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Isogenies

Elliptic curves, isogenies,
computational problems




Elliptic curves

Elliptic curve over [F4: solutions (x,y) in Fq of

y2=x3+ax+b
E(Fg) is an additive group
Isogeny: a map
@ : E1— E>

which preserves certain structures. In particular, it is a group homomorphism with
a finite kernel

™

The degree* is deg(p) =

- |

ker(op) * for separable isogenies

e deg(p - 9) = deg(yp) - deg(y)



The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E», find an isogeny ¢ : E1 — E»

y?2 = x3 — 4x

elliptic curves:
yv2=x3+ ax+ b




The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E», find an isogeny ¢ : E1 — E»

y?2 = x3 — 4x
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Applications of isogeny computation

* For the arithmetic of elliptic curves:
=) counting points over a finite field,
= computing endomorphism rings,
= computing modular polynomials...
* Classical cryptography: cryptanalysis of the discrete logarithm problem

* Post-quantum cryptography: cryptosystems "based on" hard versions of the
Isogeny problem

=) digital signature schemes,
= key exchange protocols,

= “Advanced” protocols...



The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E», find an isogeny ¢ : E1 — E>

* Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

Security of

The isogeny problem — ———
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The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E», find an isogeny ¢ : E1 — E»

* The solution ¢ is an isogeny...

* How to represent an isogeny?



Efficientisogenies

* Explicit polynomial formula, or Vélu’s formulae... polynomial time in deg(o)

Isogenies of small degree £ =2, or 3... “@-isogenies”

(x, y) — (X2 A 1))

X2




Efficientisogenies

* Explicit polynomial formula, or Vélu’s formulae... polynomial time in deg(o)

Isogenies of small degree £ =2, or 3... “@-isogenies”
* Given random Ejand E2, smallest ¢ : E1 — E2 has degree poly(p)
X Typically in crypto, p > 2256

* Compose small isogenies to build bigger ones!

Isogenies with smooth degree (small prime factors):

on ° ... o @2 o @1 represented by (‘compose’, @1, @2,... , ¥n), With deg(ei) small



Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

/_,Es

N
AE4

an isogeny of degree £ = an edge in a graph

> k3




Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

E;

an isogeny of degree £ = an edge in a graph

1 0-1sogeny k, — E, = 3 £-1sogeny E, — E,



Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

e The 2-isogeny graph (supersingular...)

® (£ +1)-regular, connected (for supersingular curves)



The ¢-isogeny path problem

?-isogeny path problem: Given E1 and E2, find an £-isogeny path from Ej to E»

* Path finding in a graph
* Hard for supersingular curves! Best known algorithm = generic graph algorithm

* Typical meaning of “the isogeny problem"



Isogeny-based cryptography

Expectations: cryptosystems as secure as isogeny problem is hard

—_— Security of
- cryptosystems

The isogeny problem
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Isogeny-based cryptography

Reality: a mess

Weird scheme-

dependent variants of Security of

isogeny problems

The isogeny problem

cryptosystems

The isogeny problem CGL hash function (preimage)

SQISign (soundness)
CSIDH (key recovery)

One endomorphism

Vectorisation

SSI-T SIDH (key recovery)



The isogeny problem with

“torsion point information”... [Jao, De Feo] PQCrypto 2011

[sogeny-based key exchange
NIST PQC alt-finalist

SSI-T =  SIDH (key recovery)



SIDH

Jao-De Feo 2011




Isogeny from a kernel

Let E be an elliptic curve

Let G a finite subgroup of E

Quotienting by G: there is a unique (separable) isogeny
p:E— E/G

with ker(p) = G

deg(p) = #G

- |

Computing an isogeny from its kernel: Given generators of G, the isogeny ¢ can
be computed in time poly(size of input, largest prime factor of #G) [Velu 197/1]

™

- |

=) Given a smooth kernel, can efficiently compute the isogeny



SIDH

Fix reference elliptic curve Eo

Alice Bok
Random subgroup G of Eo Random subgroup H of Eo
Compute pa : Eo — Eo/G Compute ¢s : Eo — Eo/H
Let Ea = Eo/G Let Eg = Eo/H
Compute Eas = Eg/G Compute Ega = Ea/H
Eo ——— Eo/H=Ej

| |

Er=Eo/G — Eo/(G+ H) = Eap = Ea



SIDH

Fix reference elliptic curve Eo

Alice

‘ ~suhgroup G of Eo

Compute pa : Eo = EofG_

Cm oEag = EB/G

/.

G is not a subgroup of E;
goB(G) S|

Bob

Random subgroup H of Eo

—< ompute @B : Eo — Eo/H

———

Com ute Epa = Ea/H

=

—_

T

How to compute ¢3(G)?
Alice does not know ®B...



Torsion

* The N-torsion of E is the subgroup
EIN]={PeE|N-P=P+P+..+P=0}
* E[N] = (Z/NZ)?

Idea:

* Alice picks a subgroup G of Eo[2"] €——— Many choices, good entropy

* Bob gives ppon Eo[2"] €—— 4 remains secret everywhere else...

* Alice can compute ¢5(G) €¢—— (1 compute shared secret Eqg = Eg/0p(G)



SIDH

Fix: an elliptic curve Eo
Generators P2, Q2 of Eo[2n] = (Z/2nZ)?
Generators P3, Qs of Eo[3m] = (Z/3mZ)?2

Alice Bob

Random subgroup G of Eo[2"] Random subgroup H of Eo[3™]
Compute @pa : Eo — Eo/G Compute @s : Eo — Eo/H
Let Ea = Eo/G pa(P3), 94(Q3) et Ep = Eo/H
DB (P 2); ©B (Qz)

Compute Eag = Eg/ps(G) Compute Ega = Ea/pa(H)



The SSI-T problem

Context:
* two elliptic curves Eo and E;

* anisogeny o : Eo — Ej (say, of degree 3™ like Bob’s isogeny)
* aninteger N coprime to deg(p) (say, N = 2n...)
e generators P and Q of Eo[N] = (Z/NZ)?2

“torsion point information”
SSI-T: Given Eo, E1, P, Q, »(P) and ¢(Q), find the isogeny ¢ : Eo — E;



An interpolation problem

SSI-T: given ¢(P) forafew P e E, find ¢

Polynomial interpolation: given f(s) forafew s e K, find f



An interpolation problem

"~ —

Co : : (x2 + 1)
* Polynomial interpolation is not hard Q@ +1 %
X

* |sogenies are polynomials

* So isogeny interpolation (hence SSI-T) is easy??

“Easy”? polynomial time in the length of the input...

* Polynomial interpolation: length of the input = deg(f)
= Need deg(f) + 1 values f(s)

* |[sogeny interpolation: length of the input = log(deg(p))

= A single ¢(P) also determines @(2P), »(3P), o(4P), ...



Torsion point information: a weakness?

o O
wo\\ > w°<\ >
— e —— ¢
Birth of [Petit] breaking
SIDH “overstreched” SSI-T

[Galbraith, Petit, Silval] [de Quehen, Kutas, Leonard|,
Martindale, Panny, Petit, Stange]

Improving Petit’s method

an active attack

Standard SIDH parameters totally unaffected



The Snap

July 30 2022




July 30 2022
eprint 2022/975

WY

An efficient key recovery attack on S

Wouter Castryck, Thomas Decru

“Breaks SIKEp434 challenge in ten minutes” ,,'//
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Eurocrypt 2025 —“Isogeny 1” session

Efficient Key Recovery Attack on SIDH (Best Paper Award)
|Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)
' Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention)
|Robert]



Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:
* letgp: E1— E> of degree d

* Let P, Q generators of Ei[2"] such that 4 deg(p) < 227
* Given (d, P, Q, ¢(P), #(Q)), one can compute ¢(R) for any R € E1 in poly. time

* |[nterpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: The few points leaked by SIDH leak the full secret.



Isogeny-based cryptography

Body count

Weird scheme-

Security of

The isogeny problem

dependent variants of
isogeny problems

cryptosystems

The isogeny problem CGL hash function (preimage)

One endomorphism SQISign (soundness)

Vectorisation CSIDH (key recovery)
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Rundown of survivors

The isogeny path problem is unaffected
SQIsign [De Feo, Kohel, Leroux, Petit, W.| unaffected
= Signature scheme, most compact pk + sig of all PQ schemes
= Submitted to the NIST PQ signature call 2023
CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
= Key exchange very similar to Diffie-Hellman
Wide variety of CSIDH-inspired constructions
= “group action” cryptography
= Signatures, PRFs, threshold stuff, oblivious stuff...



The algorithm

Isogenies in higher
dimension




Dual

Let E an elliptic curve over Fqg and N an integer
* Multiplication by N is an isogeny

IN]:E—>E:P— [N]JP=P+P+..+P
* let p: E1 — E> be an isogeny

e Dual of : unique isogeny ¢ : E2 — E; such that

N\

@ o ¢ =|deg(p)]



Elliptic curve: a curve that is also a group
Abelian surface: surface that is also a group

* Example: product E1 x E>

Abelian varieties /

Abelian variety: same but any dimension

* Example: product E1 x Eo x ... x Ej




Isogenies between products

W. Ei1xE> > F1x f)




Isogenies between products

(P, P2) — (©11(P1) + 921(P2), ¢12(P1) + ¢25(P2))

_ [P P2\ P;
P12 P22 P>



Isogenies between products

Every isogeny W : E1 x Eo — F1x Fais of the form

W. E1xEy > F1x Fo

(P, P,) N P P\ P;
P12 P22 P>

P11 Po1 o1 P _ [N] O
P12 P22 P2 P O [N]

* Given the kernel of a 2n-isogeny, can evaluate it in polynomial time

where ¢ : Ei— F;j

* |[tis an N-isogeny if



HD embedding of anisogeny

Let ¢ : E1— E2 of degree deg(p) = d (Bob’s secret)
Suppose 2" - deg(p) = a2 is a square

DefineW: Ei1xEr — E1x Es as

If we can evaluate W, we can evaluate o:

' ' rojection
E inclusion . ExE, W E x Es proj . E

P (P1, O) (@P1, p(P1)) p(P1)




HD embedding of anisogeny

A

Let ¢ : E1— E» of degree deg(p) = d (Bob's secret) ¥ ° @ =[]

Suppose 2" - deg(p) = a2 is a square

wo (8] -
¢ |a]
Is It a 2n-Isogeny?

([a] —é>_<[a] <3>=<[a2]+[d] 0 >=<[2n] o)
¢ lal -¢ |al O [a2] + [d] O [27]

ker(W) ={ ([d]P. [ale(P)) | P € E4[2"] }

DefineW: Ei1xEr — E1x Es as

Given ¢ on Ej[2n] (torsion information) = can compute ker(W) = can compute ¢



4D embedding of anisogeny

2" - deg(o) not a square? [Robert| has a solution

Suppose 2" - deg(p) = a2 + b? is a sum of 2 squares...

Define W : E1xE1xExyxEy — E1x E1x Eo x Ep @s a b 3 —-b
‘a by -9 O b a3 b a
b a) 0 -¢
2 + OH2
» O [a -b = (a o 0 )
O a2 + p2
O ® b a

It Is a 2n-Isogeny
Isogeny in dimension 4

Many integers are sum of 2 squares... but not all



8D embedding of anisogeny

* Every integer is a sum of 4 squares: 2" - deg(p) = a2 + b2 + ¢2 + g2

* |[Robert] has another trick for that case: Zarhin’s trick

a -b -c -d -¢

b a d -c e O
c -d a b 0 e
d ¢ -b a e
@ a b c¢ d
@ O -b a -d c
o, -c d a -b
O



Generalisation

Interpolating isogenies: 3 an algorithm that for any isogeny ¢ : E1 — E2, given:

e the curves E1 and E2, and the degree deg(p)

®

* points P, Q € E1 generating a subgroup G with 4 deg(gp) < :

e the points ¢(P), »(Q)
® 3 point S € E;

|

returns ¢(S) in poly. time in: length of the input, largest prime factor of #G, and
degree of the field of definition of Ei[£2¢] for each prime-power factor £e of #G.

- |

- |



Representing isogenies
Back to the foundations




The isogeny problem

"Idealised” isogeny problem: Given E1 and E2, find an isogeny ¢ : E1 — E»

?-isogeny path problem: Given E1and E», find an £-isogeny path from E; to E>

e The £-isogeny path problem is the standard version of “the isogeny problem”
because... no other way to represent solution ¢ : E1 — E2 than as a path?

Strong restriction on @ because of technical obstacle

® How to represent anisogeny?



Efficient representation of isogenies

How to represent an i1sogeny?

* an efficient representation of ¢: can evaluate ¢(P) in poly. time for any P

Examples:
* Small degree isogenies
* Compositions of small degree isogenies

* Linear combinations of compositions of small degree isogenies...



Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:
* letgp: E1— E> of degree d

- |

e Let P, Qin E1such that 4 deg(p) < #P, Q>
* Given (d, P, Q, »(P), (Q)), one can compute @(R) for any R € E1 in poly. time

* |[nterpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: (d, P, Q, o(P), »(Q)) is an efficient representation of ¢.
* “Interpolation representation” of ¢, or “HD representation”

* Universal! Given any efficient repr. of @, can compute its interpolation repr.



The universal isogeny problem

The universal isogeny problem: Given Ej and E», find an isogeny ¢ : E1 — E>
represented by interpolation.

e No restriction on ¢ like in £-isogeny path: any ¢ can be a valid response

pgeny & £-isogeny path

[Page, W.] preprint 2023



Applications

In cryptography
and number theory




New cryptosystems

* FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks
= 2D isogenies for decryption
= Well-studied, “Richelot isogenies”, efficient

= Good implementations available

* SQlsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQlsign
= 4D isogenies for verification

= Not well studied
= Very promising ongoing work by Dartois



New computational equivalences

|Page, W.] The supersingular Endomorphism Ring and One Endomorphism
problems are equivalent. 2023

e Finding an £-isogeny path is equivalent to finding any isogeny

* Finding one endomorphism is equivalent to finding them all

LArpin, Clements, Dartois, Eriksen, Kutas, W.] Finding orientations of supersingular
elliptic curves and quaternion orders. 2023

* Deciding if an elliptic curve has a certain endomorphism is equivalent to finding
said endomorphism (subexponential equivalence)



New algorithms

[Robert] Some applications of higher dimensional isogenies to elliptic curves.
2022

® Computing ordinary endomorphism rings, canonical lifts, Siegel modular
polynomials...

|Herlédan Le Merdy, W.] The supersingular endomorphism ring problem given one
endomorphism. 2023

e Given a supersingular elliptic curve E and some o € End(E), compute End(E) in
subexponential time (assuming GRH)



