Matrix multiplication via
 Lié groups matrix

Chris Umans
 Caltech

Collaborators: Jonah Blasiak, Henry Cohn, Josh Grochow, Kevin Pratt

Introduction

- Standard method: $O\left(n^{3}\right)$ operations
- Strassen (1969): O($\mathrm{n}^{2.81}$) operations

The exponent of matrix multiplication: smallest number ω such that for all $\varepsilon>0$
$O\left(n^{\omega+\varepsilon}\right)$ operations suffice

The Group Algebra

- Given a finite group G
write as a vector in C^{G}
- The group algebra C[G] has elements

$$
\sum_{\mathrm{g}} \mathrm{a}_{\mathrm{g}}^{\prime} \mathrm{g}
$$

with multiplication

$$
\left(\sum_{\mathrm{g}} \mathrm{a}_{\mathrm{g}} \mathrm{~g}\right)\left(\sum_{\mathrm{h}} \mathrm{~b}_{\mathrm{h}} \mathrm{~h}\right)=\sum_{\mathrm{f}}\left(\sum_{\mathrm{gh}=\mathrm{f}} \mathrm{a}_{\mathrm{g}} \mathrm{~b}_{\mathrm{h}}\right) \mathrm{f}
$$

Multiplication in Group Algebra

$$
\mathrm{C}[\mathrm{G}] \simeq\left(\mathrm{C}^{d_{1} \times d_{1}}\right) \times\left(\mathrm{C}^{d_{2} \times d_{2}}\right) \times \ldots \times\left(\mathrm{C}^{d_{k} \times d_{k}}\right)
$$

block-diagonal matrix multiplication

The basic idea: a reduction

Find a group G that permits an embedding matrix $A \rightarrow \underline{A} \in C[G]$, matrix $B \rightarrow \underline{B} \in C[G]$
so that we can read off entries of $A B$ from
A*B

The embedding:

Subgroups X, Y, Z of G satisfy the

 triple product property (TPP) if for all $x \in X, y \in Y, z \in Z$:$$
x y z=1 \quad \text { iff } \quad x=y=z=1
$$

$\underline{\mathrm{A}}=\sum_{x, y} A[x, y]\left(x y^{-1}\right)$
$\underline{\mathrm{B}}=\sum_{y, z} B[y, z]\left(y z^{-1}\right)$
$(\mathrm{AB})[\mathrm{x}, \mathrm{z}]=$ coefficient on $x z^{-1}$ in $\underline{A} \cdot \underline{B}$

The embedding:

$$
Q(S)=\left\{s t^{-1}: s, t \in S\right\}
$$

Subsets X, Y, Z of G satisfy the triple product property (TPP) if for all $x \in Q(X), y \in Q(Y), z \in Q(Z)$:

$$
x y z=1 \quad \text { iff } \quad x=y=z=1
$$

$\underline{\mathrm{A}}=\sum_{x, y} A[x, y]\left(x y^{-1}\right)$
$\underline{\mathrm{B}}=\sum_{y, z} B[y, z]\left(y z^{-1}\right)$
$(\mathrm{AB})[\mathrm{x}, \mathrm{z}]=$ coefficient on $x z^{-1}$ in $\underline{A} \cdot \underline{B}$

Character degrees

- if $|X|=|Y|=|Z|=k$, this is reduction from $\mathrm{k} \times \mathrm{k}$ mat. mult. to block-diagonal mat. mult.

Theorem: in group G with character degrees $d_{1}, d_{2}, d_{3}, \ldots$, we obtain:

$$
\begin{array}{ll}
\mathrm{k}^{\omega} \leq \sum_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}^{\omega} & \begin{array}{l}
\text { need } k>d_{\max } \\
\text { and } k \approx|G|^{1 / 2}
\end{array}
\end{array}
$$

If $d_{\max } \approx|G|^{1 / 2}$, prove nothing until prove $\omega=2$.

Which groups can prove $\omega=2$?

- no abelian group
- no group G with $|G|^{\epsilon}$-size abelian normal subgroup with bounded exponent ${ }_{[B c c a n s u ~ 2017] ~}$
- no group G with with $|G|^{\epsilon}$-size normal psubgroup with mild extra conditions [BCCGU 2017]
- simple groups may be good candidates
- no 3 Young subgroups in alt. group [BCcgu 2017]
- this work: matrix groups

Matrix groups

- GL(n, F), SL(n, F)
- F can be finite, or \mathbf{C}, \mathbf{R}
- also orthogonal, unitary, symplectic...
- These groups, and nice subgroups of them, have a notion of dimension:
- e.g. dim of GL_{n} is n^{2}, dim of subgroup of lower-unitriangular matrices is $\left(n^{2}-n\right) / 2$
Recall TPP goal: subgroups of sqrt size \Leftrightarrow subgroups of half dimension

Key relaxation: continuous setting

- We will use matrix groups over \mathbf{R}
- "sum of squares $=0 \Rightarrow$ each summand $=0$ " is powerful and enables good constructions
- First challenge: obtain an analog of $\omega=2$

In a matrix group over \mathbf{R}, can we get TPP with X, Y, Z, having $1 / 2$ the dimension ?

- Later: a way to get bona fide matrix mult. algorithms from such constructions

TPP in Lie groups with subgroups
of $1 / 2$ the dimension

Example construction

- Three subgroups in GL(n, R):
- lower uni-triangular, orthogonal, upper uni-tri.

Lower Tri.

Orthogonal

Upper Tri.
dimensions $\frac{n^{2}-n}{2}$ in group of dimension n^{2}

Construction achieving $1 / 2$ dim

- Three subsets in $\mathrm{GL}(\mathrm{n}, \mathbf{R})^{\mathrm{k}}$:

Subgroup D

Construction achieving $1 / 2 \mathrm{dim}$

- Three subsets in $\mathrm{GL}(\mathrm{n}, \mathbf{R})^{\mathrm{k}}$:

Subgroup D

Dimensions of construction

$\mathrm{G}=\mathrm{GL}(\mathrm{n}, \mathbf{R}) \quad\left\{\left(D_{1}, \ldots, D_{k}\right): \prod_{i} D_{i}=I\right\}=D \subseteq \mathrm{G}^{k}$

Lower Tri. Orthog. Upper Tri. G

dim:
$\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2 \quad n^{2}$
$(\mathrm{LT})^{k} \cdot D \quad(\mathrm{Orth})^{k} \cdot D \quad(\mathrm{UT})^{k} \cdot D \quad \mathrm{G}^{k}$
$\operatorname{dim} / \mathrm{k}:\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2 n^{2}$

$$
+n-o_{k}(1)+n-o_{k}(1)+n-o_{k}(1)
$$

Fixing "failure at diagonal"

$$
\begin{gathered}
\mathrm{G}=\mathrm{GL}(\mathrm{n}, \mathbf{R}) \quad\left\{\left(D_{1}, \ldots, D_{k}\right): \prod_{i} D_{i}=I\right\}=D \subseteq \mathrm{G}^{k} \\
H=\{M \in \mathrm{G}: M v=v\} \text { for } \mathrm{v}=\text { all-ones vector }
\end{gathered}
$$ key: $D \cap H^{k}=\{$ identity $\}$

$$
\begin{array}{c|c|c|c}
(\mathrm{LT})^{k} \cdot D & (\mathrm{Orth})^{k} \cdot D & (\mathrm{UT})^{k} \cdot D & \\
\cap H^{k} & \cap H^{k} & \cap H^{k} & H^{k}
\end{array}
$$

dim/k: $\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2\left(n^{2}-n\right) / 2 n^{2}$

$+n-o_{k}(1)$	$+n-o_{k}(1)$	$+n-o_{k}(1)$	$-n$
$-n$	$-n$	$-n$	

Success! But... Thm [BCGPU23]: no analog in $G L\left(n, F_{q}\right)$.

Obtaining bounds on ω

from Lie group constructions

Original framework: computing $A B$

- Given X, Y, Z in finite G, satisfying TPP:
- for each irrep $\rho: \mathrm{G} \rightarrow C^{d \times d}$ compute:

$$
\begin{gathered}
\rho\left(\Sigma_{x, y} A[x, y]\left(x y^{-1}\right)\right) \cdot \rho\left(\Sigma_{y^{\prime}, z} B\left[y^{\prime}, z\right]\left(y^{\prime} z^{-1}\right)\right) \\
=\Sigma_{x, y, y^{\prime}, z} A[x, y] B\left[y^{\prime}, z\right] \rho\left(x y^{-1} y^{\prime} z^{-1}\right)
\end{gathered}
$$

- the $\rho_{i, j}: G \rightarrow C$ form a basis for all $f: G \rightarrow C$.
- "read off $A B[x, z]$ " means take the linear combination for fn . f that is 1 only on $x z^{-1}$

New framework for Lie groups

- Given finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ in Lie group G, satisfying TPP:
- for some irreps $\rho: \mathrm{G} \rightarrow C^{d \times d}$ compute

$$
\begin{gathered}
\rho\left(\Sigma_{x, y} A[x, y]\left(x y^{-1}\right)\right) \cdot \rho\left(\Sigma_{y^{\prime}, z} B\left[y^{\prime}, z\right]\left(y^{\prime} z^{-1}\right)\right) \\
=\Sigma_{x, y, y^{\prime}, z} A[x, y] B\left[y^{\prime}, z\right] \rho\left(x y^{-1} y^{\prime} z^{-1}\right)
\end{gathered}
$$

- to "read off $\mathrm{AB}[\mathrm{x}, \mathrm{z}]$ " find linear combo of $\rho_{i, j}$ equal to $f(M)=1$ if $M=x z^{-1}$

0 if $M=$ any other $x y^{-1} y^{\prime} z^{-1}$

Separating polynomials

- Irreps of GL(n, R) indexed by Young \boxplus diagrams.
- the $\rho_{i, j}$ for irreps up to size D span exactly the set of total-degree D polynomials
- cut off at size D; now to "read off $A B[x, z]$ ":
- find "separating polynomial of deg D":

$$
\begin{aligned}
f_{x, z}(\mathrm{M})=1 & \text { if } M
\end{aligned}=x z^{-1} .
$$

Separating polynomials example

- Three subgroups in GL(n, R):

Lower Tri. Orthogonal Upper Tri.

$$
X \quad Z
$$

$$
f_{X, Z}(M)=\delta_{1}(M[1,1])
$$

$$
\stackrel{*}{\bullet} \delta_{\left(z_{1}, z_{2}, \ldots\right)}(M[\text { top row }])
$$

ind. degree equals \# possible values in - $\delta_{\left(x_{1}, x_{2}, \ldots\right)}(M[$ left col $])$ each entry of M

Separating polynomials

- Given finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ in Lie group G, satisfying TPP:
- each of size $q^{\text {dim of subgroup }}$
- separating polynomials of total degree $O(q)$
(example on previous slide: degree $O\left(q^{2}\right)$)
yields same inequality on ω we would get if group was $G L\left(n, F_{q}\right)$; if subgroups are $1 / 2$ the ambient dimension then $\omega=2$

Two ideas for designing separating polynomials

Setup so far

- X, Y, Z subgroups in Lie group G satisfying the Triple Product Property
- design finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ - each of size q ${ }^{\text {dim of subgroup }}$
- design separating polynomials of deg $O(q)$
- argument $\quad \mathrm{M}=x y^{-1} y^{\prime} z^{-1}$
- poly $\begin{aligned} f_{x, z}(\mathrm{M}) & =1 \text { if } M=x z^{-1} \\ & =0 \text { if } M=\text { any other } x y^{-1} y^{\prime} z^{-1}\end{aligned}$

Setup so far

- design finite subsets $\mathbf{X} \subseteq X, \mathbf{Y} \subseteq Y, \mathbf{Z} \subseteq Z$ - each of size $q^{\text {dim of subgroup }}$
- design separating polynomials of deg $O(q)$
- argument $\quad \mathrm{M}=x y^{-1} y^{\prime} z^{-1}$

$$
- \text { poly } \begin{aligned}
f_{x, z}(\mathrm{M}) & =1 \text { if } M=x z^{-1} \\
& =0 \text { if } M=\text { any other } x y^{-1} y^{\prime} z^{-1}
\end{aligned}
$$

Idea \#1:

$$
\text { design } \begin{aligned}
f_{0}\left(x y^{-1} y^{\prime} z^{-1}\right) & =1 \text { if } y^{-1} y^{\prime}=I \\
& =0 \text { if } y^{-1} y^{\prime} \neq I
\end{aligned}
$$

Invariant polynomials

Select f_{0} from ring of invariant polynomials - under left-multiplication by X

- under right-multiplication by Z
- Example: subgroups in GL(n, R)

Lower Tri.

Orthogonal Upper Tri.

leading principle minors are invariant

Invariant polynomials

- subgroups in GL(n, R):

leading principle

 minors are invariant

Lower Tri. Orthogonal Upper Tri.
$f_{0}(M)=\delta_{1}\left(\operatorname{lpm}_{1}(M)\right) \cdot \delta_{1}\left(\operatorname{lpm}_{2}(M)\right) \cdots$
Claim: $f_{0}\left(x y^{-1} y^{\prime} z^{-1}\right)=f_{0}\left(y^{-1} y^{\prime}\right)=1$ implies $y^{-1} y^{\prime}=I$

Remaining task:

- finite subsets of 2 subgroups in $\mathrm{GL}(\mathrm{n}, \mathbf{R})$:

Lower Tri. Upper Tri.

- find "separating polynomials" (to be multiplied with f_{0})

$$
\begin{aligned}
f_{x, z}(\mathrm{M})=1 \text { if } M & =x z^{-1} \\
0 \text { if } M & =\text { any other } x^{\prime} z^{\prime-1}
\end{aligned}
$$

q values in entries of $\mathrm{x}, \mathrm{z} \Rightarrow O\left(q^{2}\right)$ values in entries of M

Idea \#2: use Lie algebra

- Lie Group G has associated Lie Algebra g
$-\mathbf{g}$ is a vectorspace
- for any $A \in \mathbf{g}$, we have $\exp (\epsilon A) \in G$
(e.g. Orthogonal Group \Rightarrow skew-symmetric matrices)
- finite subsets of X, Y, Z can be defined via finite subsets of associated Lie algebras
- the ϵ means the matrices have ϵ 's in their entries, and irreps have ϵ 's in their entries
- final bound is on border-rank rather than rank!

Remaining task now easier

$$
\begin{aligned}
& M=I+\epsilon(A-B)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

- choose entries of A, B in $\{0,1,2, \ldots, q\}$
- now, only $O(q)$ values in $(M-I) / \epsilon$, up to $O(\epsilon)$
- separating polynomials of deg. $O(q)$:

$$
\begin{aligned}
& f_{x, Z}(\mathrm{M})=h_{A, B}\left(\frac{M-I}{\epsilon}\right), \text { where } \\
& \quad h_{A, B}\left(M^{\prime}\right)=1 \text { if } M^{\prime}=A-B ; \text { otherwise } 0
\end{aligned}
$$

Lie algebra trick works in general

- Lie subgroups X, Y, Z that satisfy the TPP, with Lie algebras $\underline{\mathbf{x}}, \mathbf{y}, \underline{\underline{z}} \quad$ (note: $\underline{\mathbf{x}} \cap \mathbf{z}=\{0\}$)
- fix a basis for $\underline{\mathbf{x}}, \underline{\mathbf{z}}$
- Choose finite subsets:
- $\mathbf{X}=\{\exp (\epsilon A): A \in \underline{\mathbf{x}}$, coefficients in $\{1 \ldots q\}\}$
- $\mathbf{Z}=\{\exp (\epsilon B): B \in \mathbf{z}$, coefficients in $\{1 \ldots q\}\}$

$$
M=I+\epsilon(A-B)+O\left(\epsilon^{2}\right)
$$

- $O(q)$ values per coefficient in $(M-I) / \epsilon$, uptoo o($)$

Putting it all together

- X, Y, Z subgroups in Lie group G satisfying the Triple Product Property
- determine the ring of polynomials invariant under left-mult. by X, right-mult by Z
- design subset $Y \subseteq Y$ of size $q^{\text {dim of subgroup }}$
- design sep. polynomial in ring, of deg $O(q)$

$$
\begin{aligned}
f_{0}\left(y^{-1} y^{\prime}\right) & =1 \text { if } y^{-1} y^{\prime}=I \\
& =0 \text { if } y^{-1} y^{\prime} \neq I
\end{aligned}
$$

subgroups $1 / 2$ the ambient dimension

$$
\Rightarrow \omega=2 .
$$

Conclusions

- We know of two other constructions. Both come with separating polynomials, currently degree $O\left(q^{2}\right)$ rather than $O(q)$
- Open: find a construction that achieves TPP with half-dimensional subgroups, and finite subsets with separating polynomials having degree $O(q)$. Then $\omega=2$.

Thank you!

So far...

- Achieved goal of TPP construction with subgroups half the dimension
- if in $\mathrm{GL}(\mathrm{n}, \mathbf{R})$, would imply a precise analog of $\omega=2$ in the sense that if the construction moved to $\mathrm{GL}\left(\mathrm{n}, \mathrm{F}_{q}\right)$ it would prove $\omega=2$.
- but in Aff(n, R), no: Aff(n, F_{q}) has $d_{\text {max }} \approx q^{\text {dim/2 }}$ instead of q ${ }^{\text {bounded away from dim/2 }}$

Challenge: as-good construction in $G L(n, R)$.

