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Introduction

• Standard method: O(n3) operations
• Strassen (1969): O(n2.81) operations 

X =A B C

The exponent of matrix multiplication:
smallest number w such that for all e>0 

O(nw + e) operations suffice
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The Group Algebra

• Given a finite group G 

• The group algebra C[G] has elements
∑! a!g 

with multiplication

(∑! a!g)(∑" b"h) = ∑# ∑!"$# a!b" f 
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write as a 
vector in C𝑮



Multiplication in Group Algebra
C[G] ≃ (Cd1×d1) × (Cd2×d2) × … × (Cdk×dk)

DFT a DFT b= =

=×

DFT-1 = a*b

convolution (with respect to G)
becomes

block-diagonal matrix multiplication 
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The basic idea: a reduction
Find a group G that permits an embedding 

matrix A → A ∈ C[G],  matrix B → B	∈ C[G]

so that we can read off entries of AB from 

A*B
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The embedding:

Subgroups X, Y, Z of G satisfy the
triple product property (TPP)

if for all x ∈ X, y ∈ Y, z ∈ Z:
xyz = 1   iff   x = y = z = 1.
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A = ∑%,'𝐴 𝑥, 𝑦 𝑥𝑦()

B = ∑',*𝐵 𝑦, 𝑧 𝑦𝑧()

(AB)[x,z] = coefficient on 𝑥𝑧()in A⋅B



The embedding:

Subsets X, Y, Z of G satisfy the
triple product property (TPP)

if for all x ∈ Q(X), y ∈ Q(Y), z ∈ Q(Z):
xyz = 1   iff   x = y = z = 1.
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A = ∑%,'𝐴 𝑥, 𝑦 𝑥𝑦()

B = ∑',*𝐵 𝑦, 𝑧 𝑦𝑧()

(AB)[x,z] = coefficient on 𝑥𝑧()in A⋅B

𝑄(𝑆) 	= 	 {𝑠𝑡!": 𝑠, 𝑡 ∈ 𝑆}
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Character degrees

• if |X|=|Y|=|Z|=k, this is reduction from k × k 
mat. mult. to block-diagonal mat. mult. 

• Usually use: 𝑘+ ≤ 𝑑,-.+(/ ⋅ |G|

Theorem: in group G with character 
degrees d1, d2, d3,…, we obtain:

k0 ≤ ∑1 d10 need 𝑘	 > 	𝑑#$%	
and 𝑘 ≈ |𝐺|"/'

If 𝑑"#$ ≈ |𝐺|%/',	prove nothing until prove 𝜔 = 	2.



Which groups can prove 𝜔 = 2?

• no abelian group 
• no group G with 𝐺 2	-size abelian normal 

subgroup with bounded exponent [BCCGNSU 2017]

• no group G with with 𝐺 2	-size normal p-
subgroup with mild extra conditions [BCCGU 2017] 

• simple groups may be good candidates
– no 3 Young subgroups in alt. group [BCCGU 2017] 

– this work: matrix groups 
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Matrix groups

• GL(n, F), SL(n, F) 
– F can be finite, or C, R
– also orthogonal, unitary, symplectic...

• These groups, and nice subgroups of 
them, have a notion of dimension:
– e.g. dim of GL( is 𝑛', dim of subgroup of 

lower-unitriangular matrices is (𝑛' − 𝑛)/2
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Recall TPP goal: subgroups of sqrt size 
⇔	subgroups of half dimension



Key relaxation: continuous setting

• We will use matrix groups over R
– “sum of squares = 0 ⇒  each summand = 0” 

is powerful and enables good constructions
– First challenge: obtain an analog of 𝜔 = 2

– Later: a way to get bona fide matrix mult. 
algorithms from such constructions
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In a matrix group over R, can we get TPP 
with X, Y, Z, having 1/2 the dimension ?



TPP in Lie groups 
with subgroups 

of ½ the dimension 
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Example construction
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Dimensions of construction

  
  Lower Tri. Orthog. Upper Tri. G
       dim: (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 𝑛'

 
 LT * ⋅ 𝐷 Orth * ⋅ 𝐷 UT * ⋅ 𝐷	 G*

    dim/k: (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 𝑛'

  +	𝑛	–	𝑜((1) +	𝑛	–	𝑜((1) +	𝑛	–	𝑜((1) 
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G = GL(n, R)	 	 𝐷", … , 𝐷( : ∏)𝐷) 	= 	𝐼 	= 	𝐷 ⊆	G(



Fixing “failure at diagonal”

 LT ( ⋅ 𝐷 Orth ( ⋅ 𝐷 UT ( ⋅ 𝐷	
  	 ∩ 𝐻( 	 ∩ 𝐻( 	 ∩ 𝐻(	 𝐻(

    dim/k: (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 (𝑛' − 𝑛)/2 𝑛'	
  +	𝑛	–	𝑜((1) +	𝑛	–	𝑜((1) +	𝑛	–	𝑜((1) −	𝑛
   −	𝑛   −	𝑛   −	𝑛
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G = GL(n, R)	 	 𝐷", … , 𝐷( : ∏)𝐷) 	= 	𝐼 	= 	𝐷 ⊆	G(

𝐻	 = 𝑀 ∈ G: 	𝑀𝑣	 = 	𝑣 	for v = all-ones vector
key: 𝐷 ∩	𝐻*	= {identity}

Success! But… Thm [BCGPU23]: no analog in 𝐺𝐿(𝑛, 𝐹*).



Obtaining bounds on 𝜔 
from Lie group constructions
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Original framework: computing AB

• Given X, Y, Z in finite G, satisfying TPP:
– for each irrep 𝜌: G → 𝐶+×+ compute:

– the 𝜌-,/: 𝐺 → 𝐶 form a basis for all 𝑓: 𝐺 → 𝐶.
– “read off AB[x,z]” means take the linear 

combination for fn. f that is 1 only on 𝑥𝑧)%
19

𝜌 Σ0,1𝐴 𝑥, 𝑦 𝑥𝑦)% ⋅ 𝜌 Σ1",2	𝐵 𝑦3, 𝑧 𝑦3𝑧)% 	

= Σ0,1,1",2	𝐴 𝑥, 𝑦 𝐵 𝑦′, 𝑧 	𝜌(𝑥𝑦)%𝑦3𝑧)%)



New framework for Lie groups

• Given finite subsets 𝐗 ⊆ 𝑋, 𝐘 ⊆ 𝑌, 𝐙 ⊆ 𝑍	in 
Lie group G, satisfying TPP:
– for some irreps 𝜌: G → 𝐶+×+ compute

– to “read off AB[x,z]” find linear combo of 𝜌-,/ 
equal to f(M) = 1 if 𝑀 = 	𝑥𝑧)%

       0 if 𝑀 = any other 𝑥𝑦)%𝑦3𝑧)%
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𝜌 Σ0,1𝐴 𝑥, 𝑦 𝑥𝑦)% ⋅ 𝜌 Σ1",2	𝐵 𝑦3, 𝑧 𝑦3𝑧)% 	

= Σ0,1,1",2	𝐴 𝑥, 𝑦 𝐵 𝑦′, 𝑧 	𝜌(𝑥𝑦)%𝑦3𝑧)%)



Separating polynomials

• Irreps of GL(n, R) indexed by Young 
diagrams. 
– the 𝜌-,/ for irreps up to size D span exactly the 

set of total-degree D polynomials
– cut off at size D; now to “read off AB[x,z]”:
– find “separating polynomial of deg D”:
      𝑓0,2(M) = 1 if 𝑀 = 	𝑥𝑧)%

    0 if 𝑀 = any other x𝑦)%𝑦3𝑧)%
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• Three subgroups in GL(n, R): 

Separating polynomials example 
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Separating polynomials

• Given finite subsets	𝐗 ⊆ 𝑋, 𝐘 ⊆ 𝑌, 𝐙 ⊆ 𝑍 in 
Lie group G, satisfying TPP:
– each of size q45"	78	9:;<=7:>

– separating polynomials of total degree 𝑂(𝑞)
(example on previous slide: degree	O(𝑞'))
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yields same inequality on 𝜔	we would get 
if group was GL(n, F6); if subgroups are ½ 

the ambient dimension then 𝜔 = 	2 

target 
degree



Two ideas for designing 
separating polynomials
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Setup so far

• X, Y, Z subgroups in Lie group G satisfying 
the Triple Product Property

• design finite subsets	𝐗 ⊆ 𝑋, 𝐘 ⊆ 𝑌, 𝐙 ⊆ 𝑍
– each of size q45"	78	9:;<=7:>

• design separating polynomials of deg 𝑂 𝑞
– argument M = 𝑥𝑦)%𝑦3𝑧)%

– poly 
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𝑓0,2(M) = 1 if 𝑀 = 	𝑥𝑧)%

    = 0 if 𝑀 = any other 𝑥𝑦)%𝑦3𝑧)%



Setup so far

• design finite subsets	𝐗 ⊆ 𝑋, 𝐘 ⊆ 𝑌, 𝐙 ⊆ 𝑍
– each of size q45"	78	9:;<=7:>

• design separating polynomials of deg 𝑂 𝑞
– argument M = 𝑥𝑦)%𝑦3𝑧)%

– poly

Idea #1:

26

𝑓0,2(M) = 1 if 𝑀 = 	𝑥𝑧)%

    = 0 if 𝑀 = any other 𝑥𝑦)%𝑦3𝑧)%

design 𝑓?(𝑥𝑦)%𝑦3𝑧)%) = 1 if 𝑦)%𝑦3 = 𝐼
                          = 0 if 𝑦)%𝑦3 ≠ 𝐼



Select 𝑓7	from ring of invariant polynomials
– under left-multiplication by X  
– under right-multiplication by Z 

• Example: subgroups in GL(n, R) 

Invariant polynomials
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• subgroups in GL(n, R): 

Invariant polynomials
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• finite subsets of 2 subgroups in GL(n, R):

– find “separating polynomials” (to be multiplied with 𝑓#)

      𝑓0,2(M) = 1 if 𝑀 = 	𝑥𝑧)%

    0 if 𝑀 = any other 𝑥′𝑧′)% 
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Remaining task:
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Idea #2: use Lie algebra
• Lie Group G has associated Lie Algebra g

– g is a vectorspace 
– for any 𝐴 ∈ g, we have 𝑒𝑥𝑝 𝜖𝐴 ∈ 𝐺
(e.g. Orthogonal Group ⇒	 skew-symmetric matrices)

• finite subsets of X, Y, Z can be defined via 
finite subsets of associated Lie algebras
– the 𝜖 means the matrices have 𝜖’s in their entries, 

and irreps have 𝜖’s in their entries 
– final bound is on border-rank rather than rank! 
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exp(𝜖 ⋅              )exp(𝜖 ⋅              )

– choose entries of A, B in {0,1,2, … , 𝑞}
– now, only 𝑂(𝑞) values in (𝑀 − 𝐼)/𝜖	, up to 𝑂 𝜖
– 	separating polynomials of deg. 𝑂(𝑞):

 𝑓0,2(M) = ℎ@,A
B)C
D

, where

  ℎ@,A 𝑀′ =	1 if 𝑀3 = 	𝐴 − 𝐵; otherwise 0

Remaining task now easier
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0

0
0

0
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00

0

A

-B = M

𝑀 = 	𝐼	 + 𝜖(𝐴 − 𝐵)	+ 	𝑂(𝜖')



• Lie subgroups X, Y, Z that satisfy the TPP, 
with Lie algebras x, y, z    (note: x	∩ z =	 {0})

• fix a basis for x, z 
• Choose finite subsets:

–  X = {exp(𝜖𝐴)	: 𝐴 ∈	x, coefficients in {1… 	𝑞} }
–  Z = {exp(𝜖𝐵)	: 𝐵 ∈ z, coefficients in {1… 	𝑞} }

– 𝑂(𝑞) values per coefficient in (𝑀 − 𝐼)/𝜖	, up to 𝑂(𝜖)

Lie algebra trick works in general
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𝑀 = 	𝐼	 + 𝜖(𝐴 − 𝐵)	+ 	𝑂(𝜖')



Putting it all together

• X, Y, Z subgroups in Lie group G 
satisfying the Triple Product Property

• determine the ring of polynomials invariant 
under left-mult. by X, right-mult by Z

• design subset	𝐘 ⊆ 𝑌 of size q:1,	<#	=>?!@<>A 
• design sep. polynomial in ring, of deg 𝑂 𝑞
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𝑓?(𝑦)%𝑦3) = 1 if 𝑦)%𝑦3 = 𝐼
       = 0 if 𝑦)%𝑦3 ≠ 𝐼

subgroups ½ the 
ambient dimension 
⇒ 𝜔	 = 	2.



Conclusions

• We know of two other constructions. Both 
come with separating polynomials, 
currently degree 𝑂 𝑞/  rather than 𝑂(𝑞)

• Open: find a construction that achieves 
TPP with half-dimensional subgroups, and 
finite subsets with separating polynomials 
having degree 𝑂(𝑞). Then 𝜔 = 	2.
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Thank you!
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So far… 

• Achieved goal of TPP construction with 
subgroups half the dimension
– if in GL(n, R), would imply a precise analog of 
𝜔 = 	2 in the sense that if the construction 
moved to GL(n, FE) it would prove 𝜔 = 	2.

– but in Aff(n, R), no: Aff(n, FE) has dmax ≈	qdim/2 
instead of qbounded away from dim/2

Challenge: as-good construction in GL(n, R).
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