Interpolating isogenies and applications...

Benjamin Wesolowski, CNRS and ENS de Lyon
28 September 2023, Fundamental Algorithms and Algorithmic Complexity, IHP, Paris, France

Isogenies

Elliptic curves, isogenies, computational problems

Elliptic curves

Elliptic curve over \mathbb{F}_{q} : solutions (x, y) in \mathbb{F}_{q} of

$$
y^{2}=x^{3}+a x+b
$$

$E\left(\mathbb{F}_{q}\right)$ is an additive group
Isogeny: a map

$$
\varphi: E_{1} \rightarrow E_{2}
$$

which preserves certain structures. In particular, it is a group homomorphism with a finite kernel
The degree* is $\operatorname{deg}(\varphi)=\# \operatorname{ker}(\varphi)$

* for separable isogenies
- $\operatorname{deg}(\varphi \circ \psi)=\operatorname{deg}(\varphi) \cdot \operatorname{deg}(\psi)$

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

Applications of isogeny computation

- For the arithmetic of elliptic curves:
\Rightarrow counting points over a finite field,
\Rightarrow computing endomorphism rings,
\Rightarrow computing modular polynomials...
- Classical cryptography: cryptanalysis of the discrete logarithm problem
- Post-quantum cryptography: cryptosystems "based on" hard versions of the isogeny problem
\Rightarrow digital signature schemes,
\Rightarrow key exchange protocols,
ص "Advanced" protocols...

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

- Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

- The solution φ is an isogeny...
- How to represent an isogeny?

Efficient isogenies

- Explicit polynomial formula, or Vélu's formulae... polynomial time in $\operatorname{deg}(\varphi)$
$\sqrt{ }$ Isogenies of small degree $\ell=2$, or $3 \ldots$ " " ℓ-isogenies"

$$
(x, y) \quad \longmapsto \quad\left(\frac{x^{2}+1}{x}, \frac{y\left(x^{2}+1\right)}{x^{2}}\right) \quad \text { (degree 2) }
$$

Efficient isogenies

- Explicit polynomial formula, or Vélu's formulae... polynomial time in $\operatorname{deg}(\varphi)$
\checkmark Isogenies of small degree $\ell=2$, or $3 \ldots$ " " ℓ-isogenies"
- Given random E_{1} and E_{2}, smallest $\varphi: E_{1} \rightarrow E_{2}$ has degree poly(p)
X Typically in crypto, $p>2256$
- Compose small isogenies to build bigger ones!
$\sqrt{ }$ Isogenies with smooth degree (small prime factors):
$\varphi_{n} \circ \ldots \circ \varphi_{2} \circ \varphi_{1}$ represented by ('compose', $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$), with deg $\left(\varphi_{i}\right)$ small

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

an isogeny of degree $\ell=$ an edge in a graph

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

an isogeny of degree $\ell=$ an edge in a graph

$$
\exists \ell \text {-isogeny } E_{1} \rightarrow E_{2} \Rightarrow \exists \ell \text {-isogeny } E_{2} \rightarrow E_{1}
$$

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies
- The ℓ-isogeny graph (supersingular...)

- ($\ell+1$)-regular, connected (for supersingular curves)

The ℓ-isogeny path problem

ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

- Path finding in a graph
- Hard for supersingular curves! Best known algorithm = generic graph algorithm
- Typical meaning of "the isogeny problem"

Isogeny-based cryptography

Expectations: cryptosystems as secure as isogeny problem is hard

Isogeny-based cryptography

Reality: a mess

The isogeny problem $=$ CGL hash function (preimage)
One endomorphism $=$ SQISign (soundness)
Vectorisation $=$ CSIDH (key recovery)
SSI-T $=$ SIDH (key recovery)

Isogeny-based cryptography

Reality: a mess

SIDH

Jao-De Feo 2011

SIKE logo - Supersingular Isogeny Key Encapsulation

Isogeny from a kernel

- Let E be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

$$
\varphi: E \rightarrow E / G
$$

with $\operatorname{ker}(\varphi)=G$

- $\operatorname{deg}(\varphi)=\# G$
- Computing an isogeny from its kernel: Given generators of G, the isogeny φ can be computed in time poly(size of input, largest prime factor of \#G) [Vélu 1971]
\Rightarrow Given a smooth kernel, can efficiently compute the isogeny

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$
Compute $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$
Compute $\boldsymbol{E}_{\mathbf{B A}}=E_{A} / H$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Idea:

- Alice picks a subgroup G of $E_{0}\left[2^{n}\right]$ - Many choices, good entropy
- Bob gives φ_{B} on $E_{0}\left[2^{n}\right]$ φ_{B} remains secret everywhere else...
- Alice can compute $\varphi_{B}(G)$
 Can compute shared secret $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / \varphi_{B}(G)$

SIDH

Fix: an elliptic curve E_{0}
Generators P_{2}, Q_{2} of $E_{0}\left[2^{n}\right] \cong\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{2}$
Generators P_{3}, Q_{3} of $E_{0}[3 m] \cong(\mathbb{Z} / 3 m \mathbb{Z})^{2}$

Alice

Bob

Random subgroup G of $E_{0}\left[2^{n}\right]$
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$

$$
\text { Let } E_{A}=E_{0} / G
$$

$$
\xrightarrow[E_{B}, \varphi_{B}\left(P_{2}\right), \varphi_{B}\left(Q_{2}\right)]{E_{A}, \varphi_{A}\left(P_{3}\right), \varphi_{A}\left(Q_{3}\right)}
$$

Random subgroup H of $E_{0}\left[3^{m}\right]$
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

Compute $\boldsymbol{E}_{\mathbf{B A}}=E_{A} / \varphi_{A}(H)$

The SSI-T problem

Context:

- two elliptic curves E_{0} and E_{1}
- an isogeny $\varphi: E_{0} \rightarrow E_{1}$ (say, of degree $3 m$ like Bob's isogeny)
- an integer N coprime to $\operatorname{deg}(\varphi)$ (say, $N=2^{n}$...)
- generators P and Q of $E_{0}[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$
"torsion point information"
SSI-T: Given $E_{0}, E_{1}, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_{0} \rightarrow E_{1}$

SIIDH key recovery \Leftrightarrow SSI-T

An interpolation problem

SSI-T: given $\varphi(P)$ for a few $P \in E$, find φ
Polynomial interpolation: given $f(s)$ for a few $s \in K$, find f

An interpolation problem

- Polynomial interpolation is not hard
- Isogenies are polynomials

$$
\left(\frac{x^{2}+1}{x}, \frac{y\left(x^{2}+1\right)}{x^{2}}\right)
$$

- So isogeny interpolation (hence SSI-T) is easy??
"Easy"? polynomial time in the length of the input...
- Polynomial interpolation: length of the input $\approx \operatorname{deg}(f)$
\Rightarrow Need $\operatorname{deg}(f)+1$ values $f(s)$
- Isogeny interpolation: length of the input $\approx \log (\operatorname{deg}(\varphi))$
\Rightarrow A single $\varphi(P)$ also determines $\varphi(2 P), \varphi(3 P), \varphi(4 P), \ldots$

Torsion point information: a weakness?

Standard SIDH parameters totally unaffected

The Snap

July 302022

July 302022

 eprint 2022/975
An efficient key recovery attack on SIIDH

Wouter Castryck, Thomas Decru

"Breaks SIKEp434 challenge in ten minutes"

Eurocrypt 2023-"Isogeny 1" session

Efficient Key Recovery Attack on SIDH (Best Paper Award)
[Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)
[Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention)
[Robert]

Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let P, Q generators of $E_{1}\left[2^{n}\right]$ such that $4 \operatorname{deg}(\varphi) \leq 2^{2 n}$
- Given ($d, P, Q, \varphi(P), \varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: The few points leaked by SIDH leak the full secret.

Isogeny-based cryptography

Body count

Rundown of survivors

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
$ص$ Signature scheme, most compact pk + sig of all PQ schemes
- Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
\Rightarrow Key exchange very similar to Diffie-Hellman
- Wide variety of CSIDH-inspired constructions

■ "group action" cryptography
$ص$ Signatures, PRFs, threshold stuff, oblivious stuff...

The algorithm

 Isogenies in higher dimension

Dual

Let E an elliptic curve over \mathbb{F}_{q} and N an integer

- Multiplication by N is an isogeny

$$
[N]: E \rightarrow E: P \longmapsto[N] P=P+P+\ldots+P
$$

- Let $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny
- Dual of φ : unique isogeny $\hat{\varphi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\varphi} \circ \varphi=[\operatorname{deg}(\varphi)]
$$

Abelian varieties

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

- Example: product $E_{1} \times E_{2}$

Abelian variety: same but any dimension

- Example: product $E_{1} \times E_{2} \times \ldots \times E_{n}$

Isogenies between products

$\Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2}$

Isogenies between products

$$
\begin{aligned}
\left(P_{1}, P_{2}\right) & \left(\varphi_{11}\left(P_{1}\right)+\varphi_{21}\left(P_{2}\right), \varphi_{12}\left(P_{1}\right)+\varphi_{22}\left(P_{2}\right)\right) \\
& =\left(\begin{array}{cc}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

Isogenies between products

Every isogeny $\Psi: E_{1} \times E_{2} \rightarrow F_{1} \times F_{2}$ is of the form

$$
\begin{aligned}
& \Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2} \\
& \left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

where $\varphi_{i j}: E_{i} \rightarrow F_{j}$

- It is an \boldsymbol{N}-isogeny if

$$
\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\hat{\varphi}_{11} & \hat{\varphi}_{12} \\
\hat{\varphi}_{21} & \hat{\varphi}_{22}
\end{array}\right)=\left(\begin{array}{cc}
{[N]} & 0 \\
0 & {[N]}
\end{array}\right)
$$

- Given the kernel of a 2^{n}-isogeny, can evaluate it in polynomial time

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree $\operatorname{deg}(\varphi)=d$ (Bob's secret)
- Suppose $2^{n}-\operatorname{deg}(\varphi)=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree $\operatorname{deg}(\varphi)=d$ (Bob's secret) $\hat{\varphi} \circ \varphi=[d]$
- Suppose $2^{n}-\operatorname{deg}(\varphi)=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- Is it a $2^{\text {n-isogeny? }}$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[a^{2}\right]+[d]} & 0 \\
0 & {\left[a^{2}\right]+[d]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[2^{n}\right]} & 0 \\
0 & {\left[2^{n}\right]}
\end{array}\right)
$$

- $\operatorname{ker}(\Psi)=\left\{([d] P,[a] \varphi(P)) \mid P \in E_{1}\left[2^{n}\right]\right\}$
- Given φ on $E_{1}\left[2^{\text {n }}\right]$ (torsion information) \Rightarrow can compute $\operatorname{ker}(\Psi) \Rightarrow$ can compute φ

4D embedding of an isogeny

- $\mathbf{2 n}^{\boldsymbol{n}} \mathbf{- \operatorname { d e g }}(\varphi)$ not a square? [Robert] has a solution
- Suppose $2^{n}-\operatorname{deg}(\varphi)=a^{2}+b^{2}$ is a sum of 2 squares...
- Define $\Psi: E_{1} \times E_{1} \times E_{2} \times E_{2} \rightarrow E_{1} \times E_{1} \times E_{2} \times E_{2}$ as

$$
\begin{aligned}
&\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) \\
&=\left(\begin{array}{cc}
a^{2}+b^{2} & 0 \\
0 & a^{2}+b^{2}
\end{array}\right)
\end{aligned}
$$

- It is a $2^{n-i s o g e n y ~}$
- Isogeny in dimension 4
- Many integers are sum of 2 squares... but not all

8D embedding of an isogeny

- Every integer is a sum of 4 squares: $2^{n-d e g}(\varphi)=a^{2}+b^{2}+c^{2}+d^{2}$
- [Robert] has another trick for that case: Zarhin's trick

$$
\left(\begin{array}{cccccccc}
a & -b & -c & -d & -\hat{\varphi} & & & 0 \\
b & a & d & -c & & -\hat{\varphi} & 0 \\
c & -d & a & b & & & -\hat{\varphi} & \\
d & c & -b & a & 0 & & & -\hat{\varphi} \\
\varphi & & & & a & b & c & d \\
& \varphi & 0 & -b & a & -d & c \\
& & \varphi & & -c & d & a & -b \\
0 & & \varphi & -d & -c & b & a
\end{array}\right)
$$

Generalisation

Interpolating isogenies: \exists an algorithm that for any isogeny $\varphi: E_{1} \rightarrow E_{2}$, given:

- the curves E_{1} and E_{2}, and the degree $\operatorname{deg}(\varphi)$
- points $P, Q \in E_{1}$ generating a subgroup G with $4 \operatorname{deg}(\varphi) \leq \# G$
- the points $\varphi(P), \varphi(Q)$
- a point $S \in E_{1}$
returns $\varphi(S)$ in poly. time in: length of the input, largest prime factor of \#G, and degree of the field of definition of $E_{i}\left[\ell^{e}\right]$ for each prime-power factor ℓ^{e} of \#G.

Representing isogenies Back to the foundations

The isogeny problem

"Idealised" isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$
ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

- The ℓ-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_{1} \rightarrow E_{2}$ than as a path?
\Rightarrow Strong restriction on φ because of technical obstacle
- How to represent an isogeny?

Efficient representation of isogenies

How to represent an isogeny?

- an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Examples:

- Small degree isogenies
- Compositions of small degree isogenies
- Linear combinations of compositions of small degree isogenies...

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let P, Q in E_{1} such that $4 \operatorname{deg}(\varphi) \leq \#\langle P, Q\rangle$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: ($d, P, Q, \varphi(P), \varphi(Q)$) is an efficient representation of φ.

- "Interpolation representation" of φ, or "HD representation"
- Universal! Given any efficient repr. of φ, can compute its interpolation repr.

The universal isogeny problem

The universal isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$ represented by interpolation.

- No restriction on φ like in ℓ-isogeny path: any φ can be a valid response

Universall isogeny $\Leftrightarrow \ell$-isogeny path

[Page, W.] preprint 2023

Applications

In cryptography and number theory

New cryptosystems

- FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\mapsto Good implementations available
- SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
\Rightarrow 4D isogenies for verification
\Rightarrow Not well studied
\Rightarrow Very promising ongoing work by Dartois

New computational equivalences

[Page, W.] The supersingular Endomorphism Ring and One Endomorphism problems are equivalent. 2023

- Finding an ℓ-isogeny path is equivalent to finding any isogeny
- Finding one endomorphism is equivalent to finding them all
[Arpin, Clements, Dartois, Eriksen, Kutas, W.] Finding orientations of supersingular elliptic curves and quaternion orders. 2023
- Deciding if an elliptic curve has a certain endomorphism is equivalent to finding said endomorphism (subexponential equivalence)

New algorithms

[Robert] Some applications of higher dimensional isogenies to elliptic curves. 2022

- Computing ordinary endomorphism rings, canonical lifts, Siegel modular polynomials...
[Herlédan Le Merdy, W.] The supersingular endomorphism ring problem given one endomorphism. 2023
- Given a supersingular elliptic curve E and some $\alpha \in \operatorname{End}(E)$, compute End (E) in subexponential time (assuming GRH)

