Galois group for large steps walks

Charlotte Hardouin (IMT)
with Pierre Bonnet (Labri-Bordeaux)

Computer Algebra for Functional Equations in Combinatorics and Physics, December 4 to 8, 2023 (IHP)

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps $\mathcal{D} \subset\{-1,0, . .\}^{2}$.

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps $\mathcal{D} \subset\{-1,0, . .\}^{2}$.

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps $\mathcal{D} \subset\{-1,0, . .\}^{2}$.
Weighted Model: Assign to \mathcal{D} a set of non-zero weights $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps $\mathcal{D} \subset\{-1,0, . .\}^{2}$.
Weighted Model: Assign to \mathcal{D} a set of non-zero weights $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Unweighted model: All the weights are equal to 1 .

The combinatorial setting

Walk: path in \mathbb{Z}^{2} starting from $(0,0)$ with steps in \mathcal{D}, a finite subset of \mathbb{Z}^{2}, that stays in the first quadrant.

We say that a walk is with small steps if $\mathcal{D} \subset\{-1,0,1\}^{2}$

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps $\mathcal{D} \subset\{-1,0, . .\}^{2}$.
Weighted Model: Assign to \mathcal{D} a set of non-zero weights $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Unweighted model: All the weights are equal to 1 .

Weighted models and Generating Series

An example of walk with large steps

The weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

A walk of size 6 and ending at $(3,2)$

Weighted models and Generating Series

An example of walk with large steps

The weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

A walk of size 6 and ending at $(3,2)$
The total weight of the walk is $\lambda^{2} \mu^{3}$.

Weighted models and Generating Series

An example of walk with large steps

The weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

A walk of size 6 and ending at $(3,2)$
The total weight of the walk is $\lambda^{2} \mu^{3}$.
Weighted coefficients: Fix a weighted model \mathcal{W}. Define $q(i, j, k)$ sum of total weights of all the walks ending at (i, j) in k steps and staying in the first quadrant.

Weighted models and Generating Series

An example of walk with large steps

The weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

A walk of size 6 and ending at $(3,2)$
The total weight of the walk is $\lambda^{2} \mu^{3}$.
Weighted coefficients: Fix a weighted model \mathcal{W}. Define $q(i, j, k)$ sum of total weights of all the walks ending at (i, j) in k steps and staying in the first quadrant.

Generating function:

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

converges for $|X|,|Y| \leq 1$ and $|t|$ small.

Weighted models and Generating Series

An example of walk with large steps

The weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

A walk of size 6 and ending at $(3,2)$
The total weight of the walk is $\lambda^{2} \mu^{3}$.
Weighted coefficients: Fix a weighted model \mathcal{W}. Define $q(i, j, k)$ sum of total weights of all the walks ending at (i, j) in k steps and staying in the first quadrant.

Generating function:

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

converges for $|X|,|Y| \leq 1$ and $|t|$ small.

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Too difficult in general

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Too difficult in general

Classification problem: when is $Q(X, Y, t)$

- Algebraic over $\mathbb{Q}(X, Y, t)$?

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Too difficult in general

Classification problem: when is $Q(X, Y, t)$

- Algebraic over $\mathbb{Q}(X, Y, t)$?
- X, Y and t D-finite over $\mathbb{Q}(X, Y, t)$?

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Too difficult in general

Classification problem: when is $Q(X, Y, t)$

- Algebraic over $\mathbb{Q}(X, Y, t)$?
- X, Y and t D-finite over $\mathbb{Q}(X, Y, t)$?

Entirely solved for unweighted walks with small steps.

Classification for walks in the quadrant

Combinatorial question:
Fix \mathcal{W} and explicit $q(i, j, k)$?

Too difficult in general

Classification problem: when is $Q(X, Y, t)$

- Algebraic over $\mathbb{Q}(X, Y, t)$?
- X, Y and t D-finite over $\mathbb{Q}(X, Y, t)$?

Entirely solved for unweighted walks with small steps.

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)
From now on, assume that at least one positive and one negative step in the X and Y-directions

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)
From now on, assume that at least one positive and one negative step in the X and Y-directions

Kernel polynomial: $K(X, Y, t)=X Y(1-t S(X, Y))$

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)
From now on, assume that at least one positive and one negative step in the X and Y-directions

Kernel polynomial: $K(X, Y, t)=X Y(1-t S(X, Y))$
Functional Equation: via an induction on the length

$$
\begin{aligned}
K(X, Y, t) Q(X, Y, t)=X Y-K(X, 0, t) Q(X, 0, t) & -K(0, Y, t) Q(0, Y, t) \\
& +K(0,0, t) Q(0,0, t)
\end{aligned}
$$

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)
From now on, assume that at least one positive and one negative step in the X and Y-directions

Kernel polynomial: $K(X, Y, t)=X Y(1-t S(X, Y))$
Functional Equation: via an induction on the length

$$
K(X, Y, t) Q(X, Y, t) \quad=\quad X Y-A(X)+B(Y) .
$$

Functional Equation of the Walk

Fix a weighted $\mathcal{W}=\left\{\left(w_{i, j}\right)_{i, j \in \mathcal{D}}\right\}$.
Generating function

$$
Q(X, Y, t)=\sum_{i, j, k} q(i, j, k) X^{i} Y^{j} t^{k}
$$

Step Inventory: $S(X, Y)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}$
Its negative degrees in X and Y are at most 1 (small backward steps!)
From now on, assume that at least one positive and one negative step in the X and Y-directions

Kernel polynomial: $K(X, Y, t)=X Y(1-t S(X, Y))$
Functional Equation: via an induction on the length

$$
K(X, Y, t) Q(X, Y, t) \quad=\quad X Y \quad-\quad A(X)+B(Y)
$$

Prop.: $\quad Q(X, Y, t)$ is X, Y-D-finite over $\mathbb{Q}(X, Y, t) \Leftrightarrow A(X)$ is X-D-finite over $\mathbb{Q}(X, t) \Leftrightarrow B(Y)$ is Y-D-finite over $\mathbb{Q}(Y, t)$.

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff G is a finite group

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff G is a finite group
iff there are some non-constant invariants

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff G is a finite group
iff there are some non-constant invariants
Non-constant invariants: $F(X) \in \mathbb{Q}(X, t) \backslash \mathbb{Q}(t)$ and $G(Y) \in \mathbb{Q}(Y, t) \backslash \mathbb{Q}(t)$ such that

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff G is a finite group
iff there are some non-constant invariants
Non-constant invariants: $F(X) \in \mathbb{Q}(X, t) \backslash \mathbb{Q}(t)$ and $G(Y) \in \mathbb{Q}(Y, t) \backslash \mathbb{Q}(t)$ such that

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

with $K(X, Y, t)$ doesn't divide the denominator of $H(X, Y, t) \in \mathbb{Q}(X, Y, t)$.

Classification results-small steps walks (I)

Fix an unweighted model \mathcal{W} with small steps.
Consider the group of the walk G associated to \mathcal{W}.
Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel (12), Mishna-Melczer (14)
$Q(X, Y, t)$ is D-finite iff G is a finite group
iff there are some non-constant invariants
Non-constant invariants: $F(X) \in \mathbb{Q}(X, t) \backslash \mathbb{Q}(t)$ and $G(Y) \in \mathbb{Q}(Y, t) \backslash \mathbb{Q}(t)$ such that

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

with $H(X, Y, t)$ is regular.

Classification results-small steps walks (II)
$Q(X, Y, t)$ is algebraic iff

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

$$
K(X, Y, t) Q(X, Y, t)=X Y-A(X)+B(Y)
$$

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

Bernardi-Bousquet-Mélou-Raschel (2021)

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

Bernardi-Bousquet-Mélou-Raschel (2021)
$g(Y)-B(Y)$ is a rational fraction in a weak invariant $w(Y, t)$ which is algebraic over $\mathbb{Q}(Y, t)$.

Classification results-small steps walks (II)

$Q(X, Y, t)$ is algebraic iff G is finite and $X Y$ decouples
Decoupling of $X Y: f(X) \in \mathbb{Q}(X, t)$ and $g(Y) \in \mathbb{Q}(Y, t)$ such that

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t),
$$

with H^{\prime} regular.
Functional equation for the generating series:

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

Bernardi-Bousquet-Mélou-Raschel (2021)
$g(Y)-B(Y)$ is a rational fraction in a weak invariant $w(Y, t)$ which is algebraic over $\mathbb{Q}(Y, t)$.

Conclusions for small steps unweighted models

Conclusions for small steps unweighted models
$Q(X, Y, t)$ is D-finite iff non-constant invariants

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

Conclusions for small steps unweighted models
$Q(X, Y, t)$ is D-finite iff non-constant invariants

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

$Q(X, y, t)$ is algebraic iff non-constant invariants and $X Y$ decouples.

$$
X Y=f(X)-g(Y)+K(X, Y, t) H^{\prime}(X, Y, t)
$$

For large steps?

Consider weighted models \mathcal{W} with large steps.

For large steps?

Consider weighted models \mathcal{W} with large steps.
Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of \mathcal{W} and classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

For large steps?

Consider weighted models \mathcal{W} with large steps.
Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of \mathcal{W} and classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

Bonnet-Hardouin (23):

For large steps?

Consider weighted models \mathcal{W} with large steps.
Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of \mathcal{W} and classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

Bonnet-Hardouin (23):
Notion of group of the walk

For large steps?

Consider weighted models \mathcal{W} with large steps.
Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of \mathcal{W} and classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

Bonnet-Hardouin (23):
Notion of group of the walk
For finite orbit, explicit procedure to construct invariants and decoupling

For large steps?

Consider weighted models \mathcal{W} with large steps.
Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of \mathcal{W} and classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

Bonnet-Hardouin (23):
Notion of group of the walk
For finite orbit, explicit procedure to construct invariants and decoupling
Algebricity proof for the weighted model $\mathcal{G}_{3}^{\lambda, \mu}$

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y))
$$

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}.

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y))
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{x}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $(u, v) \sim^{y}\left(u^{\prime}, v^{\prime}\right)$ if $v=v^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $(u, v) \sim^{y}\left(u^{\prime}, v^{\prime}\right)$ if $v=v^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $\sim=\sim^{x} \cup \sim^{y}$.

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $(u, v) \sim^{y}\left(u^{\prime}, v^{\prime}\right)$ if $v=v^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $\sim=\sim^{x} \cup \sim^{y}$.

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{x}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $(u, v) \sim^{y}\left(u^{\prime}, v^{\prime}\right)$ if $v=v^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $\sim=\sim^{x} \cup \sim^{y}$.

The orbit \mathcal{O} of \mathcal{W} is the equivalence class of (x, y) with respect to \sim.

The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model $\mathcal{W}=\left(w_{i, j}\right)_{(i, j) \in \mathcal{D}}$, its step inventory

$$
S(X, Y, t)=\sum_{(i, j)} w_{i, j} X^{i} Y^{j}
$$

and its kernel polynomial

$$
K(X, Y, t)=X Y(1-t S(X, Y)) .
$$

Fix two indeterminates (x, y) algebraically independent over \mathbb{Q}. Let \mathbb{K} be an algebraic closure of $\mathbb{Q}(x, y)$.

Define equivalence relations on pairs (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in \mathbb{K}^{2}

- $(u, v) \sim^{x}\left(u^{\prime}, v^{\prime}\right)$ if $u=u^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $(u, v) \sim^{y}\left(u^{\prime}, v^{\prime}\right)$ if $v=v^{\prime}$ and $S(u, v)=S\left(u^{\prime}, v^{\prime}\right)$
- $\sim=\sim^{x} \cup \sim^{y}$.

The orbit \mathcal{O} of \mathcal{W} is the equivalence class of (x, y) with respect to \sim.

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!
$K(X, Y, t)=X Y(1-t S(X, Y))$.

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!
$K(X, Y, t)=X Y(1-t S(X, Y))$.
For (u, v) in $\mathcal{O},(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ iff $u=u^{\prime}$ and

$$
K\left(u, v^{\prime}, \frac{1}{S(x, y)}\right)=K\left(u, v, \frac{1}{S(x, y)}\right)=0
$$

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!
$K(X, Y, t)=X Y(1-t S(X, Y))$.
For (u, v) in $\mathcal{O},(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ iff $u=u^{\prime}$ and

$$
K\left(u, v^{\prime}, \frac{1}{S(x, y)}\right)=K\left(u, v, \frac{1}{S(x, y)}\right)=0
$$

x-adjacencies of (u, v) Search all the roots of $K\left(u, Y, \frac{1}{S(x, y)}\right)$.

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!
$K(X, Y, t)=X Y(1-t S(X, Y))$.
For (u, v) in $\mathcal{O},(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ iff $u=u^{\prime}$ and

$$
K\left(u, v^{\prime}, \frac{1}{S(x, y)}\right)=K\left(u, v, \frac{1}{S(x, y)}\right)=0
$$

x-adjacencies of (u, v) Search all the roots of $K\left(u, Y, \frac{1}{S(x, y)}\right)$.
y-adjacencies of (u, v) Search all the roots of $K\left(X, v, \frac{1}{S(x, y)}\right)$.

Construction of the orbit via resultants

$S(X, Y)$ is constant on the orbit equal to $S(x, y)$!
$K(X, Y, t)=X Y(1-t S(X, Y))$.
For (u, v) in $\mathcal{O},(u, v) \sim^{\times}\left(u^{\prime}, v^{\prime}\right)$ iff $u=u^{\prime}$ and

$$
K\left(u, v^{\prime}, \frac{1}{S(x, y)}\right)=K\left(u, v, \frac{1}{S(x, y)}\right)=0
$$

x-adjacencies of (u, v) Search all the roots of $K\left(u, Y, \frac{1}{S(x, y)}\right)$.
y-adjacencies of (u, v) Search all the roots of $K\left(X, v, \frac{1}{S(x, y)}\right)$.
Computation of the coordinates of the orbit via resultants.

Example: For Gessel model,

$K(X, Y)=X Y-t\left(X^{2} Y+Y+1+X^{2} Y^{2}\right)$

Example: For Gessel model,

$K(X, Y)=X Y-t\left(X^{2} Y+Y+1+X^{2} Y^{2}\right)$

Gessel orbit is in $\mathbb{Q}(x, y)^{2}$

Example: For Gessel model,

$K(X, Y)=X Y-t\left(X^{2} Y+Y+1+X^{2} Y^{2}\right)$

Gessel orbit is in $\mathbb{Q}(x, y)^{2}$

For small steps, the orbit $\mathcal{O} \subset \mathbb{Q}(x, y)^{2}$ and when finite, it is a cycle.

Example: For Gessel model,

$K(X, Y)=X Y-t\left(X^{2} Y+Y+1+X^{2} Y^{2}\right)$

Gessel orbit is in $\mathbb{Q}(x, y)^{2}$
For small steps, the orbit $\mathcal{O} \subset \mathbb{Q}(x, y)^{2}$ and when finite, it is a cycle.

$$
\begin{aligned}
& (u, v) \sim^{x}\left(u, v^{\prime}\right) \text { iff }\left(u, v^{\prime}\right)=(u, \Psi(u, v)) \\
& (u, v) \sim^{x}\left(u, v^{\prime}\right) \text { iff }\left(u, v^{\prime}\right)=(\Phi(u, v), v)
\end{aligned}
$$

with Φ, Ψ two birational involutions introduced by Bousquet-Mélou and Mishna.

Orbit-types

Bostan-Bousquet-Mélou-Melczer (21): Classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

Orbit-types

Bostan-Bousquet-Mélou-Melczer (21): Classification of the finite orbit-types for $\mathcal{D} \subset\{-1,0,1,2\}^{2}$

A sample of finite orbits

Orbit-types

Orbit of $\mathcal{G}_{3}^{\lambda, \mu}$

z is algebraic of degree 2 over $\mathbb{Q}(x, y)$!

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit.

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit.
Bonnet-Hardouin (23) The following field extensions are Galois

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit.
Bonnet-Hardouin (23) The following field extensions are Galois

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit. Bonnet-Hardouin (23) The following field extensions are Galois

The group of the walk G is defined as the subgroup of field automorphisms of $k(\mathcal{O})$ generated by G_{x} and G_{y}.

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit. Bonnet-Hardouin (23) The following field extensions are Galois

The group of the walk G is defined as the subgroup of field automorphisms of $k(\mathcal{O})$ generated by G_{x} and G_{y}.
G acts faithfully and transitively on the orbit \mathcal{O}

The Galois extension and the group of the walk

Set $k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)$ and $k(\mathcal{O})$ the field generated by the coordinates of the orbit. Bonnet-Hardouin (23) The following field extensions are Galois

The group of the walk G is defined as the subgroup of field automorphisms of $k(\mathcal{O})$ generated by G_{x} and G_{y}.
G acts faithfully and transitively on the orbit \mathcal{O}
via a finite set of generators $\iota_{1}^{x}, \ldots, \iota_{k}^{x}, \iota_{1}^{y}, \ldots, \iota_{l}^{y}$. (even when G is infinite)

Small steps case

If \mathcal{W} has small steps then $k(\mathcal{O})=\mathbb{Q}(x, y)$.

Small steps case

If \mathcal{W} has small steps then $k(\mathcal{O})=\mathbb{Q}(x, y)$.
$k(x) \subset \mathbb{Q}(x, y)$ and $k(y) \subset \mathbb{Q}(x, y)$ are algebraic of degree 2

Small steps case

If \mathcal{W} has small steps then $k(\mathcal{O})=\mathbb{Q}(x, y)$.
$k(x) \subset \mathbb{Q}(x, y)$ and $k(y) \subset \mathbb{Q}(x, y)$ are algebraic of degree 2
because $K\left(x, y, \frac{1}{S(x, y)}\right)=0$ and $K\left(X, Y, \frac{1}{S(x, y)}\right)$ of degree 2 in X and Y.

Small steps case

If \mathcal{W} has small steps then $k(\mathcal{O})=\mathbb{Q}(x, y)$.
$k(x) \subset \mathbb{Q}(x, y)$ and $k(y) \subset \mathbb{Q}(x, y)$ are algebraic of degree 2
because $K\left(x, y, \frac{1}{S(x, y)}\right)=0$ and $K\left(X, Y, \frac{1}{S(x, y)}\right)$ of degree 2 in X and Y.

G is a dihedral group generated by

$$
\iota^{x}(x, y)=(x, \Psi(x, y)) \text { and } \iota^{y}(x, y)=(\Phi(x, y), y)
$$

with Φ, Ψ the birational involutions generating the group of the walk of Bousquet-Mélou-Mishna.

Small steps case

If \mathcal{W} has small steps then $k(\mathcal{O})=\mathbb{Q}(x, y)$.
$k(x) \subset \mathbb{Q}(x, y)$ and $k(y) \subset \mathbb{Q}(x, y)$ are algebraic of degree 2
because $K\left(x, y, \frac{1}{S(x, y)}\right)=0$ and $K\left(X, Y, \frac{1}{S(x, y)}\right)$ of degree 2 in X and Y.

G is a dihedral group generated by

$$
\iota^{x}(x, y)=(x, \Psi(x, y)) \text { and } \iota^{y}(x, y)=(\Phi(x, y), y)
$$

with Φ, Ψ the birational involutions generating the group of the walk of Bousquet-Mélou-Mishna.

Geometric result $|G|$ finite $\Rightarrow|G| \leq 12$.

The example of $\mathcal{G}_{3}^{\lambda, \mu}$

The example of $\mathcal{G}_{3}^{\lambda, \mu}$

Here $\operatorname{Gal}(k(\mathcal{O} \mid k(x, y))=\mathbb{Z} / 2 \mathbb{Z}$.

Large steps case

Fried's theorem applied to walks

Large steps case

Fried's theorem applied to walks
The following statements are equivalent

- The orbit is finite

Large steps case

Fried's theorem applied to walks
The following statements are equivalent

- The orbit is finite
- G is finite

Large steps case

Fried's theorem applied to walks
The following statements are equivalent

- The orbit is finite
- G is finite
- There exists some non-constant invariants $F(X) \in \mathbb{Q}(X, t) \backslash \mathbb{Q}(t)$ and $G(Y) \in \mathbb{Q}(Y, t) \backslash \mathbb{Q}(t)$ such that

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

with H -regular.

Large steps case

Fried's theorem applied to walks
The following statements are equivalent

- The orbit is finite
- G is finite
- There exists some non-constant invariants $F(X) \in \mathbb{Q}(X, t) \backslash \mathbb{Q}(t)$ and $G(Y) \in \mathbb{Q}(Y, t) \backslash \mathbb{Q}(t)$ such that

$$
F(X)-G(Y)=K(X, Y, t) H(X, Y, t)
$$

with H -regular.
Invariants for $\mathcal{G}_{3}^{\lambda, \mu}$
$\left(\frac{\left(-\lambda^{2} \mu X^{3}-\mu X^{4}-X^{6}+\mu^{2} X^{2}+\mu^{3}\right) t^{2}-X^{2} \lambda\left(X^{2}-\mu\right) t+X^{3}}{t^{2} X\left(X^{2}+\mu\right)^{2}}, \frac{-\mu t Y^{4}+\lambda t Y+Y^{3}+t}{Y^{2} t}\right)$

Algorithmic procedure to compute invariants

The evaluation isomorphism

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.
The evaluation map ev is an isomorphism $\left(k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)\right)$

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.
The evaluation map ev is an isomorphism $\left(k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)\right)$

$$
\begin{aligned}
\text { ev : Regular fractions } /(K(X, Y, t)) & \longrightarrow k(x, y) \\
F(X, Y, t) \longmapsto & \longmapsto\left(x, y, \frac{1}{S(x, y)}\right)
\end{aligned}
$$

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.
The evaluation map ev is an isomorphism $\left(k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)\right)$ ev : Regular fractions $/(K(X, Y, t)) \longrightarrow k(x, y)$

$$
\begin{gathered}
F(X, Y, t) \longmapsto F\left(x, y, \frac{1}{S(x, y)}\right) \\
\mathbb{Q}(X, t), \mathbb{Q}(Y, t) \longrightarrow k(x), k(y) \\
\text { Invariants } \longrightarrow k(x) \cap k(y)
\end{gathered}
$$

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.
The evaluation map ev is an isomorphism $\left(k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)\right)$
ev : Regular fractions $/(K(X, Y, t)) \longrightarrow k(x, y)$

$$
\begin{gathered}
F(X, Y, t) \longmapsto F\left(x, y, \frac{1}{S(x, y)}\right) \\
\mathbb{Q}(X, t), \mathbb{Q}(Y, t) \longrightarrow k(x), k(y) \\
\text { Invariants } \longrightarrow k(x) \cap k(y)
\end{gathered}
$$

For finite orbit, any non-constant coefficient of

$$
\prod_{(u, v) \in \mathcal{O}}(Z-u) \in k(x) \cap k(y)[Z]
$$

can be lifted as a pair of non-constant invariants $(I(X, t), J(Y, t))$.

Algorithmic procedure to compute invariants

The evaluation isomorphism
Recall that $K\left(u, v, \frac{1}{S(x, y)}\right)=0$ for any $(u, v) \in \mathcal{O}$.
The evaluation map ev is an isomorphism $\left(k=\mathbb{Q}\left(\frac{1}{S(x, y)}\right)\right)$
ev: Regular fractions $/(K(X, Y, t)) \longrightarrow k(x, y)$

$$
\begin{aligned}
& F(X, Y, t) \longmapsto \\
& \begin{array}{c}
\mathbb{Q}(X, t), \mathbb{Q}\left(Y, y, \frac{1}{S(x, y)}\right) \\
\text { Invariants }
\end{array} \longrightarrow k(x), k(y) \\
& k(x) \cap k(y)
\end{aligned}
$$

For finite orbit, any non-constant coefficient of

$$
\prod_{(u, v) \in \mathcal{O}}(Z-u) \in k(x) \cap k(y)[Z]
$$

can be lifted as a pair of non-constant invariants $(I(X, t), J(Y, t))$.
Any non-constant pair of invariants is a rational fraction in $(I(X, t), J(Y, t))$.

Decoupling (for finite orbit)

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.
Evaluation on a 0-chain: $\gamma=\sum_{(u, v) \in \mathcal{O}} c_{u, v}(u, v)$ with $c_{u, v} \in \mathbb{C}$.

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.
Evaluation on a 0-chain: $\gamma=\sum_{(u, v) \in \mathcal{O}} c_{u, v}(u, v)$ with $c_{u, v} \in \mathbb{C}$.
For $N(X, Y, t)$ regular, we set

$$
N_{\gamma}=\sum_{(u, v) \in \mathcal{O}} c_{u, v} N\left(u, v, \frac{1}{S(x, y)}\right) \text { in } k(\mathcal{O}) .
$$

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.
Evaluation on a 0-chain: $\gamma=\sum_{(u, v) \in \mathcal{O}} c_{u, v}(u, v)$ with $c_{u, v} \in \mathbb{C}$.
For $N(X, Y, t)$ regular, we set

$$
N_{\gamma}=\sum_{(u, v) \in \mathcal{O}} c_{u, v} N\left(u, v, \frac{1}{S(x, y)}\right) \text { in } k(\mathcal{O}) .
$$

If $N(X, Y, t)$ decouples then $N_{\alpha}=0$ for every bicolor 0 -chain α.

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.
Evaluation on a 0-chain: $\gamma=\sum_{(u, v) \in \mathcal{O}} c_{u, v}(u, v)$ with $c_{u, v} \in \mathbb{C}$.
For $N(X, Y, t)$ regular, we set

$$
N_{\gamma}=\sum_{(u, v) \in \mathcal{O}} c_{u, v} N\left(u, v, \frac{1}{S(x, y)}\right) \text { in } k(\mathcal{O})
$$

If $N(X, Y, t)$ decouples then $N_{\alpha}=0$ for every bicolor 0-chain α.

Decoupling (for finite orbit)

A regular fraction $N(X, Y, t)$ decouples if

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

wit $F(X) \in \mathbb{Q}(X, t), G(Y) \in \mathbb{Q}(Y, t)$ and $H(X, Y, t)$ regular.
Evaluation on a 0-chain: $\gamma=\sum_{(u, v) \in \mathcal{O}} c_{u, v}(u, v)$ with $c_{u, v} \in \mathbb{C}$.
For $N(X, Y, t)$ regular, we set

$$
N_{\gamma}=\sum_{(u, v) \in \mathcal{O}} c_{u, v} N\left(u, v, \frac{1}{S(x, y)}\right) \text { in } k(\mathcal{O})
$$

If $N(X, Y, t)$ decouples then $N_{\alpha}=0$ for every bicolor 0-chain α.

Bonnet-Hardouin (23)
Assume that \mathcal{O} is finite

Bonnet-Hardouin (23)
Assume that \mathcal{O} is finite
There exist some explicit 0 -chains $\gamma_{x}, \gamma_{y}, \alpha$ such that

Bonnet-Hardouin (23)
Assume that \mathcal{O} is finite
There exist some explicit 0-chains $\gamma_{x}, \gamma_{y}, \alpha$ such that

- $N(X, Y, t)$ decouples if and only if $N_{\alpha}=0$

Bonnet-Hardouin (23)

Assume that \mathcal{O} is finite

There exist some explicit 0-chains $\gamma_{x}, \gamma_{y}, \alpha$ such that

- $N(X, Y, t)$ decouples if and only if $N_{\alpha}=0$
- If $N(X, Y, t)$ decouples then

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

with

- $F(X, t) \in \mathbb{Q}(X, t)$ lift of $N_{\gamma_{x}} \in k(x)$

Bonnet-Hardouin (23)

Assume that \mathcal{O} is finite

There exist some explicit 0-chains $\gamma_{x}, \gamma_{y}, \alpha$ such that

- $N(X, Y, t)$ decouples if and only if $N_{\alpha}=0$
- If $N(X, Y, t)$ decouples then

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

with

- $F(X, t) \in \mathbb{Q}(X, t)$ lift of $N_{\gamma_{x}} \in k(x)$
- $G(Y, t) \in \mathbb{Q}(Y, t)$ lift of $N_{\gamma_{y}} \in k(y)$.

Bonnet-Hardouin (23)

Assume that \mathcal{O} is finite

There exist some explicit 0-chains $\gamma_{x}, \gamma_{y}, \alpha$ such that

- $N(X, Y, t)$ decouples if and only if $N_{\alpha}=0$
- If $N(X, Y, t)$ decouples then

$$
N(X, Y, t)=F(X, t)+G(Y, t)+K(X, Y, t) H(X, Y, t)
$$

with

- $F(X, t) \in \mathbb{Q}(X, t)$ lift of $N_{\gamma_{x}} \in k(x)$
- $G(Y, t) \in \mathbb{Q}(Y, t)$ lift of $N_{\gamma_{y}} \in k(y)$.

Graph theoretic formulas

If the graph automorphisms of \mathcal{O} acts transitively on level lines \mathcal{X} and \mathcal{Y} then one can express a decoupling as follows

$$
\gamma_{x}=-\frac{1}{|\mathcal{O}|} \sum_{i \geq 0} \sum_{\substack{j \leq i \\ j \text { odd }}} \frac{\left|\mathcal{X}_{i}\right|}{\left|\mathcal{X}_{j}\right|} X_{j}-\frac{\left|\mathcal{X}_{i}\right|}{\left|\mathcal{X}_{j-1}\right|} X_{j-1}
$$

and

$$
\gamma_{y}=-\frac{1}{|\mathcal{O}|} \sum_{i \geq 0} \sum_{\substack{j \leq i \\ j \text { odd }}} \frac{\left|\mathcal{Y}_{i}\right|}{\left|\mathcal{Y}_{j}\right|} Y_{j}-\frac{\left|\mathcal{Y}_{i}\right|}{\left|\mathcal{Y}_{j-1}\right|} Y_{j-1}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
X Y=-\frac{3 \lambda X^{2} t-\mu \lambda t-4 X}{4 t\left(X^{2}+\mu\right)}+\frac{-\lambda Y-4}{4 Y}-\frac{K(X, Y, t)}{\left(X^{2}+\mu\right) Y t} \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) Q(X, Y, t)=X Y-A(X)+B(Y)
\end{aligned}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
\end{aligned}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y)) \\
& P_{1}=(f(X)-A(X), g(Y)-B(Y)) \text { is a pair of " formal invariants" }
\end{aligned}
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \qquad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y)) \\
& P_{1}=(f(X)-A(X), g(Y)-B(Y)) \text { is a pair of " formal invariants " }
\end{aligned}
$$

Finite orbit gives a second pair of invariants

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
\end{aligned}
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants

$$
P_{2}=\left(\frac{\left(-\lambda^{2} \mu x^{3}-\mu x^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-x^{2} \lambda\left(x^{2}-\mu\right) t+X^{3}}{t^{2} X\left(x^{2}+\mu\right)^{2}}, \frac{-\mu t \gamma^{4}+\lambda t Y+\gamma^{3}+t}{Y^{2} t}\right) .
$$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$
$X Y=f(X)-g(Y)+K(X, Y, t) H$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants
$P_{2}=\left(\frac{\left(-\lambda^{2} \mu x^{3}-\mu x^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-x^{2} \lambda\left(x^{2}-\mu\right) t+X^{3}}{t^{2} X\left(x^{2}+\mu\right)^{2}}, \frac{-\mu t Y^{4}+\lambda t Y+Y^{3}+t}{Y^{2} t}\right)$.
Bousquet-Mélou strategy for the three-quadrant

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
\end{aligned}
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants

$$
P_{2}=\left(\frac{\left(-\lambda^{2} \mu x^{3}-\mu x^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-x^{2} \lambda\left(x^{2}-\mu\right) t+x^{3}}{t^{2} X\left(x^{2}+\mu\right)^{2}}, \frac{-\mu t \gamma^{4}+\lambda t Y+\gamma^{3}+t}{Y^{2} t}\right) .
$$

Bousquet-Mélou strategy for the three-quadrant

- Make polynomial combination between P_{1} and P_{2} to find pair of invariants P_{3} with no poles at $X=0$ and $Y=0$

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
\begin{aligned}
& X Y=f(X)-g(Y)+K(X, Y, t) H \text { decouples for } \mathcal{G}_{3}^{\lambda, \mu} \\
& \quad K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
\end{aligned}
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants

$$
P_{2}=\left(\frac{\left(-\lambda^{2} \mu X^{3}-\mu X^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-X^{2} \lambda\left(X^{2}-\mu\right) t+X^{3}}{t^{2} X\left(X^{2}+\mu\right)^{2}}, \frac{-\mu t Y^{4}+\lambda t Y+Y^{3}+t}{Y^{2} t}\right) .
$$

Bousquet-Mélou strategy for the three-quadrant

- Make polynomial combination between P_{1} and P_{2} to find pair of invariants P_{3} with no poles at $X=0$ and $Y=0$
- Invariant Lemma P_{3} is constant $P_{3}=(C(t), C(t))$.

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$
$X Y=f(X)-g(Y)+K(X, Y, t) H$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants
$P_{2}=\left(\frac{\left(-\lambda^{2} \mu x^{3}-\mu x^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-x^{2} \lambda\left(x^{2}-\mu\right) t+x^{3}}{t^{2} X\left(x^{2}+\mu\right)^{2}}, \frac{-\mu t Y^{4}+\lambda t Y+Y^{3}+t}{Y^{2} t}\right)$.
Bousquet-Mélou strategy for the three-quadrant

- Make polynomial combination between P_{1} and P_{2} to find pair of invariants P_{3} with no poles at $X=0$ and $Y=0$
- Invariant Lemma P_{3} is constant $P_{3}=(C(t), C(t))$.
- Two polynomial equations $P_{x}(A(X), X, t)=C(t)$ and $P_{y}(B(Y), Y, t)=C(t)$ in one catalytic variable

Algebricity of $\mathcal{G}_{3}^{\lambda, \mu}$

$X Y$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$
$X Y=f(X)-g(Y)+K(X, Y, t) H$ decouples for $\mathcal{G}_{3}^{\lambda, \mu}$

$$
K(X, Y, t) \widetilde{Q}(X, Y, t)=(f(X)-A(X))-(g(Y)-B(Y))
$$

$P_{1}=(f(X)-A(X), g(Y)-B(Y))$ is a pair of " formal invariants "
Finite orbit gives a second pair of invariants
$P_{2}=\left(\frac{\left(-\lambda^{2} \mu x^{3}-\mu x^{4}-x^{6}+\mu^{2} x^{2}+\mu^{3}\right) t^{2}-x^{2} \lambda\left(x^{2}-\mu\right) t+X^{3}}{t^{2} X\left(x^{2}+\mu\right)^{2}}, \frac{-\mu t Y^{4}+\lambda t Y+Y^{3}+t}{Y^{2} t}\right)$.
Bousquet-Mélou strategy for the three-quadrant

- Make polynomial combination between P_{1} and P_{2} to find pair of invariants P_{3} with no poles at $X=0$ and $Y=0$
- Invariant Lemma P_{3} is constant $P_{3}=(C(t), C(t))$.
- Two polynomial equations $P_{x}(A(X), X, t)=C(t)$ and $P_{y}(B(Y), Y, t)=C(t)$ in one catalytic variable
- Bousquet-Mélou and Jehanne (06) $A(X)=K(X, 0, t) Q(X, 0, t)$ is algebraic of degree 32 over $\mathbb{Q}(X, t)$.

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}.

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E=\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}^{Z a r}}
$$

Assume that E is irreducible and smooth

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E=\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}^{\text {Zar }}}
$$

Assume that E is irreducible and smooth
Small steps

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E=\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}^{Z a r}}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.
- Bound for the finite order: 12

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E=\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}^{Z a r}}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.
- Bound for the finite order: 12

Large steps

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.
- Bound for the finite order: 12

Large steps

- The genus of E is greater than 1 .

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.
- Bound for the finite order: 12

Large steps

- The genus of E is greater than 1 .
- When the group of the walk is infinite, G is not a subgroup of automorphisms of a Riemann surface.

Geometric interlude

Fix $t \in \mathbb{C}$ transcendental over \mathbb{Q}. Consider the kernel curve

$$
E={\overline{\left\{(a, b) \in \mathbb{C}^{2} \mid K(a, b, t)=0\right\}}}^{Z a r}
$$

Assume that E is irreducible and smooth
Small steps

- The genus of E is 1
- The group of the walk can be seen as a subgroup of $\operatorname{Aut}(E)$.
- Bound for the finite order: 12

Large steps

- The genus of E is greater than 1 .
- When the group of the walk is infinite, G is not a subgroup of automorphisms of a Riemann surface.
- When the group of the walk G is finite, G is a subgroup of automorphisms of a Riemann surface, finite cover of E.

Conclusion

- Find algebraic classification of the finite orbit-types

Conclusion

- Find algebraic classification of the finite orbit-types
- Automatize Bousquet-Mélou's strategy for algebraicity proofs

Conclusion

- Find algebraic classification of the finite orbit-types
- Automatize Bousquet-Mélou's strategy for algebraicity proofs
- Find a good notion of "weak invariants" for large steps walks.

Thank you for your attention!

