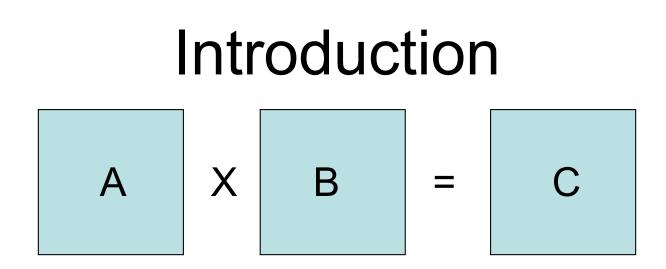
Matrix multiplication via

> Chris Umans Caltech

Collaborators: Jonah Blasiak, Henry Cohn, Josh Grochow, Kevin Pratt



- Standard method: O(n³) operations
- Strassen (1969): O(n^{2.81}) operations

The exponent of matrix multiplication: smallest number ω such that for all $\epsilon > 0$ $O(n^{\omega + \epsilon})$ operations suffice

The Group Algebra

Given a finite group G

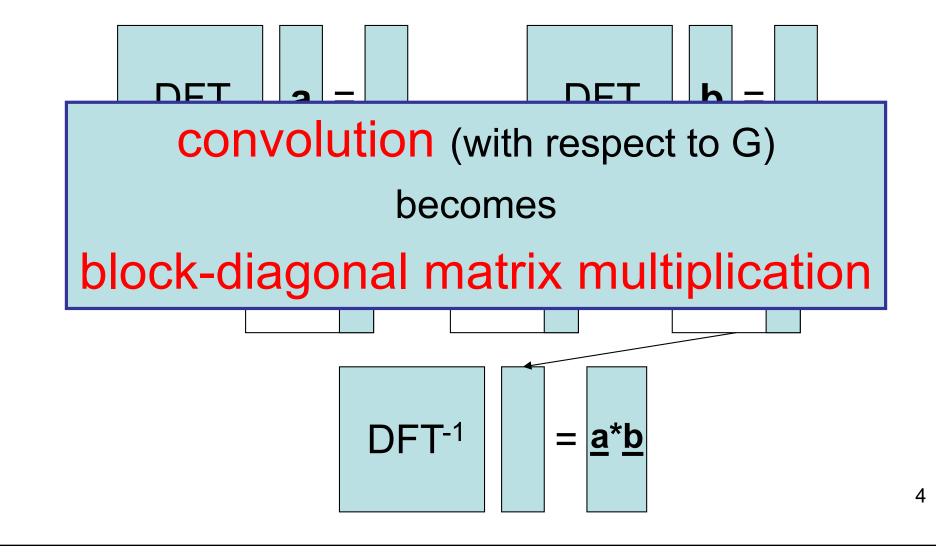
write as a vector in C^G

• The group algebra C[G] has elements $\sum_{g} a_{g}g$

with multiplication

 $(\sum_{g} a_{g}g)(\sum_{h} b_{h}h) = \sum_{f} (\sum_{gh=f} a_{g}b_{h})f$

Multiplication in Group Algebra $C[G] \simeq (C^{d_1 \times d_1}) \times (C^{d_2 \times d_2}) \times ... \times (C^{d_k \times d_k})$



The basic idea: a reduction

Find a group G that permits an embedding

matrix $A \rightarrow \underline{A} \in C[G]$, matrix $B \rightarrow \underline{B} \in C[G]$

so that we can read off entries of AB from

<u>A*B</u>

The embedding:

Subgroups X, Y, Z of G satisfy the triple product property (TPP) if for all $x \in X$, $y \in Y$, $z \in Z$: xyz = 1 iff x = y = z = 1.

 $\underline{A} = \sum_{x,y} A[x,y](xy^{-1})$ $\underline{B} = \sum_{y,z} B[y,z](yz^{-1})$

 $(AB)[x,z] = coefficient on xz^{-1} in \underline{A} \cdot \underline{B}$

The embedding:

$$Q(S) = \{st^{-1}: s, t \in S\}$$

Subsets X, Y, Z of G satisfy the triple product property (TPP) if for all $x \in Q(X)$, $y \in Q(Y)$, $z \in Q(Z)$: xyz = 1 iff x = y = z = 1.

 $\underline{A} = \sum_{x,y} A[x,y](xy^{-1})$ $\underline{B} = \sum_{y,z} B[y,z](yz^{-1})$

 $(AB)[x,z] = coefficient on xz^{-1} in \underline{A} \cdot \underline{B}$

Character degrees

 if |X|=|Y|=|Z|=k, this is *reduction* from k × k mat. mult. to block-diagonal mat. mult.

Theorem: in group G with character degrees d₁, d₂, d₃,..., we obtain:

$$k^{\omega} \leq \sum_{i} d_{i}^{\omega} \quad \text{need } k > d_{\max}$$

Usually use: $k^{\omega} \leq d_{\max}^{\omega-2} \cdot |G|$ and $k \approx |G|^{1/2}$

If $d_{\max} \approx |G|^{1/2}$, prove nothing until prove $\omega = 2$.

Which groups can prove $\omega = 2?$

- no abelian group
- no group G with $|G|^{\epsilon}$ -size abelian normal subgroup with bounded exponent [BCCGNSU 2017]
- no group G with with $|G|^{\epsilon}$ -size normal psubgroup with mild extra conditions [BCCGU 2017]
- simple groups may be good candidates
 - no 3 Young subgroups in alt. group [BCCGU 2017]
 - this work: matrix groups

Matrix groups

- GL(n, F), SL(n, F)
 - F can be finite, or C, R
 - also orthogonal, unitary, symplectic...
- These groups, and nice subgroups of them, have a notion of dimension:

- e.g. dim of GL_n is n^2 , dim of subgroup of lower-unitriangular matrices is $(n^2 - n)/2$

Recall TPP goal: subgroups of sqrt size ⇔ subgroups of half dimension

Key relaxation: continuous setting

- We will use matrix groups over R
 - "sum of squares = $0 \Rightarrow$ each summand = 0" is powerful and enables good constructions
 - First challenge: obtain an analog of $\omega = 2$

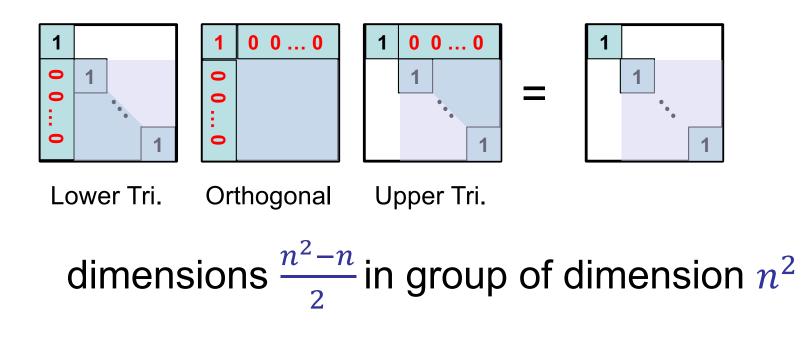
In a matrix group over **R**, can we get TPP with X, Y, Z, having 1/2 the dimension ?

Later: a way to get *bona fide* matrix mult.
 algorithms from such constructions

TPP in Lie groups with subgroups of 1/2 the dimension

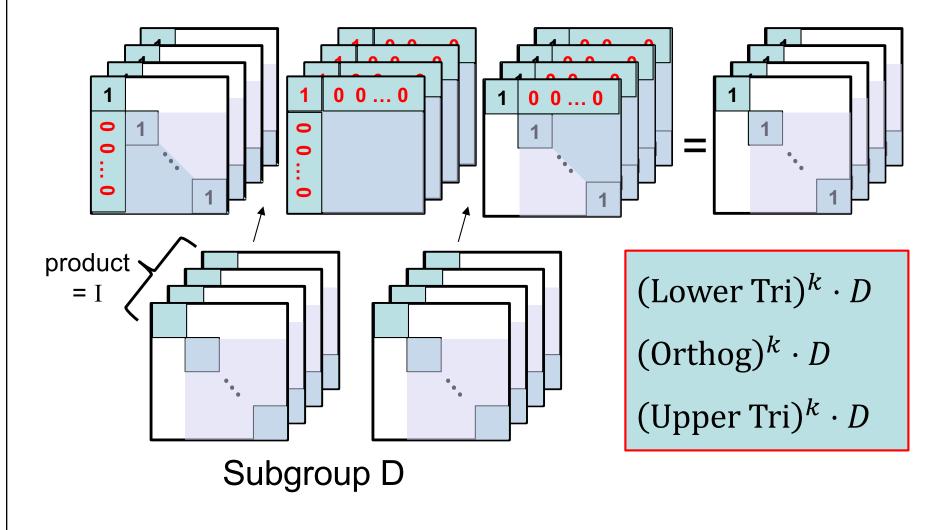
Example construction

- Three subgroups in GL(n, R):
 - lower uni-triangular, orthogonal, upper uni-tri.



Construction achieving 1/2 dim

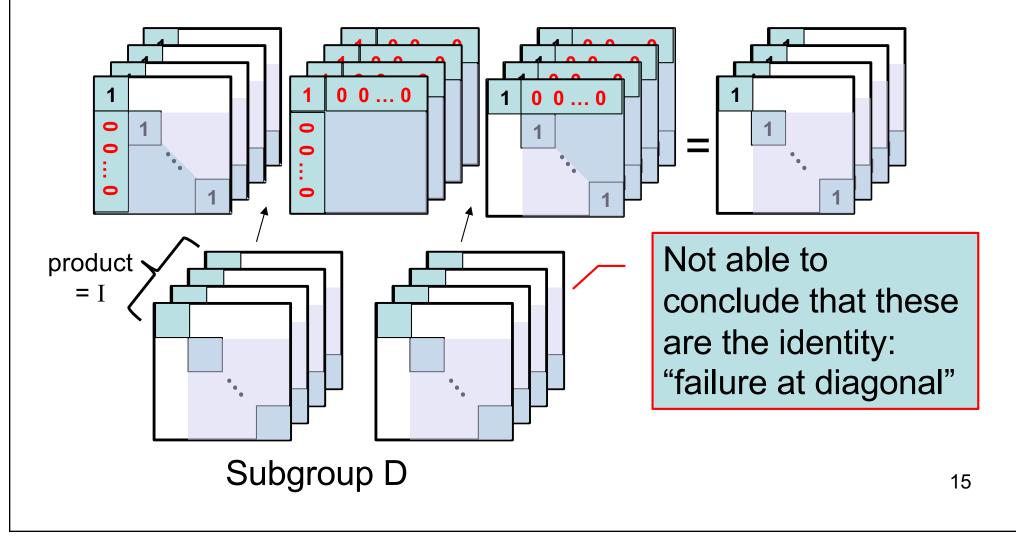
Three subsets in GL(n, R)^k:



14

Construction achieving 1/2 dim

Three subsets in GL(n, R)^k:

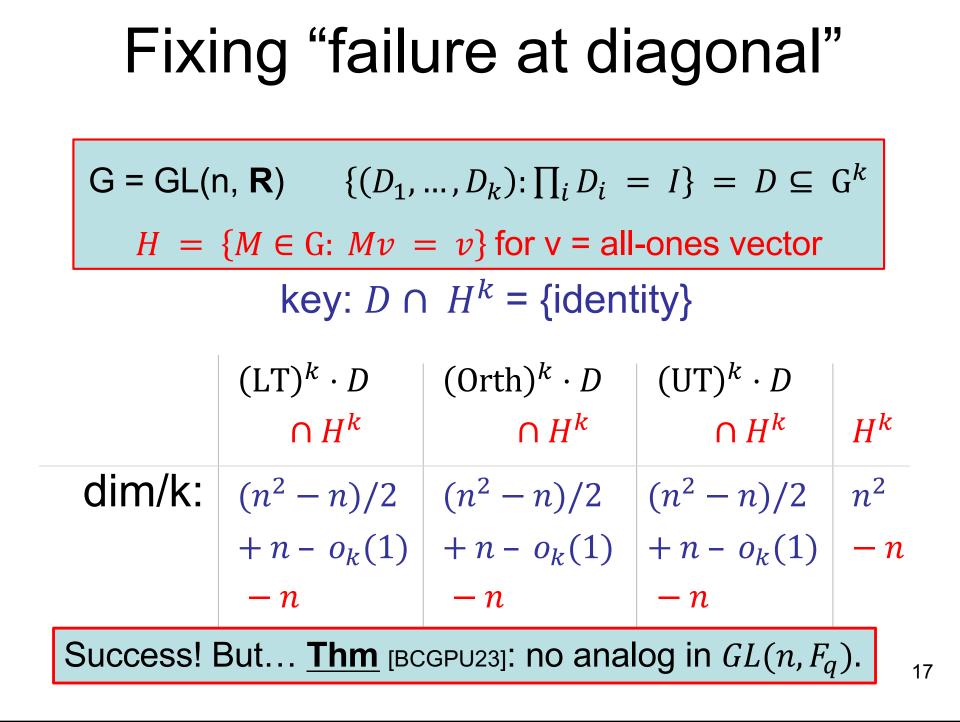


Dimensions of construction

 $G = GL(n, \mathbf{R}) \qquad \{(D_1, \dots, D_k) : \prod_i D_i = I\} = D \subseteq G^k$

Lower Tri.
dim:Orthog.
 $(n^2 - n)/2$ Upper Tri.
 $(n^2 - n)/2$ G
 n^2 dim: $(n^2 - n)/2$ $(n^2 - n)/2$ n^2 (LT)^k $\cdot D$ $(Orth)^k \cdot D$ $(UT)^k \cdot D$ G^k dim/k: $(n^2 - n)/2$ $(n^2 - n)/2$ $(n^2 - n)/2$ $+ n - o_k(1)$ $+ n - o_k(1)$ $+ n - o_k(1)$

16



Obtaining bounds on ω from Lie group constructions

Original framework: computing AB

• Given X, Y, Z in finite G, satisfying TPP: – for each irrep $\rho: G \to C^{d \times d}$ compute:

$$\rho\left(\Sigma_{x,y}A[x,y](xy^{-1})\right) \cdot \rho\left(\Sigma_{y',z}B[y',z](y'z^{-1})\right)$$

= $\Sigma_{x,y,y',z}A[x,y]B[y',z]\rho(xy^{-1}y'z^{-1})$

- the $\rho_{i,j}: G \to C$ form a basis for all $f: G \to C$.
- "read off AB[x,z]" means take the linear combination for fn. f that is 1 only on xz^{-1}

New framework for Lie groups

• Given finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ in Lie group G, satisfying TPP:

– for some irreps $\rho: G \to C^{d \times d}$ compute

$$\rho\left(\Sigma_{x,y}A[x,y](xy^{-1})\right) \cdot \rho\left(\Sigma_{y',z}B[y',z](y'z^{-1})\right)$$

= $\Sigma_{x,y,y',z}A[x,y]B[y',z]\rho(xy^{-1}y'z^{-1})$

- to "read off AB[x,z]" find linear combo of $\rho_{i,j}$ equal to f(M) = 1 if $M = xz^{-1}$

0 if M = any other $xy^{-1}y'z^{-1}$

Separating polynomials

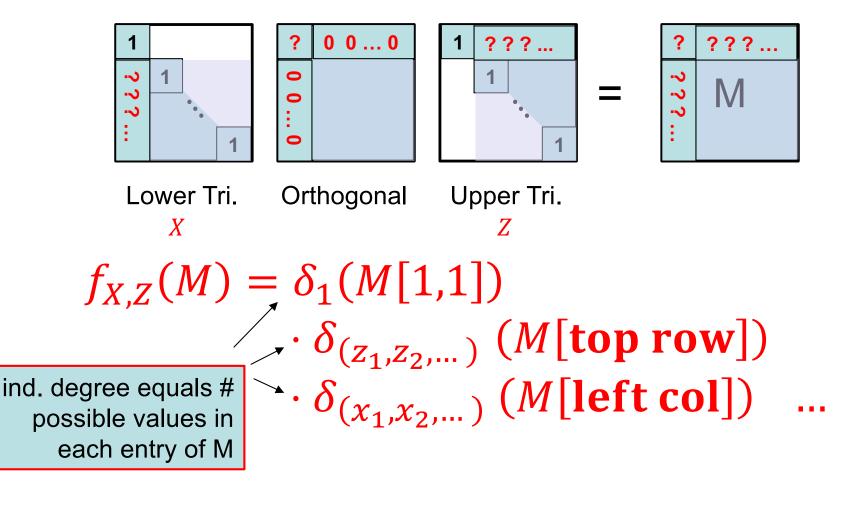
- Irreps of GL(n, R) indexed by Young diagrams.
 - the $\rho_{i,j}$ for irreps up to size D span exactly the set of total-degree D polynomials
 - cut off at size D; now to "read off AB[x,z]":
 - find "separating polynomial of deg D":

 $f_{x,z}(M) = 1$ if $M = xz^{-1}$

0 if M = any other $xy^{-1}y'z^{-1}$

Separating polynomials example

• Three subgroups in GL(n, R):



Separating polynomials

• Given finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ in Lie group G, satisfying TPP:

– each of size q^{dim of subgroup}

target degree

- separating polynomials of total degree O(q)(example on previous slide: degree $O(q^2)$)

yields same inequality on ω we would get if group was GL(n, F_q); if subgroups are $\frac{1}{2}$ the ambient dimension then $\omega = 2$

Two ideas for designing separating polynomials

Setup so far

- X, Y, Z subgroups in Lie group G satisfying the Triple Product Property
- design finite subsets $X \subseteq X, Y \subseteq Y, Z \subseteq Z$ – each of size $q^{\dim of subgroup}$
- design separating polynomials of deg O(q)– argument $M = xy^{-1}y'z^{-1}$

- poly

$$f_{x,z}(M) = 1$$
 if $M = xz^{-1}$
 $= 0$ if $M = any$ other $xy^{-1}y'z^{-1}$

Setup so far

- design finite subsets $X \subseteq X, Y \subseteq Y, Z \subseteq Z$ – each of size $q^{\dim of subgroup}$
- design separating polynomials of deg O(q)- argument $M = xy^{-1}y'z^{-1}$

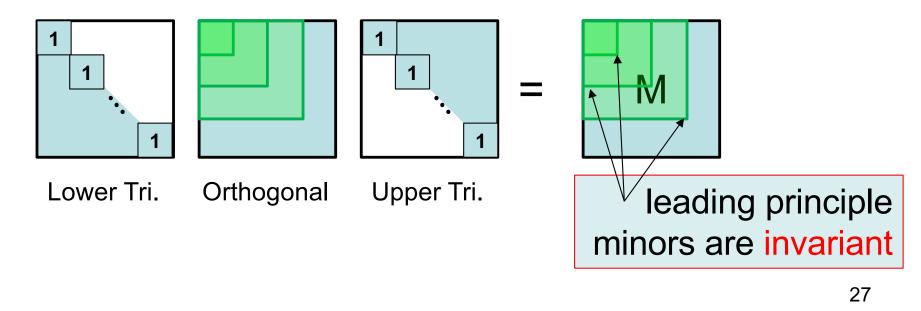
- poly
$$f_{x,z}(M) = 1$$
 if $M = xz^{-1}$
= 0 if M = any other $xy^{-1}y'z^{-1}$

Idea #1: design
$$f_0(xy^{-1}y'z^{-1}) = 1$$
 if $y^{-1}y' = I$
= 0 if $y^{-1}y' \neq I$

Invariant polynomials

Select f_0 from ring of invariant polynomials

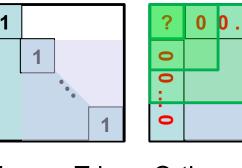
- under left-multiplication by X
- under right-multiplication by Z
- Example: subgroups in GL(n, **R**)

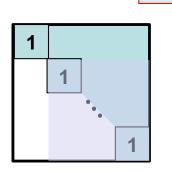


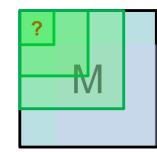
Invariant polynomials

• subgroups in GL(n, **R**):

leading principle minors are invariant







Lower Tri. Orthogonal Upper Tri. x $y^{-1}y'$ z

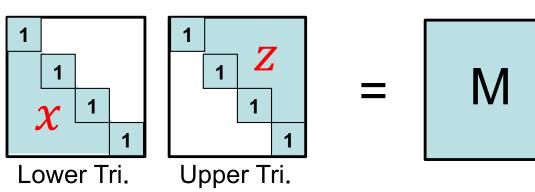
 $f_{\mathbf{0}}(M) = \delta_1(lpm_1(M)) \cdot \delta_1(lpm_2(M)) \cdots$

0

<u>Claim</u>: $f_0(xy^{-1}y'z^{-1}) = f_0(y^{-1}y') = 1$ implies $y^{-1}y' = I$

Remaining task:

• finite subsets of 2 subgroups in GL(n, R):



- find "separating polynomials" (to be multiplied with f_0) $f_{x,z}(M) = 1$ if $M = xz^{-1}$

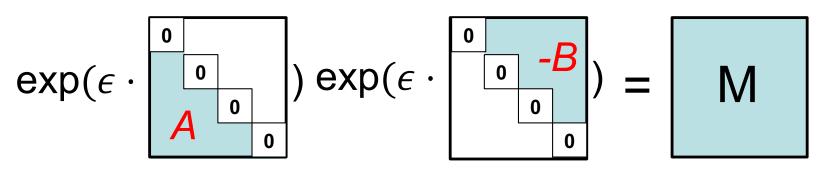
0 if M = any other $x'z'^{-1}$

q values in entries of x, $z \Rightarrow O(q^2)$ values in entries of M

Idea #2: use Lie algebra

- Lie Group G has associated Lie Algebra g
 - $-\mathbf{g}$ is a vectorspace
 - for any $A \in \underline{\mathbf{g}}$, we have $exp(\epsilon A) \in G$ (e.g. Orthogonal Group \Rightarrow skew-symmetric matrices)
- finite subsets of X, Y, Z can be defined via finite subsets of associated Lie algebras
 - the ϵ means the matrices have ϵ 's in their entries, and irreps have ϵ 's in their entries
 - final bound is on border-rank rather than rank!

Remaining task now easier



 $M = I + \epsilon(A - B) + O(\epsilon^2)$

- choose entries of A, B in $\{0,1,2,\ldots,q\}$
- now, only O(q) values in $(M I)/\epsilon$, up to $O(\epsilon)$
- separating polynomials of deg. O(q):

 $f_{x,z}(M) = h_{A,B}\left(\frac{M-I}{\epsilon}\right)$, where $h_{A,B}(M') = 1$ if M' = A - B; otherwise 0

Lie algebra trick works in general

- Lie subgroups X, Y, Z that satisfy the TPP, with Lie algebras <u>x</u>, <u>y</u>, <u>z</u> (note: <u>x</u> ∩ z = {0})
- fix a basis for <u>x</u>, <u>z</u>
- Choose finite subsets:
 - $\mathbf{X} = \{ \exp(\epsilon A) : A \in \mathbf{x}, \text{ coefficients in } \{1 \dots q\} \}$
 - $\mathbf{Z} = \{ \exp(\epsilon B) : B \in \mathbf{z}, \text{ coefficients in } \{1 \dots q\} \}$ $M = I + \epsilon(A - B) + O(\epsilon^2)$

- O(q) values per coefficient in $(M - I)/\epsilon$, up to $O(\epsilon)$

Putting it all together

- X, Y, Z subgroups in Lie group G satisfying the Triple Product Property
- determine the ring of polynomials invariant under left-mult. by X, right-mult by Z
- design subset $\mathbf{Y} \subseteq Y$ of size $q^{\dim of subgroup}$
- design sep. polynomial in ring, of deg O(q)

$$f_0(y^{-1}y') = 1$$
 if $y^{-1}y' = I$
= 0 if $y^{-1}y' \neq I$

subgroups $\frac{1}{2}$ the ambient dimension $\Rightarrow \omega = 2$.

Conclusions

- We know of two other constructions. Both come with separating polynomials, currently degree O(q²) rather than O(q)
- <u>Open</u>: find a construction that achieves TPP with half-dimensional subgroups, and finite subsets with separating polynomials having degree O(q). Then $\omega = 2$.

Thank you!

So far...

- Achieved goal of TPP construction with subgroups half the dimension
 - if in GL(n, R), would imply a precise analog of $\omega = 2$ in the sense that if the construction moved to GL(n, F_q) it would prove $\omega = 2$.
 - but in Aff(n, R), no: Aff(n, F_q) has $d_{max} \approx q^{dim/2}$ instead of $q^{bounded away from dim/2}$

Challenge: as-good construction in GL(n, R).