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OUTLINE OF SEMINAR

• Self-avoiding walks on an infinite lattice.
• Self-avoiding walks crossing a square (WCAS) and

generalisations, including the gerrymander sequence.

L=5
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• History of WCAS
• Generalisations and proof outlines.
• Enumeration. By hand, by computer (dumb), by computer

(smart), then very smart. (Another seminar)
• Analysing numerical data. (Another seminar).
• Related work.
• Hexagonal lattice calculations (G and Jensen).
• Gerrymanders (A348456) and connection to WCAS (and another

seminar).
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SQUARE LATTICE SELF-AVOIDING WALKS (SAW)

A square lattice SAW
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SAW WITHOUT ANY RESTRICTION

• The number of SAWs cn of length n, grows as

cn ∼ const · µnnγ−1.

• Metric properties, e.g. the mean-square end-to-end distance:

〈R2〉n ∼ const · n2ν ,

where (TBNP) γ = 43/32 and ν = 3/4.
• Growth constant µ is lattice dependent. Known only for the

hexagonal lattice (Neinhuis ’82, Duminil-Copin and Smirnov
’12). It is µhex =

√
2 +
√

2.
• The best estimate for the square lattice is
µ = 2.63815853032790(3) (Jacobsen, Scullard and G, 2016)
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A SERIES OF SAW PROBLEMS

Figure: Example SAWs with increasing degree of confinement to a box of side
length L = 8. (a) Unconfined, (b) confined to the box, (c) crossing a square
(our model) and (d) a Hamiltonian path crossing a square.
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SAW CROSSING A SQUARE I

• Consider SAWs with end points fixed at (0, 0) and (L,L) in a
square of side L. All sites lie in or on the boundary of the square
where

2L ≤ n ≤ L2 + 2L.

L=5
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The problem has arisen in (at least) four separate incarnations.
• As a rook’s tour problem (see Stephen Finch’s book).
• As a telecommunications network problem.
• As a classical problem in combinatorics, initiated in the ’70s by

Knuth, and studied by Abbott and Hansen (1978).
• As a model of phase transitions in statistical mechanics,

introduced as such in the early ’90s (G and Whittington).
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SAW CROSSING A SQUARE II

Let the number of such SAW be sL .
It has been proven (AH 1978 and GW 1990) that the limit

λS = lim
L→∞

s1/L2

L

exists so that sL = λ
L2+o(L2)
S .

The best estimate of this growth constant until recently was
(Bousquet-Mélou, G. and Jensen 2005) λS = 1.744550(5)
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HAMILTONIAN WALKS

Hamiltonian walks visit every vertex of a finite lattice.
Let the number of such walks be hL. The limit

µH = lim
L→∞

h1/L2

L

exists and has been estimated as µH = 1.472801(1) (B-MGJ 2005)
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SAW IN A BOX WITH DIFFERENT ENDPOINT

CONDITIONS

1 walks whose endpoints lie at opposing corners of the square
counted as sL;

2 walks whose endpoints lie anywhere within the square (Bradly
and Owczarek) counted as aL.

L=5
L=5
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THE LIMIT OF INTEREST

We are interested in the existence of the limit

λA = lim
L→∞

a1/L2

L .

and comparing its value to the previously considered

λS = lim
L→∞

s1/L2

L = 1.744550(5) .

One can in fact prove (G, Jensen, Owczarek 2023) that

λA = λS.
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SOME HISTORY.

• Knuth in 1976 first mentioned this problem (on a 10× 10 lattice),
giving a MC estimate.

• Abbott and Hanson (AH) made the first systematic study in
1978. Obtained solution for 2×M lattices.

• G and Whittington (GW) studied the problem from a stat. mech.
viewpoint in 1990, giving data for a 6× 6 square.

• Madras (1995) proved some of the GW conjectures.
• Bousquet-Mélou, Jensen and G developed a much faster

algorithm, giving data for a 19× 19 square.
• Minato developed an improved data structure, extending the

series to 26× 26 in 2017.
• G and Jensen considered other geometries, and similar problems

on the hexagonal lattice in ’21-’22.
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GROWTH OF WCAS AS A FUNCTION OF L

• Knuth (1976) asked how many walks pass through the central
vertex of a 10× 10 square?

• Let cn(L) = # of n-step WCAS in an L× L square, with ogf
CL(x) :=

∑L(L+2)
n=0 cn(L)xn.

• CL(1) is just the total number of SAW from (0, 0) to (L,L).

• AH and later GW proved that CL(1) ∼ κL2+o(L2).

• GW were interested in the phase transition as one varies the
weight x associated with the walk length.

• When x is small, the g.f. is dominated by short walks.
• At a critical value, xc, the average walk length changes from Θ(L)

to Θ(L2).

• Whittington has recently proved that CL(1) ∼ κL2+O(L).

• He proved the same result for polygons crossing a square.
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• The value of κ is not known on any lattice, though both bounds
and estimates were given by AH and GW.

• GW proved that the critical fugacity ≥ 1/µ, and conjectured to be
xc = 1/µ exactly. Subsequently proved by Madras (’95).

• At xc we believe (unproved) that the length is Θ(L1/ν) = Θ(L4/3).
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• AH considered the more general problem of SAWcrossing an
L×M lattice, asking how many paths exist from (0, 0) to (L,M)?

• Let the number of such paths be CL,M. For M finite, the paths can
be generated by a finite dimensional transfer matrix.

• Hence the generating function is rational (Stanley).
• Indeed, AH proved that

G2(x) =
∑
M≥0

C2,MxM =
1− x2

1− 4x + 3x2 − 2x3 − x4 ,

• It follows that C2,M ∼ const.κ2M
2 , where

κ2 =
√

2√
13−3

= 1.81735 . . ..
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To get good bounds on κ, we introduced two generalisations of the
problem.
• Firstly, let SAWs start anywhere on the left edge and end

anywhere on the right edge; these are walks traversing the square.
• Secondly, allow several independent SAW, each starting and

ending on the perimeter of the square, but not allowed to take
steps along the perimeter. Such walks partition the square into
distinct regions and by colouring the regions alternately black
and white we get a cow-patch pattern.

• Recall C(L) = CL(1) is the number of WCAS. Similarly define
P(L) for cow-patch walks, and T(L) for transverse walks.
We can prove

lim C(L)1/L2
= lim T(L)1/L2

= lim P(L)1/L2
= κ.
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Figure: An example of a SAW configuration crossing a square (left panel),
traversing a square from left to right (middle panel) and a cow-patch (right
panel).
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We can break the lattice up into a grid of smaller squares, and
combine smaller WCAS or transverse walks into a WCAS.

nn

Figure: Dense packings of walks crossing or traversing a square (k = 3).
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k(�+ 1) blocks

k(�+ 2)
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Figure: Dense packings of walks crossing or traversing a square (k = 3).

In this way we can obtain the bound

C(l)1/(l+1)2
≤ κ.

A stronger lower bound comes from transverse walks.

κ ≥ T(l)1/((l+1)(l+2)).
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UPPER BOUNDS

AH obtained an upper bound on κ by recasting the problem in a
matrix setting. We’ll give an alternative method based on cowpatch
configurations.
• Following AH, label each unit square in the WCAS by 1 if it lies

to the right of the path, and by 0 if it lies to the left.
• This provides a 1 : 1 correspondence between paths and a subset

of L× L matrices with elements 0 or 1.
• Matrices corresponding to allowed paths are admissible,

otherwise inadmissible.
• There are 2L2

such matrices on an L× L lattice, so CL,L ≤ 2L2
.

• Of the 16 possible 2× 2 matrices, only 14 correspond to portions
of non-intersecting lattice paths.

• Thus CL,L ≤ 14(1/L)2
, so κ ≤ 141/4 = 1.9343...

• Similarly, for 3× 3 lattices we find 320 admissible matrices (out
of a possible 512), so κ ≤ 3201/9 = 1.8982..
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An alternative interpretation follows from the cowpatch walks
defined earlier. For cowpatches, colour alternate regions black or
white, so that adjacent regions have different colours.
This gives a bijection between cow-patches and admissible matrices,
previously defined. Thus by arguments similar to the above, we find

(2P(L))1/L2
≥ κ.

This is the same bound found by Abbott and Hanson, but easier to
calculate. Our cowpatch counts gave the number of admissible
matrices up to 19× 19. There are 3.5465202× 1090 such matrices,
hence κ ≤ 1.781684. From transverse walks we get the lower bound
κ ≥ 1.65657. So

1.65657 ≤ κ ≤ 1.781684.
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Following GW, Madras in ’95 proved a number of results for the
hypercubic lattice. Restricting to 2d we have:
• Let

λ1(x) := lim
L→∞

CL(x)1/L (1)

λ2(x) := lim
L→∞

CL(x)1/L2
(2)

Theorem
(i) Both limits exist. (1) is finite for 0 ≤ x ≤ 1/µ, and is infinite for
x > 1/µ. For 0 < x < 1/µ, 0 < λ1(x) < 1 and λ1(1/µ) = 1. (ii) (2) is
finite for all x > 0. λ2(x) = 1 for 0 < x < 1/µ and λ2(x) > 1 for x > 1/µ.
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The average length of a walk is

〈n(x)〉L :=
∑

n

ncn(L)xn/
∑

n

cn(L)xn. (3)

Theorem
As L→∞, we have 〈n(x)〉L = Θ(L) for 0 < x < 1/µ and 〈n(x)〉L = Θ(L2)
for x > 1/µ.

• Unknown at x = 1/µ. Compelling numerical evidence that
〈n(1/µ)〉L = Θ(L1/ν), as suggested by Madras.
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Enumeration

• The basic algorithm used to enumerate WCAS is based on the
method of Conway, Enting and G for enumerating SAW.

• SAWs crossing an L× L square are counted using a TM
algorithm. This involves drawing a boundary line through the
square, intersecting up to L + 2 edges.

• For each edge configuration we maintain a count of partially
completed walks intersecting the boundary in that pattern.

• WCAS are counted by moving the boundary, adding one vertex
at a time (figure coming.)
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Figure: A WCAS, showing the intersection during TM counting. Walks are
enumerated by successive moves of the kink in the boundary, as shown by
the dotted line. One vertex at a time is added to the square.
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• Squares are built up column by column, sequentially adding one
vertex at a time. Configurations are represented by sets of states
{σi}.

• An empty edge is indicated by σi = 0. An occupied edge is either
free (not connected to other edges) or connected to exactly one
other edge via a path to the left of the boundary. We indicate this
by σi = 1 for a free end, σi = 2 for the lower end of a loop and
σi = 3 for the upper end of loop.

• Since we are studying 2d SAWs, this encoding uniquely specifies
which ends are paired. Read from the bottom the intersection
configuration is {2203301203} (prior to move) and {2300001203}
(after move).
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• Time and memory requirements are proportional to the maximal
number of distinct configurations along the boundary line.

• When there is no kink in the intersection (a column has just been
completed) we can calculate this number, Nconf(L), exactly.
Obviously the free end cuts the boundary line into two pieces.

• Each piece consists of ‘0’s and an equal number of ‘2’s and ‘3’s,
with the latter forming a perfectly balanced parenthesis.

• Each piece thus correspond to a Motzkin path (map 0 to a
horizontal step, 2 to a NE step, and 3 to a SE step).
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M(x) =
∑

n

Mnxx = [1− x− (1− 2x− 3x2)1/2]/2x2. (4)

The number of configurations Nconf(M) is simply obtained by
inserting a free end between two Motzkin paths,

Nconf(L) =

L∑
k=0

MkMM−k. (5)

• When the boundary line has a kink the number of configurations
exceeds Nconf(L) but clearly is less than Nconf(L + 1).

• From (4) we can show that Nconf(L) grows like 3L.
• The same is true for the maximal number of boundary configs.

and so for the computational complexity of the algorithm.
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• Since the number a walks grows like κL2
, our algorithm gives a

better than exponential improvement over direct enumeration.
• The integers occurring in the calculation become very large so

calculations are performed using modular arithmetic. We repeat
the calculation modulo various primes pi and then reconstruct
the full coefficients.

• We used primes of the form pi = 230 − ri, (ri < 1000). The CRT
ensures that any integer has a unique representation in terms of
residues.

• The algorithm is easily generalised to include a step fugacity x.
The count associated with the boundary line configuration is
replaced by a generating function for partial walks. This
generating function is just a polynomial of degree L2 in x.
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• The generalisation to traversing walks is also quite simple.
• The generalisation to cow-patch patterns is more complicated

but can be overcome with minimal increase in computational
complexity.
Enumeration results

• Proceeding as above, we calculated cn(L) for all n for L ≤ 17.
• In addition, we computed C18(1) and C19(1).

• We also computed PL(1) and TL(1), the g.f’s. for cowpatch and
traversing walks respectively, for L ≤ 19.
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BDDS AND ZDDS

• In 2013 an important development was made by Ishiwata,
Nakazawa, Kawahara, Uno and Minato, published as a
Hokkaido University Technical Report TCS-TR-A-10-64.

• They introduced a data structure ideally suited to represent
families of sets, called a zero-suppressed binary decision diagram.

• A variant of a Binary Decision Diagram, introduced by R. E.
Bryant in 1986 to representing Boolean functions, needed in VLSI
design.

• Knuth discusses BDDs and ZDDs in Fascicle 1 of volume 4 of his
magnum opus. More accessible: his 2018 Xmas Lecture.

• See also the Wikipedia entry on ZDDs, which is very accessible,
and gives applications to this problem.
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and gives applications to this problem.
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ZDD APPLICATIONS

• For example, the set of five-letter English words, of which there
are 5757, can be encoded in a ZDD of size 5020 nodes, which can
be used to immediately answer questions such as all words of
the form b*a*t. It will immediately give you beast, blast boast etc.

• The ZDD for all 789,360,053,252 paths on an 8× 8 grid only
requires a ZDD of size 33580 nodes.

• In that technical report they went to size 25× 25, subsequently
improved to 27× 27.
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Numerical analysis

It has been proved AH,GW that limL→∞ C
1

L2

L,L = κ exists.
• We expect that the ratios RL = CL+1,L+1/CL,L are dominated by a

term that behaves as κ2L. (Not rigorous). The generating function
R(x) =

∑
L RLxL therefore has r.c. xc = 1/κ2, which we can

estimate accurately using differential approximants.

• We estimated (2005) that for the crossing problem
xc = 0.32858(5), for the spanning problem xc = 0.3282(6) and for
the cow-patch problem xc = 0.328574(2).

• With the extra data we can refine this to xc = 0.3285744(2), or
that κ = 1.7445498(5).

• More precisely, we find

CL(1) ∼ κL2+dL+e · Lg

where κ ≈ 1.7445498, d = −0.04354± 0.0001, e ≈ 0.5624± 0.0005
and g = 0.
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• We have mentioned earlier that the mean number of steps
undergoes a transition from 〈n(x,L)〉 = Θ(L) to 〈n(x,L)〉 = Θ(L2)
at x = xc = 1/µ.

• Fluctuations in this quantity, V(x,L) = 〈n2(x,L)〉 − 〈n(x,L)〉2
have also been investigated.

• For fixed L, we find V(x,L) has a single maximum located at
xc(L), which approaches xc as L approaches infinity.

• More precisely, we find

V(x,L) ∼ const.L2/νU((x− xc)L1/ν),

where U(y) is a scaling function, and ν = 3/4.
• It follows that the position and height of the peak scale as

xc(L)− xc ∼ const.L−1/ν and Vmax(L) ∼ const.L2/ν . Both these
results are borne out by our numerical work.
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• We can also calculates the number of SAW crossing an L× L
square of length 2L + 2K for small values of K.

• For K = 0 the answer is
(2L

L

)
.

• For K = 1 the answer is 2L
( 2L

L+2

)
, and we found the result for

K ≤ 4.
• Asymptotically, we can prove that, for K = o(L1/3) the number is

4L
√

Lπ
(2L)K

K!
.

Here the first term is given by the number of ways of choosing
the backbone,

(2L
L

)
∼ 4L
√

Lπ
and the second is given by the number

of ways of placing K defects on a path of length 2L, which is just
(2L)K. The defects are indistinguishable, introducing the factor K!
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Hamiltonian walks
Hamiltonian walks can only exist on 2L× 2L lattices. For lattices with
an odd number of edges, one site must be missed.
• A Hamiltonian walk is of length 4L(L + 1) on a 2L× 2L lattice.

• The number of such walks grows as τ 4L2
, where we find

τ ≈ 1.472 based on exact enumeration up to 17× 17 lattices.
• τ is thus about 20% less than κ, the growth constant for all paths.
• In AH it is proved that 21/3 ≤ τ ≤ 121/4. Numerically,

1.260 ≤ τ ≤ 1.861.
• We can improve on these bounds.
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• We define Hamiltonian versions of transverse and cow-patch
walks.

• Then the proofs of bounds for Hamiltonian walks follow
similarly mutatis mutandis from the bounds we established for
WCAS.

• In this way, and enumerating the Hamiltonian paths, and their
transverse and cow-patch counterparts, we find

1.429 < τ < 1.530.

• Having previously proved that 1.6284 < κ, it follows that τ < κ.
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Other work

• Keith Edwards in Ars Comb 20-B (1985), 271-281 studied the
related problem of SAWs confined to a diamond shaped lozenge
of Z2, starting at the lozenge centre.

• Knuth estimated the number of WCAS passing through the
centre (L/2,L/2). He estimated for a 10× 10 lattice that 81± 10%
of paths do so, but said that no-one would probably ever know
the true fraction. It is

1243982213040307428318660
1568758030464750013214100

= 0.792972 . . . .

• We find this ratio for all lattices up to size 18× 18, and note that
it is approaching a constant, remarkably close to

√
π/5. How to

prove or disprove such a possibility?
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HEXAGONAL LATTICE

The hexagonal lattice is singular in that it is the only lattice for which
the growth constant for SAWs is known. It is µ =

√
2 +
√

2.

Similarly, for SAWs adsorbed onto a surface, the critical fugacity was
conjectured by Batchelor and Yung in 1995 to be 1 +

√
2, a result

subsequently proved by Beaton, Bousquet-Mélou, de Gier,
Duminil-Copin and G in 2013.
For interacting SAWs on the hexagonal lattice Beaton G and Jensen
have suggested that the critical fugacity might be xc =

√
2 + 4

√
2.

Aleks Owczarek asked whether something similar might prevail for
walks crossing a hexagon. Iwan Jensen and I investigated this.
We can proved that CL(1) ∼ A · λL2

, where L is the linear dimension of
the hexagon. We estimate λ ≈ 1.38724951. But we can’t guess its exact
value!
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GERRYMANDERS, OR A348456
• In 2022 Neil Sloane gave a lecture in which he nominated

A348456 (the gerrymander sequence) as the most interesting
sequence in the OEIS, and complained that only 3 terms were
known. He asked for the 4th.

• This sequence counts the number of ways to dissect a 2L× 2L
chessboard into two polyominoes, each of area 2L2.

• In arXiv2209.01787 Kauers, Koutschan and Spahn gave the 4th,
5th, 6th and 7th terms, using a much more efficient algorithm.

• Jensen and I got interested, and modified our algorithm
(+ZDDs), generating four more terms. 11 terms were sufficient to
analyse numerically for the asymptotics.

• We first proved that it should grow like λL2+o(L2), where L is the
linear dimension.

• We estimated that λ ≈ 1.7445 – the same as the growth constant
for WCAS!

• We then proved that the growth constants are the same, and also
related the sub-dominant asymptotics to those of WCAS.
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sequence in the OEIS, and complained that only 3 terms were
known. He asked for the 4th.

• This sequence counts the number of ways to dissect a 2L× 2L
chessboard into two polyominoes, each of area 2L2.

• In arXiv2209.01787 Kauers, Koutschan and Spahn gave the 4th,
5th, 6th and 7th terms, using a much more efficient algorithm.

• Jensen and I got interested, and modified our algorithm
(+ZDDs), generating four more terms. 11 terms were sufficient to
analyse numerically for the asymptotics.

• We first proved that it should grow like λL2+o(L2), where L is the
linear dimension.

• We estimated that λ ≈ 1.7445 – the same as the growth constant
for WCAS!

• We then proved that the growth constants are the same, and also
related the sub-dominant asymptotics to those of WCAS.
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• More generally, divide an L× L square into two connected but
not necessarily equal area regions. We refer to these as
generalised gerrymander configurations (GGCs) gL,k.

• So one region has area k (the other has area L2 − k). Every
configuration is counted twice. So gL,k is symmetric,
gL,k = gL,L2−k.

• Set i = bL2/2c. We then define the generalised gerrymander
sequence as CL = gL,i.

• For L even CL is twice the gerrymander sequence coefficient.
• In any GGC one (or both) regions has to be a self-avoiding

polygon (SAP). This is the key to our efficient enumeration.
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• Here are the four distinct cases one has to consider, noting that
the grey region is a SAP.

Figure: The four cases of self-avoiding polygons (grey regions) resulting in
gerrymander configurations.

• Given the constraint of only two connected regions, it follows
that the grey region can be chosen so that it contains either zero,
one, or two corners of the square.
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Theorem
PCAS have the same growth constant as WCAS.

Theorem
SAPS within a square grow as WCAS.

Theorem
The generalised gerrymander sequence has the same growth constant as
WCAS.

We find that the coefficients of A348456 grow as

λ4L2+dL+e · Lg

where λ = λ(WCAS) ≈ 1.7445498, d = −8.0708± 0.0002, e ≈ 7.69,
and g = 3/4.
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CONCLUSION

• We have unified and extended a number of results in this
problem, which provides a nice example of both enumeration
techniques and a simply understood mechanism of a phase
transition.

• It also offers scope for developing a variety of mathematical
techniques, including enumeration algorithms, establishing
rigorous bounds, and proving existence theorems.

• It also shows that the statistical mechanics, algebraic
combinatorics and computer science communities should talk to
one another!

WCAS and Gerry Guttmann



Introduction SAWs on an infinite lattice SAWs crossing a square (WCAS) History of WCAS Generalisation and proof outlines Analysing numerical data Related work Walks crossing an hexagonal lattice The gerrymander sequence or OEIS A348456 Conclusion

CONCLUSION

• We have unified and extended a number of results in this
problem, which provides a nice example of both enumeration
techniques and a simply understood mechanism of a phase
transition.

• It also offers scope for developing a variety of mathematical
techniques, including enumeration algorithms, establishing
rigorous bounds, and proving existence theorems.

• It also shows that the statistical mechanics, algebraic
combinatorics and computer science communities should talk to
one another!

WCAS and Gerry Guttmann



Introduction SAWs on an infinite lattice SAWs crossing a square (WCAS) History of WCAS Generalisation and proof outlines Analysing numerical data Related work Walks crossing an hexagonal lattice The gerrymander sequence or OEIS A348456 Conclusion

CONCLUSION

• We have unified and extended a number of results in this
problem, which provides a nice example of both enumeration
techniques and a simply understood mechanism of a phase
transition.

• It also offers scope for developing a variety of mathematical
techniques, including enumeration algorithms, establishing
rigorous bounds, and proving existence theorems.

• It also shows that the statistical mechanics, algebraic
combinatorics and computer science communities should talk to
one another!

WCAS and Gerry Guttmann


	Introduction
	SAWs on an infinite lattice
	SAWs crossing a square (WCAS)
	History of WCAS
	Generalisation and proof outlines
	Analysing numerical data
	Related work
	Walks crossing an hexagonal lattice
	The gerrymander sequence or OEIS A348456
	Conclusion

