c[i]* Sn
M,i=0.4)):
L plus := collect( primpart(L_plus, Sn), Sn) : # Large expression, use ; instead of : to view it

The same computation for L-

> BM = v*add(d[i]*u”i,i=0.2) :# Basis for N-
# Applying Sn:
SnBM = subs(n=n+1,BM)* ((n+ 1)/ (n—k+1))"7:
SnBM := subs(k=n—k, SnuBM) :

sol := solve( {coeffs (rem (normal( (SnBM — G) * (k+ 1)*7 ), (k+ 1)"7,k), k) },
indets (G) minus {k,n}) :

SnBM := normal(SnBM — subs (sol, G)) : # Reduction mod Delta_k( Omega ).

SnBM := evala(subs (k= RootOf (u — U, k), —SnBM/v)) : # Write SnBM in terms of B-

M = Matrix( [seq([seq( factor (coeff (coeff (SnBM, d[i]), U,j)),i=0.2)],j=0.2)]);

v H_ 131n" +160n° + 1007 +34n+5  42n' +48n° +27n +8n+ 1

- (n+1)* ' (n+1)°

; (CRY)

2

— (147’ + 140" +6n+1)n

14 (17 n* + 10 2)  79n* + 46 9
[ (170" + 107 +2) WAAONED e l6n+3],

(n+1)* ’ (n+1)°

[_ 42 14 _5H
(n+ 1) (n+1)*

This matrix gives the action of Sn on the basis B-

| Use it to compute L-, the annihilator of the projection of R(H) on N-.
> V[0] = [seq(subs(Decomp,d[i]),i=0.2)]:
# Projection of R(H) on N- written in terms of basis B-
forito 3 do
V[i] := map( factor, convert(M . Vector (subs(n=n + 1, V[i—1])), list))
od:
L minus := subs (solve({op(add(d[i]*~V][i],i=0.3))}, {seq(d[i],i=0.3)}), add(d[i]
*Sn™i,i=0.3)):

L minus := collect( primpart(L_minus, Sn), Sn) :

The complete telescoper for H.



We started by computing a right-factor R of the telescoper.
This R was the minimal operator that can remove the 2n+3k denominator,
1.e. the minimal operator for which R(H) is in N.

The corresponding left-factor is the telescoper of R(H).

Because we found an automorphism, we could decompose N as a direct sum of two submodules, N+ and
N-.

Annihilating R(H) is equivalent to annihilating both of its components.

The annihilators of these components were L+ and L-

Hence: The telescoper of R(H) is LCLM( L+, L-).
and: The telescoper of H is LCLM(L+, L-) times R.
This telescoper is of the form: L = LCLM( order4, order3 ) times order3.

We computed these factors R, L+, and L- in this amount of time:

> time( ) — 10;
1.874 .1)

Which is many times faster than Maple's Zeilberger algorithm takes to compute L.
Moreover, the factored form is more useful since it is much smaller in size.

Elements of N- are anti-symmetric and contribute 0 to the sequence sum(H, k = 0..n) (n=1,2,...).
So L- contributes 0 to the sequence.

Hence: L+ times R will also annihilate the sequence.
| It has order 7 and is the minimal recurrence.

Exercises

Let HO = binomial(n, k)”"s.
Let Omega = Q(n,k) * HO.

Let M = Omega / Delta_k(Omega).
Let N = image of Q(n)[Sn, Sn”(-1)] * HO in M.

Let r = floor( (s+1)/2).
(1) Show that Delta k( Omega ) contains polynomials with k-degrees 2*r - 1, 2*r, 2*r + 1, ...

(2) Show that { 1, k, k"2, ..., k*(2*r - 2) } (times HO) is a basis of N,
so dim(N) = 2*r - 1.

(3) Show that { 1,u,u"2, ..., u(r-1) } (times HO) is a basis of N+,



so dim(N+) =r.

(4) Show that the telescoper of HO has order at mostr.
(Theorem 1.1 in [Straub, Zudilin] says that the order is at least r)

(5) Show that { v, u*v, ..., u(r-2)*v } (times HO) is a basis of N-,
so dim(N-) =r-1.

(6) Show that the telescoper of v * HO has order at most r-1,
where v = 2%k - n.

Research questions
The characteristic polynomials of L+ and L~ are:
> factor (primpart(lcoeff (L _plus, n))); factor(primpart(lcoeff (L_minus, n)));
(Sn — 128) (Sn’ + 57 Sn® — 289 Sn — 1)
Sn’ 4 57 Sn” — 289 Sn — 1 (11.1)

[ The roots of the characteristic polynomial of Telescoper( binomial(n,k)"s ) are
{(z+z"-1)*s |z"s=1, z # -1, "2 # -1 }, where the root 2"'s appears only in L+ but not in L-.

(1): If L is the telescoper of H, how to compute invariant data (like the characteristic polynomial,
or the p-curvature) directly from H, without computing L?

(2): Apart from denominators or automorphisms, what other ways can we find submodules?

(3): Let MO consist of those elements h in M for which sum_k(h) = 0 for all n >> 0.
In our example, N- is a submodule of MO.
But in general, how do we decide if MO is {0} or not? How do we find elements?

Let L _min := MinimalRecurrence( sum _k(h) ). If L # L min then we found a non-zero
element L_min(h) in MO, but found it too late to expedite the computation of L.

| (4): How to best implement submodules for hypergeometric/hyperexponential/D-finite telescoping?
>




