Interpolating isogenies and applications...

Benjamin Wesolowski, CNRS and ENS de Lyon 28 September 2023, Fundamental Algorithms and Algorithmic Complexity, IHP, Paris, France

Isogenies Elliptic curves, isogenies, computational problems

Elliptic curves

Elliptic curve over \mathbb{F}_q : solutions (*x*,*y*) in \mathbb{F}_q of

 $E(\mathbb{F}_q)$ is an additive group

Isogeny: a map

a finite kernel

The **degree**^{*} is deg(φ) = #ker(φ)

• $deg(\varphi \circ \psi) = deg(\varphi) \cdot deg(\psi)$

- $y^2 = x^3 + ax + b$

- $\varphi: E_1 \rightarrow E_2$
- which preserves certain structures. In particular, it is a group homomorphism with

* for separable isogenies

The isogeny problem

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

The isogeny problem

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

Applications of isogeny computation

- For the arithmetic of elliptic curves:
 - counting points over a finite field,
 - computing endomorphism rings,
 - computing modular polynomials...
- Classical cryptography: cryptanalysis of the discrete logarithm problem
- Post-quantum cryptography: cryptosystems "based on" hard versions of the isogeny problem
 - digital signature schemes,
 - key exchange protocols,
 - "Advanced" protocols...

The isogeny problem

- **Isogeny problem:** Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

Security of cryptosystems

cryptograph)

The isogeny problem

- The solution φ is an isogeny...
- How to represent an isogeny?

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

Efficient isogenies

• Explicit polynomial formula, or Vélu's formulae... polynomial time in deg(φ) \checkmark Isogenies of small degree $\ell = 2$, or $3... "\ell$ -isogenies"

$(x, y) \longrightarrow$

$$\left(\frac{x^2+1}{x}, \frac{y(x^2+1)}{x^2}\right)$$

(degree 2)

Efficient isogenies

• Explicit polynomial formula, or Vélu's formulae... polynomial time in deg(φ) Isogenies of small degree $\ell = 2$, or $3... "\ell$ -isogenies" • Given random E_1 and E_2 , smallest $\varphi: E_1 \rightarrow E_2$ has degree poly(p) X Typically in crypto, $p > 2^{256}$ Compose small isogenies to build bigger ones! Isogenies with **smooth degree** (small prime factors): $\varphi_n \circ \ldots \circ \varphi_2 \circ \varphi_1$ represented by ('compose', $\varphi_1, \varphi_2, \ldots, \varphi_n$), with deg(φ_i) small

Isogeny graph

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

an isogeny of degree ℓ = an edge in a graph

Isogeny graph

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

E1 -

an isogeny of degree ℓ = an edge in a graph $\exists \ \ell$ -isogeny $E_1 \rightarrow E_2 \Rightarrow \exists \ \ell$ -isogeny $E_2 \rightarrow E_1$

Isogeny graph

- Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies
- The *l*-isogeny graph (supersingular...)

• $(\ell + 1)$ -regular, **connected** (for supersingular curves)

The *l*-isogeny path problem

- Path finding in a graph
- Typical meaning of "the isogeny problem"

l-isogeny path problem: Given E_1 and E_2 , find an ℓ -isogeny path from E_1 to E_2

• Hard for supersingular curves! Best known algorithm = generic graph algorithm

Expectations: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Hard even for Quantum algorithms Security of cryptosystems

Reality: a mess

Weird scheme- dependent variants of isogeny problems	4	Se cryp
--	---	------------

- CGL hash function (preimage) The isogeny problem One endomorphism SQISign (soundness) CSIDH (key recovery) Vectorisation
- - - SSI-T

- - SIDH (key recovery)

Reality: a mess

curity of tosystems

The isogeny proble

"... [Jao, De Feo] PQCrypto 2011 Isogeny-based key exchange NIST PQC alt-finalist SQISign (Sundness) CSIDL (key recovery)

SIDH (key recovery)

SIDH Jao-De Feo 2011

SIKE logo – Supersingular Isogeny Key Encapsulation

- Let *E* be an elliptic curve
- Let G a finite subgroup of E
- **Quotienting by G:** there is a unique (separable) isogeny

with ker(φ) = G

- $deg(\varphi) = #G$

Isogeny from a kernel

 $\varphi: E \to E/G$

Computing an isogeny from its kernel: Given generators of G, the isogeny φ can be computed in time poly(size of input, largest prime factor of #G) [Vélu 1971] Given a smooth kernel, can efficiently compute the isogeny

 E_{o}

 φ_A

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$ Compute $E_{AB} = E_B/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$ Compute $E_{BA} = E_A/H$

 φ_B $\rightarrow E_{O}/H = E_{B}$ $E_A = E_O/G \longrightarrow E_O/(G + H) = E_{AB} = E_{BA}$

Alice does not know φ_B ...

- The N-torsion of E is the subgroup
- $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

Idea:

- Alice picks a subgroup G of $E_0[2^n]$ \checkmark Many choices, good entropy
- Bob gives φ_B on $E_0[2^n]$ \blacktriangleleft φ_B remains secret everywhere else...
- Alice can compute $\varphi_B(G)$

Torsion

$E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

Can compute shared secret $E_{AB} = E_B / \varphi_B(G)$

- Fix: an elliptic curve E_0
- Generators P_2 , Q_2 of $E_0[2^n] \cong (\mathbb{Z}/2^n\mathbb{Z})^2$
- Generators P_3 , Q_3 of $E_0[3^m] \cong (\mathbb{Z}/3^m\mathbb{Z})^2$

Random subgroup G of $E_0[2^n]$ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

Compute $E_{AB} = E_B / \varphi_B(G)$

SIDH

Random subgroup H of $E_0[3^m]$ Compute $\varphi_B : E_0 \rightarrow E_0/H$

Let $E_B = E_0/H$

Compute **E**_{BA} = $E_A/\varphi_A(H)$

The SSI-T problem

Context:

- two elliptic curves E_0 and E_1
- an isogeny $\varphi: E_0 \to E_1$ (say, of degree 3^m like Bob's isogeny)
- an integer N coprime to deg(φ) (say, N = 2ⁿ...)
- generators P and Q of $E_0[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

"torsion point information" **SSI-T:** Given $E_0, E_1, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_0 \to E_1$

An interpolation problem

SSI-T: given $\varphi(P)$ for a few $P \in E$, find φ

- **Polynomial interpolation:** given f(s) for a few $s \in K$, find f

- Polynomial interpolation is not hard
- Isogenies are polynomials
- So isogeny interpolation (hence SSI-T) is easy??
- "Easy"? polynomial time in the length of the input...
- Polynomial interpolation: length of the input $\approx \deg(f)$ \rightarrow Need deg(f) + 1 values f(s)
- Isogeny interpolation: length of the input $\approx \log(\deg(\varphi))$

A single $\varphi(P)$ also determines $\varphi(2P)$, $\varphi(3P)$, $\varphi(4P)$, ...

Torsion point information: a weakness? -or Birth of [*Petit*] breaking **SIDH** "overstreched" SSI-T [de Quehen, Kutas, Leonardi, [Galbraith, Petit, Silva] Martindale, Panny, Petit, Stange] an active attack

Standard SIDH parameters totally unaffected

Improving Petit's method

The Snap July 30 2022

An efficient key recovery attack on SIDH **Wouter Castryck, Thomas Decru**

"Breaks SIKEp434 challenge in ten minutes"

July 30 2022 eprint 2022/975

Efficient Key Recovery Attack on SIDH (Best Paper Award) [Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)

[Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention) [Robert]

Eurocrypt 2023 – "Isogeny 1" session

Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let P, Q generators of $E_1[2^n]$ such that $4 \deg(\varphi) \leq 2^{2n}$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: The few points leaked by SIDH leak the full secret.

Weird scheme-dependent variants of isogeny problems

- The isogeny problem
- One endomorphism
 - Vectorisation
- SIDH (key recovery)

Body count

CGL hash function (preimage) SQISign (soundness) CSIDH (key recovery)

Rundown of survivors

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
 - Signature scheme, most compact pk + sig of all PQ schemes
 - Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
 - Key exchange very similar to Diffie-Hellman
- Wide variety of CSIDH-inspired constructions
 - "group action" cryptography
 - Signatures, PRFs, threshold stuff, oblivious stuff...

The algorithm Isogenies in higher dimension

Let E an elliptic curve over \mathbb{F}_q and N an integer

- Multiplication by N is an isogeny
- Let $\varphi: E_1 \rightarrow E_2$ be an isogeny
- **Dual of** φ : unique isogeny $\hat{\varphi} : E_2 \to E_1$ such that

Dual

$[N]: E \longrightarrow E : P \longmapsto [N]P = P + P + \dots + P$

 $\hat{\varphi} \circ \varphi = [\deg(\varphi)]$

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

• Example: product $E_1 \times E_2$

Abelian variety: same but any dimension

• Example: product $E_1 \times E_2 \times ... \times E_n$

Isogenies between products

 $\Psi: E_1 \times E_2 \longrightarrow F_1 \times F_2$

Isogenies between products

 $\begin{pmatrix} \varphi_{11}(P_1) + \varphi_{21}(P_2), \varphi_{12}(P_1) + \varphi_{22}(P_2) \end{pmatrix}$ $= \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$

Isogenies between products

- Every isogeny $\Psi: E_1 \times E_2 \rightarrow F_1 \times F_2$ is of the form $\Psi: E_1 \times E_2$ — $(P_1, P_2) \longrightarrow$
- where $\varphi_{ii}: E_i \to F_j$
- It is an **N-isogeny** if

$$\begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} \hat{\varphi}_{11} & \hat{\varphi}_{12} \\ \hat{\varphi}_{21} & \hat{\varphi}_{22} \end{pmatrix} = \begin{pmatrix} [N] & 0 \\ 0 & [N] \end{pmatrix}$$

• Given the kernel of a 2^n -isogeny, can evaluate it in polynomial time

$$\rightarrow F_1 \times F_2 \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

HD embedding of an isogeny

- Let $\varphi : E_1 \rightarrow E_2$ of degree deg(φ) = d (Bob's secret)
- Suppose $2^n deg(\varphi) = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$P_1 \qquad (P_1, 0)$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\stackrel{\Psi}{\longrightarrow} E_1 \times E_2 \xrightarrow{\text{projection}}$ E_2 $(aP_1, \varphi(P_1))$ $\varphi(P_1)$

HD embedding of an isogeny

- $\hat{\varphi} \circ \varphi = [d]$ • Let $\varphi : E_1 \rightarrow E_2$ of degree deg(φ) = d (Bob's secret)
- Suppose $2^n deg(\varphi) = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix}$$

- ker(Ψ) = { ([d]P, [a] φ (P)) | $P \in E_1[2^n]$ }

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} d \end{bmatrix} = \begin{pmatrix} [2^n] & 0 \\ 0 & [a^2] + [d] \end{pmatrix} = \begin{pmatrix} [2^n] & 0 \\ 0 & [2^n] \end{pmatrix}$

• Given φ on $E_1[2^n]$ (torsion information) \Rightarrow can compute ker(Ψ) \Rightarrow can compute φ

4D embedding of an isogeny

- $2^n deg(\varphi)$ not a square? [Robert] has a solution
- Suppose $2^n deg(\varphi) = a^2 + b^2$ is a sum of 2 squares...
- Define $\Psi: E_1 \times E_1 \times E_2 \times E_2 \rightarrow E_1 \times E_1 \times E_2 \times E_2$ as

- It is a 2ⁿ-isogeny
- Isogeny in dimension 4
- Many integers are sum of 2 squares... but not all

8D embedding of an isogeny

- Every integer is a sum of 4 squares: $2^n deg(\varphi) = a^2 + b^2 + c^2 + d^2$
- [Robert] has another trick for that case: Zarhin's trick

Generalisation

- **Interpolating isogenies:** \exists an algorithm that for any isogeny $\varphi: E_1 \rightarrow E_2$, given: • the curves E_1 and E_2 , and the degree deg(φ)
- points $P, Q \in E_1$ generating a subgroup G with 4 deg(φ) $\leq \#G$
- the points $\varphi(P)$, $\varphi(Q)$
- a point $S \in E_1$

degree of the field of definition of $E_i[\ell^e]$ for each prime-power factor ℓ^e of #G.

- returns $\varphi(S)$ in poly. time in: length of the input, largest prime factor of #G, and
 - **Open question**: what about #G not smooth?

Representing isogenies Back to the foundations

The isogeny problem

"Idealised" isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

l-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

• The *l*-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_1 \rightarrow E_2$ than as a path?

Strong restriction on φ because of technical obstacle

• How to represent an isogeny?

Efficient representation of isogenies

How to represent an isogeny?

• an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Examples:

- Small degree isogenies
- Compositions of small degree isogenies
- Linear combinations of compositions of small degree isogenies...

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let P, Q in E_1 such that 4 deg(φ) $\leq #\langle P, Q \rangle$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ .

- "Interpolation representation" of φ , or "HD representation"
- Universal! Given any efficient repr. of φ , can compute its interpolation repr.

The universal isogeny problem

The universal isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ represented by interpolation.

• No restriction on φ like in ℓ -isogeny path: any φ can be a valid response

Universal isogeny \Leftrightarrow *l*-isogeny path [Page, W.] preprint 2023

Applications

In cryptography and number theory

New cryptosystems

- FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks
 - **2D isogenies** for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD** [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
 - **4D isogenies** for verification
 - ► Not well studied
 - Very promising ongoing work by Dartois

New computational equivalences

[Page, W.] The supersingular Endomorphism Ring and One Endomorphism problems are equivalent. 2023

- Finding an ℓ -isogeny path is equivalent to finding any isogeny
- Finding one endomorphism is equivalent to finding them all

elliptic curves and quaternion orders. 2023

• Deciding if an elliptic curve has a certain endomorphism is equivalent to finding said endomorphism (subexponential equivalence)

[Arpin, Clements, Dartois, Eriksen, Kutas, W.] Finding orientations of supersingular

[Robert] Some applications of higher dimensional isogenies to elliptic curves. 2022

 Computing ordinary endomorphism rings, canonical lifts, Siegel modular polynomials...

[Herlédan Le Merdy, W.] The supersingular endomorphism ring problem given one endomorphism. 2023

subexponential time (assuming GRH)

• Given a supersingular elliptic curve E and some $\alpha \in End(E)$, compute End(E) in