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The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



The combinatorial setting

Walk: path in Z2 starting from (0, 0) with steps in D, a finite subset of Z2,
that stays in the first quadrant.

We say that a walk is with small steps if D ⊂ {−1, 0, 1}2

and with large steps when this is not the case.

In this talk, I will restrict to models with small backward steps D ⊂ {−1, 0, ..}2.

Weighted Model: Assign to D a set of non-zero weights W = {(wi,j)i,j∈D}.

Unweighted model: All the weights are equal to 1.



Weighted models and Generating Series
An example of walk with large steps

λ

µ

µ

The weighted model Gλ,µ
3

A walk of size 6 and ending at (3, 2)

The total weight of the walk is λ2µ3.

Weighted coefficients: Fix a weighted model W. Define q(i , j , k) sum of total
weights of all the walks ending at (i , j) in k steps and staying in the first
quadrant.

Generating function:

Q(X ,Y , t) =
∑
i,j,k

q(i , j , k)X iY j tk

converges for |X |, |Y | ≤ 1 and |t| small.
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Classification for walks in the quadrant

Combinatorial question:

Fix W and explicit q(i , j , k) ?

Too difficult in general

Classification problem: when is Q(X ,Y , t)

▶ Algebraic over Q(X ,Y , t)?

▶ X , Y and t D-finite over Q(X ,Y , t)?

Entirely solved for unweighted walks with small steps.
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Functional Equation of the Walk

Fix a weighted W = {(wi,j)i,j∈D}.
Generating function

Q(X ,Y , t) =
∑
i,j,k

q(i , j , k)X iY j tk

Step Inventory: S(X ,Y ) =
∑

(i,j) wi,jX
iY j

Its negative degrees in X and Y are at most 1 (small backward steps!)

From now on, assume that at least one positive and one negative step in the X
and Y -directions

Kernel polynomial: K(X ,Y , t) = XY (1− tS(X ,Y ))

Functional Equation: via an induction on the length

K(X ,Y , t)Q(X ,Y , t) = XY − K(X , 0, t)Q(X , 0, t)− K(0,Y , t)Q(0,Y , t)

+ K(0, 0, t)Q(0, 0, t).

Prop.: Q(X ,Y , t) is X ,Y -D-finite over Q(X ,Y , t) ⇔ A(X ) is X -D-finite over
Q(X , t) ⇔ B(Y ) is Y -D-finite over Q(Y , t).
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Classification results-small steps walks (I)

Fix an unweighted model W with small steps.

Consider the group of the walk G associated to W.

Results: Bousquet-Mélou-Mishna (10), Bostan-Kauers (10), Kurkova-Raschel
(12), Mishna-Melczer (14)

Q(X ,Y , t) is D-finite iff G is a finite group

iff there are some non-constant invariants

Non-constant invariants: F (X ) ∈ Q(X , t) \Q(t) and G(Y ) ∈ Q(Y , t) \Q(t)
such that

F (X )− G(Y ) = K(X ,Y , t)H(X ,Y , t),

with K(X ,Y , t) doesn’t divide the denominator of H(X ,Y , t) ∈ Q(X ,Y , t).
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Classification results-small steps walks (II)

Q(X ,Y , t) is algebraic iff

G is finite and XY decouples

Decoupling of XY : f (X ) ∈ Q(X , t) and g(Y ) ∈ Q(Y , t) such that

XY = f (X )− g(Y ) + K(X ,Y , t)H ′(X ,Y , t),

with H ′ regular.

Functional equation for the generating series:

K(X ,Y , t)Q(X ,Y , t) = XY − A(X ) + B(Y )

Bernardi-Bousquet-Mélou-Raschel (2021)

g(Y )− B(Y ) is a rational fraction in a weak invariant w(Y , t) which is
algebraic over Q(Y , t).
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Conclusions for small steps unweighted models

Q(X ,Y , t) is D-finite iff non-constant invariants

F (X )− G(Y ) = K(X ,Y , t)H(X ,Y , t),

Q(X , y , t) is algebraic iff non-constant invariants and XY decouples.

XY = f (X )− g(Y ) + K(X ,Y , t)H ′(X ,Y , t),
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For large steps?

Consider weighted models W with large steps.

Bostan-Bousquet-Mélou-Melczer (21): Notion of orbit of W and classification
of the finite orbit-types for D ⊂ {−1, 0, 1, 2}2

Bonnet-Hardouin (23):

Notion of group of the walk

For finite orbit, explicit procedure to construct invariants and decoupling

Algebricity proof for the weighted model Gλ,µ
3
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The orbit (Bostan-Bousquet-Mélou-Melczer (21))

Fix a weighted model W = (wi,j)(i,j)∈D, its step inventory

S(X ,Y , t) =
∑
(i,j)

wi,jX
iY j

and its kernel polynomial

K(X ,Y , t) = XY (1− tS(X ,Y )).

Fix two indeterminates (x , y) algebraically independent over Q.
Let K be an algebraic closure of Q(x , y).

Define equivalence relations on pairs (u, v) and (u′, v ′) in K2

▶ (u, v) ∼x (u′, v ′) if u = u′ and S(u, v) = S(u′, v ′)

▶ (u, v) ∼y (u′, v ′) if v = v ′ and S(u, v) = S(u′, v ′)

▶ ∼=∼x ∪ ∼y .

The orbit O of W is the equivalence class of (x , y) with respect to ∼.
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Construction of the orbit via resultants

S(X ,Y ) is constant on the orbit equal to S(x , y)!

K(X ,Y , t) = XY (1− tS(X ,Y )).

For (u, v) in O, (u, v) ∼x (u′, v ′) iff u = u′ and

K(u, v ′,
1

S(x , y)
) = K(u, v ,

1

S(x , y)
) = 0

x-adjacencies of (u, v) Search all the roots of K(u,Y , 1
S(x,y)

).

y -adjacencies of (u, v) Search all the roots of K(X , v , 1
S(x,y)

).

Computation of the coordinates of the orbit via resultants.
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Example: For Gessel model,

K(X ,Y ) = XY − t(X 2Y + Y + 1 + X 2Y 2)

(x , y)

(xy , y) (xy , x)

(y , x)

(y , xy)(x , xy)

Gessel orbit is in Q(x , y)2

For small steps, the orbit O ⊂ Q(x , y)2 and when finite, it is a cycle.

(u, v) ∼x (u, v ′) iff (u, v ′) = (u,Ψ(u, v))

(u, v) ∼x (u, v ′) iff (u, v ′) = (Φ(u, v), v)

with Φ,Ψ two birational involutions introduced by Bousquet-Mélou and
Mishna.
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Orbit-types

Bostan-Bousquet-Mélou-Melczer (21): Classification of the finite orbit-types for
D ⊂ {−1, 0, 1, 2}2
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Orbit-types

Orbit of Gλ,µ
3
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The Galois extension and the group of the walk

Set k = Q( 1
S(x,y)

) and k(O) the field generated by the coordinates of the orbit.

Bonnet-Hardouin (23) The following field extensions are Galois

k(x , y)

k(y)

k(O)

k(x)

Gx = Gal (k(O)|k(x)) Gy = Gal (k(O)|k(y))

The group of the walk G is defined as the subgroup of field automorphisms of
k(O) generated by Gx and Gy .

G acts faithfully and transitively on the orbit O

via a finite set of generators ιx1 , . . . , ι
x
k , ι

y
1 , . . . , ι

y
l . (even when G is infinite)
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Small steps case

If W has small steps then k(O) = Q(x , y).

k(x) ⊂ Q(x , y) and k(y) ⊂ Q(x , y) are algebraic of degree 2

because K(x , y , 1
S(x,y)

) = 0 and K(X ,Y , 1
S(x,y)

) of degree 2 in X and Y .

k(x , y) = k(O)

k(y)k(x)

Z/2Z = ⟨ιx ⟩ Z/2Z = ⟨ιy ⟩

G is a dihedral group generated by

ιx(x , y) = (x ,Ψ(x , y)) and ιy (x , y) = (Φ(x , y), y)

with Φ,Ψ the birational involutions generating the group of the walk of
Bousquet-Mélou-Mishna.

Geometric result |G | finite ⇒ |G | ≤ 12.
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The example of Gλ,µ
3

k(x , y)

k(y)

k(O) = k(x , y , z)

k(x)

Z/2Z× Z/2Z S3

Here Gal(k(O|k(x , y)) = Z/2Z.
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Large steps case

Fried’s theorem applied to walks

The following statements are equivalent

▶ The orbit is finite

▶ G is finite

▶ There exists some non-constant invariants
F (X ) ∈ Q(X , t) \Q(t) and G(Y ) ∈ Q(Y , t) \Q(t) such that

F (X )− G(Y ) = K(X ,Y , t)H(X ,Y , t),

with H-regular.

Invariants for Gλ,µ
3(

(−λ2µ X 3−µ X 4−X 6+µ2X 2+µ3)t2−X 2λ(X2−µ)t+X 3

t2X(X 2+µ)2
, −µt Y 4+λtY+Y 3+t

Y 2t

)
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Algorithmic procedure to compute invariants

The evaluation isomorphism

Recall that K(u, v , 1
S(x,y)

) = 0 for any (u, v) ∈ O.

The evaluation map ev is an isomorphism (k = Q( 1
S(x,y)

))

ev : Regular fractions/ (K(X ,Y , t)) k(x , y)

F (X ,Y , t) F (x , y , 1
S(x,y)

)

For finite orbit, any non-constant coefficient of∏
(u,v)∈O

(Z − u) ∈ k(x) ∩ k(y)[Z ]

can be lifted as a pair of non-constant invariants (I (X , t), J(Y , t)).

Any non-constant pair of invariants is a rational fraction in (I (X , t), J(Y , t)).
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Decoupling (for finite orbit)

A regular fraction N(X ,Y , t) decouples if

N(X ,Y , t) = F (X , t) + G(Y , t) + K(X ,Y , t)H(X ,Y , t)

wit F (X ) ∈ Q(X , t),G(Y ) ∈ Q(Y , t) and H(X ,Y , t) regular.

Evaluation on a 0-chain: γ =
∑

(u,v)∈O cu,v (u, v) with cu,v ∈ C.

For N(X ,Y , t) regular, we set

Nγ =
∑

(u,v)∈O

cu,vN(u, v ,
1

S(x , y)
) in k(O).

If N(X ,Y , t) decouples then Nα = 0 for every bicolor 0-chain α.

(u1, v1) (u2, v2)

(u1, v2)

(u2, v3)

(u3, v3)

(u3, v1)

α = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v3)

F (X )α = F (u1)− F (u1) + F (u2)− F (u2) + F (u3)− F (u3) = 0

G(Y )α = G(v2)− G(v1) + G(v3)− G(v2) + G(v1)− G(v3) = 0

α
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Graph theoretic formulas
If the graph automorphisms of O acts transitively on level lines X and Y then
one can express a decoupling as follows

γx = − 1

|O|
∑
i≥0

∑
j≤i
j odd

|Xi |
|Xj |

Xj −
|Xi |

|Xj−1|
Xj−1

and

γy = − 1

|O|
∑
i≥0

∑
j≤i
j odd

|Yi |
|Yj |

Yj −
|Yi |

|Yj−1|
Yj−1 .

(x , y1)

(x3, y1) (x4, y1)

(x , y)

(x1, y) (x2, y)

(x1, y2)

(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

(x , y1)

(x3, y1) (x4, y1)

(x , y)

(x1, y) (x2, y)

(x1, y2)

(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

Y0

Y1

Y2

X0

X1

X2

X3



Algebricity of Gλ,µ
3

XY decouples for Gλ,µ
3

XY = − 3λX 2t−µλt−4X
4t(X 2+µ)

+ −λY−4
4Y

− K(X ,Y ,t)

(X 2+µ)Yt
decouples for Gλ,µ

3

K(X ,Y , t)Q(X ,Y , t) = XY − A(X ) + B(Y )

P1 = (f (X )− A(X ), g(Y )− B(Y )) is a pair of “ formal invariants ”

Finite orbit gives a second pair of invariants

P2 =

(
(−λ2µ X 3−µ X4−X6+µ2X2+µ3)t2−X 2λ(X2−µ)t+X 3

t2X(X 2+µ)2
, −µt Y 4+λtY+Y 3+t

Y 2t

)
.

Bousquet-Mélou strategy for the three-quadrant

▶ Make polynomial combination between P1 and P2

to find pair of invariants P3 with no poles at X = 0 and Y = 0

▶ Invariant Lemma P3 is constant P3 = (C(t),C(t)).

▶ Two polynomial equations Px(A(X ),X , t) = C(t) and
Py (B(Y ),Y , t) = C(t) in one catalytic variable

▶ Bousquet-Mélou and Jehanne (06) A(X ) = K(X , 0, t)Q(X , 0, t) is
algebraic of degree 32 over Q(X , t).
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Geometric interlude

Fix t ∈ C transcendental over Q.

Consider the kernel curve

E = {(a, b) ∈ C2|K(a, b, t) = 0}
Zar

Assume that E is irreducible and smooth
Small steps

▶ The genus of E is 1

▶ The group of the walk can be seen as a subgroup of Aut(E).

▶ Bound for the finite order: 12

Large steps

▶ The genus of E is greater than 1.

▶ When the group of the walk is infinite,
G is not a subgroup of automorphisms of a Riemann surface.

▶ When the group of the walk G is finite,
G is a subgroup of automorphisms of a Riemann surface, finite cover of E .
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G is a subgroup of automorphisms of a Riemann surface, finite cover of E .
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Conclusion

▶ Find algebraic classification of the finite orbit-types

▶ Automatize Bousquet-Mélou’s strategy for algebraicity proofs

▶ Find a good notion of “weak invariants” for large steps walks.
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Thank you for your attention!
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