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We discuss how sparse interpolation in computer algebra and exponential analysis in
digital signal processing can cross-fertilize and lead to new results.

The Nyquist constraint [11] is the digital signal processing equivalent of stating that
the argument of a complex exponential exp(φ∆) with φ ∈ C and ∆ ∈ R+ can only be
retrieved uniquely under the condition that |=(φ)|∆ < π. It governs signal processing
since the beginning of the 20-th century. In the past two decades this constraint was
first broken with the use of randomly collected signal samples [8, 2] and later for use
with uniform samples [6].

The latter method closely relates to the original version of the exponential data fit-
ting algorithm published in 1795 by the French mathematician de Prony [7], which is
often cited in sparse interpolation research. In engineering applications it is mostly
implemented using a structured generalized eigenvalue approach. Besides avoiding the
Nyquist constraint, the new result in [6] also solves a number of remaining open prob-
lems in exponential analysis, which we plan to discuss.

In the identification, from given values fk ∈ C, of the nonlinear parameters φ1, . . . , φn ∈
C, the linear coefficients α1, . . . , αn ∈ C and the sparsity n ∈ N in the inverse problem

n∑
j=1

αj exp(φjk∆) = fk, k = 0, . . . , 2n− 1, . . . fk ∈ C, ∆ ∈ R+, (1)

several cases are considered to be hard [6, 1]:

When some of the φj cluster, the identification and separation of these clustered
φj becomes numerically ill-conditioned. We show how the problem may be recon-
ditioned.
Retrieval of the correct value of n is difficult, and more so in case of clustered φj
and noisy samples fk. Here, decimation of the data offers a way to obtain a reliable
estimate of n automatically.
Such decimation allows to divide and conquer the inverse problem statement. The
smaller subproblems are largely independent and can be solved in parallel, leading
to an improved complexity and efficiency.
At the same time, the sub-Nyquist Prony method proves to be robust with respect
to outliers in the data. Making use of some approximation theory results [9, 10,
Kn.Cu:rob:23], we can also validate the computation of the φj and αj .
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The Nyquist constraint effectively restricts the bandwidth of the =(φj). Therefore,
avoiding the constraint offers so-called superresolution, or the possibility to unearth
higher frequency components in the samples.

All of the above can be generalized in several ways, to the use of more functions be-
sides the exponential on the one hand, and to the solution of multdimensional inverse
problems as in (1) on the other [5].
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[9] J. Gilewicz and M. Pindor. Padé approximants and noise: a case of geometric
series. J. Comput. Appl. Math., 87:199–214, 1997.
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