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Fix a weighted W = {(wi)ijep}.
Generating function

QX,Y,t)=> q(i,j, )X Yt

ik

Step Inventory: S(X,Y) =3, wi XY
Its negative degrees in X and Y are at most 1 (small backward steps!)

From now on, assume that at least one positive and one negative step in the X
and Y-directions

Kernel polynomial: K(X,Y,t) = XY (1—tS(X,Y))
Functional Equation: via an induction on the length
K(X,Y,t)Q(X,Y,t) = Xy — AX) + B(Y).

Prop.: Q(X,Y,t)is X, Y-D-finite over Q(X, Y, t) < A(X) is X-D-finite over
Q(X,t) & B(Y) is Y-D-finite over Q(Y, t).
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Fix an unweighted model WW with small steps.
Consider the group of the walk G associated to W.
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with H(X, Y, t) is regular.
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Q(X,Y,t) is D-finite iff non-constant invariants
F(X) - G(Y) = K(Xa Ya t)H(X7 Y7 t)a

Q(X,y, t) is algebraic iff non-constant invariants and XY decouples.

XY = f(X) — g(Y) + K(X, Y, t)H (X, Y, 1),
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of the finite orbit-types for D C {—1,0,1,2}?

Bonnet-Hardouin (23):
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Algebricity proof for the weighted model Q;’“

I3



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1—-t5(X,Y)).
Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).

Define equivalence relations on pairs (u, v) and (¢/,v’) in K?



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1—-t5(X,Y)).
Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).

Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1—-t5(X,Y)).
Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).

Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')
> (u,v)~Y (v, V') if v=1v"and S(u,v) = S(, V')



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).
Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')
> (u,v)~Y (v, V') if v=1v"and S(u,v) = S(, V')
> =~ U



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).
Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')
> (u,v)~Y (v, V') if v=1v"and S(u,v) = S(, V')
> =~ U



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).
Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')
> (u,v)~Y (v, V') if v=1v"and S(u,v) = S(, V')
> =~ U

The orbit O of W is the equivalence class of (x,y) with respect to ~.



The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (w; ;)i j)ep, its step inventory

S(X,Y,t) ZW,JX \4

and its kernel polynomial

K(X,Y,t) = XY(1 - t5(X, Y)).

Fix two indeterminates (x, y) algebraically independent over Q.
Let K be an algebraic closure of Q(x, y).
Define equivalence relations on pairs (u, v) and (¢/,v’) in K?
> (u,v) ~* (v V') ifu=1u"and S(u,v) = S(', V')
> (u,v)~Y (v, V') if v=1v"and S(u,v) = S(, V')
> =~ U

The orbit O of W is the equivalence class of (x,y) with respect to ~.



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!

K(X,Y,t) = XY(1—t5(X, Y)).



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!
K(X,Y,t) = XY (1 - tS(X,Y)).

For (u,v) in O, (u,v) ~* (u',v') iff u= v and

K(u, v,#) =0

K 9 ,7
(v SGoy)

1 P
Stay))



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!
K(X,Y,t) = XY (1 - tS(X,Y)).
For (u,v) in O, (u,v) ~* (v, V") iff u = v’ and

1

’ _ 1 _
K(u,v,m)—K(u,v,W)—O

x-adjacencies of (u, v) Search all the roots of K(u, Y, ﬁ)



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!
K(X,Y,t) = XY (1 - tS(X,Y)).
For (u,v) in O, (u,v) ~* (v, V") iff u = v’ and

;1 1
K(u,v,m)—K(u,v,W)—O

x-adjacencies of (u, v) Search all the roots of K(u, Y, ﬁ)

y-adjacencies of (u, v) Search all the roots of K(X, v, —S(Xl y)).



Construction of the orbit via resultants

S(X,Y) is constant on the orbit equal to S(x,y)!
K(X,Y,t) = XY (1 - tS(X,Y)).
For (u,v) in O, (u,v) ~* (u',v') iff u=u" and

1

’ _ 1 _
K(u,v,m)—K(u,v,W)—O

x-adjacencies of (u, v) Search all the roots of K(u, Y, ﬁ)

y-adjacencies of (u, v) Search all the roots of K(X, v, —S(Xl y)).

Computation of the coordinates of the orbit via resultants.
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Example: For Gessel model,

7

K(X,Y)=XY —t(X’Y + Y + 1+ X?Y?)

v, x)

N
e

(xv,¥)

(x,¥) (v,x)

/
-

Gessel orbit is in Q(x, y)?

X, Xy) (v, x¥)

For small steps, the orbit © C Q(x,y)? and when finite, it is a cycle.

(u, v) ~ (u, V') iff (u,v') = (u, ¥(u,v))
(u, v) ~ (u, V') iff (u,v') = (®(u, v), V)

with &, W two birational involutions introduced by Bousquet-Mélou and
Mishna.
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Bostan-Bousquet-Mélou-Melczer (21)
D cC{-1,0,1,2}?

. Classification of the finite orbit-types for

P <
L >
I
NN

O1s
VA
N\
/ Y \
(@P)

A sample of finite orbits



Orbit-types

Orbit of G;*

(92, 2)
(x2)
(x:y)
(z.y) (—5%:)
(z.5)
(9z.3)
(=45 (=%.-%)
v

z is algebraic of degree 2 over Q(x, y)!
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The Galois extension and the group of the walk

Set k = Q(ﬁ) and k(O) the field generated by the coordinates of the orbit.

Bonnet-Hardouin (23) The following field extensions are Galois

k(O

G = Gal (k(O)|k(x)) K(t.y) Gy = Gal (k(O)|k(y))

k(x) k(y)
The group of the walk G is defined as the subgroup of field automorphisms of
k(O) generated by G, and G, .
G acts faithfully and transitively on the orbit O

via a finite set of generators (5, ..., 1%, 1) y

Ys...,t]. (even when G is infinite)
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If W has small steps then k(O) = Q(x, y).
k(x) C Q(x,y) and k(y) C Q(x,y) are algebraic of degree 2
because K(x,y, sp5y) = 0 and K(X, Y, 555) of degree 2in X and Y.

k(x,y) = k(O
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Small steps case

If W has small steps then k(O) = Q(x, y).
k(x) C Q(x,y) and k(y) C Q(x,y) are algebraic of degree 2
because K(x,y, sp5y) = 0 and K(X, Y, 555) of degree 2in X and Y.

k(x,y) = k(O

- % \/ .

G is a dihedral group generated by

C(xy) = (x, W(x,y)) and ' (x,y) = (®(x,¥), )

with ®, W the birational involutions generating the group of the walk of
Bousquet-Mélou-Mishna.

Geometric result |G| finite = |G| < 12.
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The example of G3*

k(0) = k(x,y,2)

N\

k(x) k(y)

7./27. % 7.2, S3

Here Gal(k(O|k(x,y)) = Z/2Z.
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Large steps case

Fried's theorem applied to walks

The following statements are equivalent
» The orbit is finite
» G is finite
» There exists some non-constant invariants

F(X) € Q(X,t)\ Q(t) and G(Y) € Q(Y,t)\ Q(t) such that
F(X)—G(Y)=K(X,Y,t)H(X,Y,t),

with H-regular.

. A
Invariants for G;"*

(=220 X3 —p X = X041 X2 +13) 2 A2 —p) 40X vy Y3
th(X2+H)2 ’ Y2t
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Algorithmic procedure to compute invariants

The evaluation isomorphism

Recall that K(u, v, S(Xy ) 0 for any (u,v) € O.
The evaluation map ev is an isomorphism (k = @(ﬁ))

ev : Regular fractions/ (K(X, Y, t)) —— k(x,y)

F(X,Y,t) F(x,¥, s537)
Q(X7 t)a Q(Y7 t) — k(X)7 k(y)
Invariants —— k(x) N k(y)

For finite orbit, any non-constant coefficient of

II (Z-u ek nkyiz]

(u,v)€O
can be lifted as a pair of non-constant invariants (/(X, t), J(Y,t)).

Any non-constant pair of invariants is a rational fraction in (I(X,t), J(Y,t)).
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N(X,Y,t)= F(X,t)+ G(Y,t)+ K(X,Y,t)H(X, Y,t)
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Evaluation on a 0-chain: v =37, ,co Cuv(u, v) with cuv € C.

For N(X, Y, t) regular, we set
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1
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If N(X,Y,t) decouples then N, = 0 for every bicolor 0-chain .

(Ul, V2)
e
(u1,v1) (2, v2) a = (u1,va) — (u1, v1) + (u2, v3) — (12, v2) + (u3, v1) — (u3, v3)
o l F(X)Q:F(Ul)fF(U1)+F(U2)7F(U2)+F(U3)fF(U3):0
(us, v1) (u2,vs) G(Y)a = G(va) — G(v1) + G(vs) — G(v2) + G(wa) — G(vs) = 0
AN

(u3, vs)



Decoupling (for finite orbit)
A regular fraction N(X, Y, t) decouples if

N(X,Y,t)= F(X,t)+ G(Y,t)+ K(X,Y,t)H(X, Y,t)
wit F(X) € Q(X,t),G(Y) € Q(Y,t) and H(X, Y, t) regular.
Evaluation on a 0-chain: v =37, ,co Cuv(u, v) with cuv € C.

For N(X, Y, t) regular, we set

Ny = Y cuN(u, v,ﬁ) in k(O).

1
(u,v)€O Xy

If N(X,Y,t) decouples then N, = 0 for every bicolor 0-chain .

(Ul, V2)
e
(u1,v1) (2, v2) a = (u1,va) — (u1, v1) + (u2, v3) — (12, v2) + (u3, v1) — (u3, v3)
o l F(X)Q:F(Ul)fF(U1)+F(U2)7F(U2)+F(U3)fF(U3):0
(us, v1) (u2,vs) G(Y)a = G(va) — G(v1) + G(vs) — G(v2) + G(wa) — G(vs) = 0
AN

(u3, vs)



Bonnet-Hardouin (23)



Bonnet-Hardouin (23)

Assume that O is finite



Bonnet-Hardouin (23)
Assume that O is finite

There exist some explicit 0-chains 7y, yy, o such that



Bonnet-Hardouin (23)
Assume that O is finite

There exist some explicit 0-chains 7y, yy, o such that
> N(X,Y,t) decouples if and only if N, =0



Bonnet-Hardouin (23)
Assume that O is finite

There exist some explicit 0-chains 7y, yy, o such that
> N(X,Y,t) decouples if and only if N, =0
> If N(X,Y,t) decouples then
N(X, Y, t) = F(X, ) + G(Y, t) + K(X, Y, t)H(X, Y, 1),

with
> F(X,t) € Q(X, t) lift of Ny, € k(x)



Bonnet-Hardouin (23)
Assume that O is finite

There exist some explicit 0-chains 7y, yy, o such that
> N(X,Y,t) decouples if and only if N, =0
> If N(X,Y,t) decouples then

N(X,Y,t) = F(X,t)+ G(Y,t) + K(X, Y, t)H(X, Y, t),

with
> F(X,t) € Q(X, t) lift of Ny, € k(x)
> G(Y,t) € Q(Y,t) lift of Ny, € k(y).



Bonnet-Hardouin (23)
Assume that O is finite

There exist some explicit 0-chains 7y, yy, o such that
> N(X,Y,t) decouples if and only if N, =0
> If N(X,Y,t) decouples then
N(X, Y, t) = F(X, ) + G(Y, t) + K(X, Y, t)H(X, Y, 1),
with
> F(X,t) € Q(X,t) lift of Ny, € k(x)
> G(Y,t) € Q(Y,t) lift of N, € k(y).

(xa,y1) (1)

Q A
(e,

(xa,y)

©
AN

ar
(xa,y2 (2. y3)

(x5.32) (xe,3)

(s, 2) 0 (x.38)
~

a=a;+ a forgg\’“



Graph theoretic formulas
If the graph automorphisms of O acts transitively on level lines X and )} then
one can express a decoupling as follows

1 || ||
Yx = — AT X X'*l
0] 2.2 B e i

i>0 j<i
jodd
and 1 Vi, 1Y
vy = —— i Y. _ i
‘ |0\¥; 217 ]




Algebricity of G

XY decouples for G3**
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XY decouples for Q;’“

XY = f(X) —g(Y)+K(X,Y,t)H decouples for G3"*

K(X, Y, D)QX, Y, 1) = (F(X) — A(X)) — (g(Y) — B(Y))

P1 = (f(X) — A(X),g(Y) — B(Y)) is a pair of “ formal invariants "

Finite orbit gives a second pair of invariants

P, — (=220 X3 = X = XOp2 X242 ) 2= XA (X2 =) e+ X3 v ary 4 v3ae
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Bousquet-Mélou strategy for the three-quadrant

» Make polynomial combination between P; and P
to find pair of invariants Ps; with no polesat X =0and Y =0

» Invariant Lemma P; is constant P; = (C(t), C(t)).

» Two polynomial equations Pi(A(X), X, t) = C(t) and
P,(B(Y),Y,t) = C(t) in one catalytic variable

> Bousquet-Mélou and Jehanne (06) A(X) = K(X,0,t)Q(X,0,t) is
algebraic of degree 32 over Q(X, t).
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G is not a subgroup of automorphisms of a Riemann surface.



Geometric interlude

Fix t € C transcendental over Q. Consider the kernel curve

E=1{(a b) € CI[K(a, b, t) = 0}
Assume that E is irreducible and smooth
Small steps
» The genus of E is 1
» The group of the walk can be seen as a subgroup of Aut(E).
» Bound for the finite order: 12
Large steps
» The genus of E is greater than 1.
» When the group of the walk is infinite,
G is not a subgroup of automorphisms of a Riemann surface.
» When the group of the walk G is finite,
G is a subgroup of automorphisms of a Riemann surface, finite cover of E.



Conclusion

» Find algebraic classification of the finite orbit-types



Conclusion

» Find algebraic classification of the finite orbit-types

» Automatize Bousquet-Mélou's strategy for algebraicity proofs



Conclusion

» Find algebraic classification of the finite orbit-types
» Automatize Bousquet-Mélou's strategy for algebraicity proofs

» Find a good notion of “weak invariants” for large steps walks.



Thank you for your attention!
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