Superpolynomial lower bounds for circuits of constant depth

Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas

Spoiler

$$
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i} .
$$

Spoiler

$P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i}$. Needs $O\left(2^{N}\right)$ operations.

Spoiler

$$
\begin{aligned}
& P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i} . \text { Needs } O\left(2^{N}\right) \text { operations. } \\
& P\left(x_{1}, \ldots, x_{N}\right)=\prod_{i \in[N]}\left(1+x_{i}\right) .
\end{aligned}
$$

Spoiler

$$
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i} \text {. Needs } O\left(2^{N}\right) \text { operations. }
$$

$$
P\left(x_{1}, \ldots, x_{N}\right)=\prod_{i \in[N]}\left(1+x_{i}\right) \text {. Needs } O(N) \text { operations. }
$$

Spoiler

$P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i}$. Needs $O\left(2^{N}\right)$ operations.
$P\left(x_{1}, \ldots, x_{N}\right)=\prod_{i \in[N]}\left(1+x_{i}\right)$. Needs $O(N)$ operations.

How many operations are needed for computing a polynomial?

Spoiler

$$
\begin{aligned}
& P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i} . \text { Needs } O\left(2^{N}\right) \text { operations. } \\
& P\left(x_{1}, \ldots, x_{N}\right)=\prod_{i \in[N]}\left(1+x_{i}\right) . \text { Needs } O(N) \text { operations. }
\end{aligned}
$$

How many operations are needed for computing a polynomial?

Main result,
$\exists H$ which can not be written of the form:
$H\left(x_{1}, \ldots, x_{N}\right)=\sum_{i_{1} \in[N]} \prod_{i_{2} \in[N]} \cdots \sum_{i_{p-1} \in[N]} \prod_{i_{p} \in[N]} T_{i_{1}, \ldots, i_{p}}$ where

- T_{i} are constants or variables,
- the number of alternations between \sum and Π is bounded by a constant.

Model(s) for Evaluating a Polynomial
Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)

Model(s) for Evaluating a Polynomial
Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)

An algebraic circuit (or 'straight-line program') is:

Model(s) for Evaluating a Polynomial

 Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)An algebraic circuit (or 'straight-line program') is:

Model(s) for Evaluating a Polynomial

Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)

An algebraic circuit (or 'straight-line program') is:

Called $\sum \prod \sum$ circuits.

Model(s) for Evaluating a Polynomial

Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)

An algebraic circuit (or 'straight-line program') is:

Called $\sum \prod \sum$ circuits.
We will always assume: the top node is a \sum

Model(s) for Evaluating a Polynomial

 Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)An algebraic circuit (or 'straight-line program') is:

Size $=$ Number of operations.

Model(s) for Evaluating a Polynomial

 Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)An algebraic circuit (or 'straight-line program') is:

Size $=$ Number of operations. In this case 8.

Model(s) for Evaluating a Polynomial

 Let $P\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ (In this talk think $\mathbb{F}=\mathbb{Q}$)An algebraic circuit (or 'straight-line program') is:

Size $=$ Number of operations. In this case 8.

A formula is a circuit with tree as the underlying undir. graph.

Algebraic analogue of P

Definition (VP - Valiant's P, or "efficiently computable")
Polynomials $f\left(x_{1}, \ldots, x_{n}\right)$ that can be computed by poly (n)-sized algebraic circuits?

Algebraic analogue of P

Definition (VP - Valiant's P, or "efficiently computable") Polynomials $f\left(x_{1}, \ldots, x_{n}\right)$, of degree $d=\operatorname{poly}(n)$, that can be computed by poly (n)-sized algebraic circuits.

In particular they can be "efficiently" simulated by Boolean circuits (bits computation).

Algebraic analogue of P

Definition (VP - Valiant's P, or "efficiently computable") Polynomials $f\left(x_{1}, \ldots, x_{n}\right)$, of degree $d=\operatorname{poly}(n)$, that can be computed by poly (n)-sized algebraic circuits.

Examples:

$$
\begin{aligned}
& \text { [Ben-Or] } \quad \operatorname{ESym}_{d}\left(x_{1}, \cdots, x_{n}\right)=\sum_{S \subseteq[n],|S|=d} \\
& \prod_{i \in S} x_{i} \\
& \text { [Berkowitz,Mahajan-Vinay] } \quad \operatorname{Det}_{n}=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{n 1} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|
\end{aligned}
$$

Algebraic analogue of P

Definition (VP - Valiant's P , or "efficiently computable") Polynomials $f\left(x_{1}, \ldots, x_{n}\right)$, of degree $d=\operatorname{poly}(n)$, that can be computed by poly (n)-sized algebraic circuits.

Examples:

$$
\begin{aligned}
& \text { [Ben-Or] } \operatorname{ESym}_{d}\left(x_{1}, \cdots, x_{n}\right)=\sum_{S \subseteq[n],|S|=d} \\
& \prod_{i \in S} x_{i} \\
& \text { [Berkowitz,Mahajan-Vinay] } \operatorname{Det}_{n}=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{n 1} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|
\end{aligned}
$$

Fact: [Valiant] Det $_{n}$ is complete* for VP.

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"

Examples:

$$
\begin{aligned}
\mathrm{HC}_{n} \\
\begin{aligned}
\text { Perm }_{n} & =\operatorname{perm}\left[\begin{array}{ccc}
x_{11} & \cdots & x_{n 1} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right] \\
& =\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i \pi(i)}
\end{aligned}
\end{aligned}
$$

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"
An exponential sum of a VP polynomial $g(\mathbf{x}, \mathbf{y})$:

$$
f(\mathbf{x})=\sum_{\mathbf{y} \in\{0,1\}^{m}} g(\mathbf{x}, \mathbf{y})
$$

Examples:

HC_{n}

$$
\operatorname{Perm}_{n}=\operatorname{perm}\left[\begin{array}{ccc}
x_{11} & \cdots & x_{n 1} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right]
$$

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"
An exponential sum of a VP polynomial $g(\mathbf{x}, \mathbf{y})$:

$$
f(\mathbf{x})=\sum_{\mathbf{y} \in\{0,1\}^{m}} g(\mathbf{x}, \mathbf{y})
$$

Fact: [Valiant] Perm ${ }_{n}$ is complete for VNP.

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"
An exponential sum of a VP polynomial $g(\mathbf{x}, \mathbf{y})$:

$$
f(\mathbf{x})=\sum_{\mathbf{y} \in\{0,1\}^{m}} g(\mathbf{x}, \mathbf{y})
$$

Fact: [Valiant] Perm n is complete for VNP.

$$
\begin{array}{|l|}
\hline \mathrm{VP}
\end{array} \text { vs VNP }
$$

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"
An exponential sum of a VP polynomial $g(\mathbf{x}, \mathbf{y})$:

$$
f(\mathbf{x})=\sum_{\mathbf{y} \in\{0,1\}^{m}} g(\mathbf{x}, \mathbf{y})
$$

Fact: [Valiant] Perm n is complete for VNP.
VP vs VNP $\stackrel{\sim}{\Longleftrightarrow}$ Det vs Perm

Algebraic analogue of NP

Definition (VNP - Valiant's NP, or "explicit polynomials")
"Anything that can be succinctly described"
An exponential sum of a VP polynomial $g(\mathbf{x}, \mathbf{y})$:

$$
f(\mathbf{x})=\sum_{\mathbf{y} \in\{0,1\}^{m}} g(\mathbf{x}, \mathbf{y})
$$

Fact: [Valiant] Perm n is complete for VNP.

$$
\text { VP vs VNP } \stackrel{\sim}{\Longleftrightarrow} \text { Det vs Perm }
$$

Under $\mathrm{GRH}, \mathrm{VP}=\mathrm{VNP} \Longrightarrow \mathrm{P} /$ poly $=\mathrm{NP} /$ poly $=\mathrm{PH} /$ poly

How does one begin?

[Baur-Strassen 83]: Any circuit computing $\operatorname{Pow}_{n}^{d}=\sum_{i=1}^{n} X_{i}^{d}$ has size at least $\Omega(n \log d)$.

How does one begin?

[Baur-Strassen 83]: Any circuit computing Pown ${ }_{n}^{d}=\sum_{i=1}^{n} X_{i}^{d}$ has size at least $\Omega(n \log d)$.
[Kalorkoti 85]: Any formula computing the polynomial $\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}^{j} Y_{j}$ has size at least $\Omega\left(n^{2}\right)$.

How does one begin?

[Baur-Strassen 83]: Any circuit computing $\operatorname{Pow}_{n}^{d}=\sum_{i=1}^{n} X_{i}^{d}$ has size at least $\Omega(n \log d)$.
[Kalorkoti 85]: Any formula computing the polynomial $\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}^{j} Y_{j}$ has size at least $\Omega\left(n^{2}\right)$.
... They are still the best lower bounds for an explicit function!!!!

How does one begin?

[Baur-Strassen 83]: Any circuit computing $\operatorname{Pow}_{n}^{d}=\sum_{i=1}^{n} X_{i}^{d}$ has size at least $\Omega(n \log d)$.
[Kalorkoti 85]: Any formula computing the polynomial $\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}^{j} Y_{j}$ has size at least $\Omega\left(n^{2}\right)$.
... They are still the best lower bounds for an explicit function!!!!
"If you can't solve a problem, there is a simpler problem that you can't solve. Find it."

- George Pólya

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

- Boolean lower bounds imply Algebraic lower bounds

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

- Boolean lower bounds imply Algebraic lower bounds
- Exponentially lower bounds for Constant Depth circuits have been known for almost 50 years

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

- Boolean lower bounds imply Algebraic lower bounds
- Exponentially lower bounds for Constant Depth circuits have been known for almost 50 years

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

- Boolean lower bounds imply Algebraic lower bounds
- Exponentially lower bounds for Constant Depth circuits have been known for almost 50 years
- \Longrightarrow We can combine them to get our goal!!!

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant algebraic circuits.

- Boolean lower bounds imply Algebraic lower bounds
- Exponentially lower bounds for Constant Depth circuits have been known for almost 50 years
- \Longrightarrow We can combine them to get our goal!!!

Problem in the first point:

- Small Algebraic Circuits simulated by Small Boolean ones But
- Small Algebraic Circuits of constant depth are not simulated by Small Boolean Circuits of constant depth

See: a sum of variables

Are algebraic constant depth circuits a weak model?

- They can't be simulated by constant-depth Boolean circuits
- $\sum \prod \sum$ can compute $\mathrm{ESym}_{n, d}$ in a non-homogeneous way
- Can simulate general Algebraic Circuits with a subexponential cost!

IMM

Another example of problem in VP: (still almost VP-complete)

$\mathrm{IMM} \mathrm{M}_{n, d}$ defined over variable sets X_{1}, \ldots, X_{d}, each of size n^{2}.

Each X_{i} thought of as an $n \times n$ matrix.
$\mathrm{IMM}_{n, d}$ is the $(1,1)$ th entry of product $X_{1} \cdot X_{2} \cdot \ldots \cdot X_{d}$. (polynomial with $d n^{2}$ variables and degree d)

Reduction to log-depth

Depth to compute $\mathrm{IMM}_{n, d}$?

$$
\left(\begin{array}{lll}
\\
x_{1}
\end{array}\right) \times\left(\begin{array}{lll}
\\
& \\
x_{2}
\end{array}\right) \times\left(\begin{array}{ll}
& \\
& \\
x_{d}
\end{array}\right)
$$

Reduction to log-depth

Depth to compute $\mathrm{IMM}_{n, d}$?

"Divide and Conquer":
Compute (recursively) $\mathrm{IMM}_{n, d / 2}$ on the left and on the right.
Recombine with one matrix multiplication.

Reduction to log-depth

Depth to compute $\mathrm{IMM}_{n, d}$?

"Divide and Conquer":
Compute (recursively) $\mathrm{IMM}_{n, d / 2}$ on the left and on the right.
Recombine with one matrix multiplication.
$\mathrm{IMM}_{n, d}$ is computed by a circuit of size poly (n, d) and depth $O(\log d)$.

Are algebraic constant depth circuits a weak model?

- They can't be simulated by constant-depth Boolean circuits
- $\sum \prod \sum$ can compute $\mathrm{ESym}_{n, d}$ in a non-homogeneous way
- Can simulate general Algebraic Circuits with a subexponential cost!

[VSBR - AV/K/T - GKKS]

If P can be computed by a circuit of size s, then it can be computed by a

- log-depth circuit of size poly $(s N)$,

Reduction to depth 4

Depth-4 circuits for $\mathrm{IMM}_{n, d}$?

$$
\left(\begin{array}{lll}
\\
x_{1}
\end{array}\right) \times\left(\begin{array}{lll}
\\
x_{2}
\end{array}\right) \times\left(\begin{array}{ll}
\\
& \\
x_{d}
\end{array}\right)
$$

Reduction to depth 4

Depth-4 circuits for $\mathrm{IMM}_{n, d}$?
$\left(\begin{array}{ll} \\ & \\ x_{1}\end{array}\right) \times($

Split into \sqrt{d} blocks of \sqrt{d} matrices each.
Compute IMM ${ }_{n, \sqrt{d}}$ for each block.
Recombine by computing $\mathrm{IMM}_{n, \sqrt{d}}$ again.

Reduction to depth 4

Depth-4 circuits for $\mathrm{IMM}_{n, d}$?

Split into \sqrt{d} blocks of \sqrt{d} matrices each.
Compute $\mathrm{IMM}_{n, \sqrt{d}}$ for each block.
Recombine by computing $\mathrm{IMM}_{n, \sqrt{d}}$ again.
$\mathrm{IMM}_{n, d}$ is computed by a $\sum \prod \sum \prod$ circuit of size $n^{O(\sqrt{d})}$.

Are algebraic constant depth circuits a weak model?

- They can't be simulated by constant-depth Boolean circuits
- $\sum \prod \sum$ can compute $\mathrm{ESym}_{n, d}$ in a non-homogeneous way
- Can simulate general Algebraic Circuits with a subexponential cost!

[VSBR - AV/K/T - GKKS]

If P can be computed by a circuit of size s, then it can be computed by a

- log-depth circuit of size poly $(s N)$,
- homogeneous $\sum \prod \sum \prod$ circuit of size $(s N)^{O(\sqrt{d})}$,

Are algebraic constant depth circuits a weak model?

- They can't be simulated by constant-depth Boolean circuits
- $\sum \prod \sum$ can compute $\mathrm{ESym}_{n, d}$ in a non-homogeneous way
- Can simulate general Algebraic Circuits with a subexponential cost!

[VSBR - AV/K/T - GKKS]

If P can be computed by a circuit of size s, then it can be computed by a

- log-depth circuit of size poly $(s N)$,
- homogeneous $\sum \prod \sum \prod$ circuit of size $(s N)^{O(\sqrt{d})}$,
- $\sum \prod \sum$ circuit of size $(s N)^{O(\sqrt{d})}$.

Constant Depth Lower Bounds

Boolean circuit lower bounds.
Strong lower bounds for constant-depth Boolean circuits known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].

Constant Depth Lower Bounds

Boolean circuit lower bounds.
Strong lower bounds for constant-depth Boolean circuits known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].
Algebraic circuit lower bounds.
The size of $\sum \prod$ formulas is just the number of monomials.
(Ex: $P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i}$ has 2^{N} monomials.)
Best known lower bound for $\sum \prod \sum$ circuits is $\Omega\left(N^{3} / \log ^{2} N\right)$ [Kayal,Saha, T.,2016].
Best known lower bound for $\sum \Pi \sum \prod$ circuits is $\Omega\left(N^{2.5}\right)$ [Gupta,Saha, Thankey, 2020].
For depth $\Delta \geq 5$, lower bound in $N^{1+\Omega(1 / \Delta)}$
[Shoup,Smolensky,96, Raz10].

Constant Depth Lower Bounds

Boolean circuit lower bounds.
Strong lower bounds for constant-depth Boolean circuits known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].
Algebraic circuit lower bounds.
The size of $\sum \prod$ formulas is just the number of monomials.
(Ex: $P\left(x_{1}, \ldots, x_{N}\right)=\sum_{S \subseteq[N]} \prod_{i \in S} x_{i}$ has 2^{N} monomials.)
Best known lower bound for $\sum \prod \sum$ circuits is $\Omega\left(N^{3} / \log ^{2} N\right)$ [Kayal,Saha, T., 2016].
Best known lower bound for $\sum \Pi \sum \Pi$ circuits is $\Omega\left(N^{2.5}\right)$ [Gupta,Saha, Thankey,2020].
For depth $\Delta \geq 5$, lower bound in $N^{1+\Omega(1 / \Delta)}$
[Shoup,Smolensky,96, Raz10].

Superpolynomial Lower Bounds against Constant Depth Circuits

Let n, d be growing parameters with $d \leq \log n$. Assume \mathbb{F} is of characteristic 0 .

Superpolynomial Lower Bounds against Constant Depth Circuits

Main Theorem

Let n, d be growing parameters with $d \leq \log n$.
Assume \mathbb{F} is of characteristic 0 .

Any depth- Γ circuit for $\mathrm{IMM}_{n, d}$ must have size $n^{d^{\varepsilon} \Gamma}$ where ε_{Γ} depends only on Γ.
Any depth- Γ circuit for Det ${ }_{n}$ must have size $n^{(\log n)^{\varepsilon} \Gamma}$.

If $\Gamma=3$, we have $\varepsilon_{3}=1 / 2$ (optimal for IMM).
If $\Gamma=4$, we have $\varepsilon_{4}=1 / 4$.

Consequence: Polynomial Identity Testing

Subexponential time PIT
Given black-box access to a constant-depth poly (N)-size circuit computing a polynomial P,

Consequence: Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly (N)-size circuit computing a polynomial P, there is a deterministic algorithm for checking whether $P \equiv 0$ that runs in subexponential time
(i.e., $N^{O\left(N^{\mu}\right)}$ for any $\mu>0$).

Consequence: Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-size circuit computing a polynomial P, there is a deterministic algorithm for checking whether
$P \equiv 0$ that runs in subexponential time
(i.e., $N^{O\left(N^{\mu}\right)}$ for any $\mu>0$).

Prior to this deterministic $n^{O(k)}$ time algorithm known for $\sum^{[k]} \Pi \sum$ circuits. [Saxena,Seshadhri,2012]

Algebraic hardness vs. randomness (by
[Chou,Kumar,Solomon,2018]) + our lower bound.
Builds on [Kabanets,Impagliazzo,2004],
[Dvir,Shpilka, Yehudayoff,2009].

Lower bounds against general formulas

Escalation

Lower bounds against weaker formulas

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials
$P \in \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right]$, where X_{1}, \ldots, X_{d} are sets of variables.
Each monomial uses exactly one variable per set.

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

$$
P \in \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right] \text {, where } X_{1}, \ldots, X_{d} \text { are sets of variables. }
$$

Each monomial uses exactly one variable per set.
Examples
$\mathrm{IMM}_{n, d}$
$\left(\begin{array}{ll}\square & \\ & \\ \text { A }\end{array}\right)=\left(\begin{array}{c} \\ X_{1}\end{array}\right) \times\left(\begin{array}{lll} \\ \\ X_{2}\end{array}\right) \times\left(\begin{array}{ll} \\ \\ X_{d}\end{array}\right)$

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

$$
P \in \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right], \text { where } X_{1}, \ldots, X_{d} \text { are sets of variables. }
$$

Each monomial uses exactly one variable per set.
Examples
$\mathrm{IMM}_{n, d}$

$$
\operatorname{PIP}_{n, d}=\left\langle X_{1}, X_{2}\right\rangle \times\left\langle X_{3}, X_{4}\right\rangle \times \ldots \times\left\langle X_{d-1}, X_{d}\right\rangle
$$

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

$$
P \in \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right], \text { where } X_{1}, \ldots, X_{d} \text { are sets of variables. }
$$

Each monomial uses exactly one variable per set.
Examples
$\mathrm{IMM}_{n, d}$
$\left(\begin{array}{ll}\square & \\ & \\ & \\ \mathrm{A}\end{array}\right)=\left(\begin{array}{llll} \\ x_{1}\end{array}\right) \times\left(\begin{array}{lll} \\ & \\ x_{2}\end{array}\right) \times\left(\begin{array}{lll} \\ & & \\ x_{d}\end{array}\right)$

$$
\operatorname{PIP}_{n, d}=\left\langle X_{1}, X_{2}\right\rangle \times\left\langle X_{3}, X_{4}\right\rangle \times \ldots \times\left\langle X_{d-1}, X_{d}\right\rangle
$$

Homogeneous circuits/formulas
All gates compute homogeneous polynomials.
Set-multilinear circuits/formulas
All gates compute set-multilinear polynomials.

Homogeneization (Raz's approach)

Let $P\left(x_{1}, \ldots, x_{N}\right)$ be a set-multilinear polynomial of degree d.
[Raz 2009]
Formula of size s computing P

Efficient conversion

Set-multilinear formula computing P
of size poly $(s) \cdot(\log s)^{O(d)}$

Homogeneization (Raz's approach)

Let $P\left(x_{1}, \ldots, x_{N}\right)$ be a set-multilinear polynomial of degree $d=O(\log N / \log \log N)$.
[Raz 2009]
Formula of size s computing P

Efficient conversion

Set-multilinear formula computing P of size poly $(s) \cdot(\log s)^{O(d)}$

Homogeneization (Raz's approach)

Let $P\left(x_{1}, \ldots, x_{N}\right)$ be a set-multilinear polynomial of degree $d=O(\log N / \log \log N)$.
[Raz 2009]
Formula of size poly (N) computing P

Efficient conversion

Set-multilinear formula computing P of size poly (N)

Homogeneization (Raz's approach)

Let $P\left(x_{1}, \ldots, x_{N}\right)$ be a set-multilinear polynomial of degree $d=O(\log N / \log \log N)$.
[Raz 2009]
Any formula computing P needs superpolynomial size
Set-multilinear formula computing P
needs size $N^{\omega_{d}(1)}$

Homogeneization (Raz's approach)

Let $P\left(x_{1}, \ldots, x_{N}\right)$ be a set-multilinear polynomial of degree $d=O(\log N / \log \log N)$.
[Raz 2009]
Any formula computing P needs superpolynomial size

Caveat: Raz's transformation does not work for constant depth.

Escalation

Set-multilinear formula computing P

needs size $N^{\omega_{d}(1)}$

Low degree regime - the blow-ups in size are all polynomial

 Assumptions $d<\sqrt{\log n}$ and $\operatorname{char}(\mathbb{F}) \neq 0$.
Low degree regime - the blow-ups in size are all polynomial

Assumptions $d<\sqrt{\log n}$ and $\operatorname{char}(\mathbb{F}) \neq 0$.

Parallelization

Parallelization of the circuits to depth $O(\log d)$. [VSBR83]
Parallelization of the formulas to depth $O(\log s)$. [BKM73]
Parallelization of the homogeneous formulas to depth $O(\log d)$. [FLMST23]

Low degree regime - the blow-ups in size are all polynomial

Assumptions $d<\sqrt{\log n}$ and $\operatorname{char}(\mathbb{F}) \neq 0$.
Parallelization
Parallelization of the circuits to depth $O(\log d)$. [VSBR83]
Parallelization of the formulas to depth $O(\log s)$. [BKM73]
Parallelization of the homogeneous formulas to depth
$O(\log d)$. [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]
Idem for formulas. [Raz13]
Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2 .
[SW01,CKSV16,LST21]

Low degree regime - the blow-ups in size are all polynomial

Assumptions $d<\sqrt{\log n}$ and $\operatorname{char}(\mathbb{F}) \neq 0$.
Parallelization
Parallelization of the circuits to depth $O(\log d)$. [VSBR83]
Parallelization of the formulas to depth $O(\log s)$. [BKM73]
Parallelization of the homogeneous formulas to depth
$O(\log d)$. [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]
Idem for formulas. [Raz13]
Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2 .
[SW01,CKSV16,LST21]
Sufficient to prove $n^{\omega(d)}$ lower bounds for
set-multilinear formulas of depth $O(\log d)$!

Non-FPT Lower Bounds

Known lower bounds
Known set-multiliear formula lower bounds for constant depth. [NW 95, Raz 2009, RY 2009]

Non-FPT Lower Bounds

Known lower bounds
Known set-multiliear formula lower bounds for constant depth. [NW 95, Raz 2009, RY 2009]

$$
\exp (\Omega(d)) \cdot \operatorname{poly}(N)
$$

Non-FPT Lower Bounds

Known lower bounds
Known set-multiliear formula lower bounds for constant depth. [NW 95, Raz 2009, RY 2009]

$$
\exp (\Omega(d)) \cdot \operatorname{poly}(N)
$$

For escalation to work, we need:

Non-FPT Lower Bounds

Known lower bounds
Known set-multiliear formula lower bounds for constant depth. [NW 95, Raz 2009, RY 2009]

$$
\exp (\Omega(d)) \cdot \operatorname{poly}(N)
$$

For escalation to work, we need:

$$
N^{\Omega(f(d))}
$$

Our Lower Bound

A non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound
Let $d \leq O(\log n)$.
For any $\Delta \geq 1$ any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth Δ must have size $n^{d^{\varepsilon} \Delta}$.

First case $\Delta=5$: bound in $n^{\Omega(\sqrt{d})}$

Case $\Gamma=3$

We just stated:

Set-multilinear formula lower bound

Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth 5 must have size $n^{\Omega(\sqrt{d})}$.

Case「=3

We just stated:

Set-multilinear formula lower bound

Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth 5 must have size $n^{\Omega(\sqrt{d})}$.

In particular,

General formula lower bound

Let n, d be growing parameters with $d=o(\log n)$.
Assume \mathbb{F} is characteristic 0 .
Any algebraic circuits of depth 3 computing $\mathrm{IMM}_{n, d}$ must have size $n^{\Omega(\sqrt{d})}$.

Techniques

A typical lower bound proof

The lower bound proof outline.

- Come up with a measure $\mu: \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathbb{R}_{\geq 0}$.
- Show that $\mu\left(\mathrm{IMM}_{n, d}\right)$ is large.
- Show that $\mu\left(\mathrm{sm} . \sum \Pi \sum \Pi \sum\right)$ is small.

Partial Derivative Measure

Nisan and Wigderson [NW 95]

Partial Derivative Measure

Nisan and Wigderson [NW 95]
Partition [d] into \mathcal{P} and \mathcal{N}.
$M^{\mathcal{P}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{P}\right)$.
$M^{\mathcal{N}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{N}\right)$.

Partial Derivative Measure

Nisan and Wigderson [NW 95]
Partition [d] into \mathcal{P} and \mathcal{N}.
$M^{\mathcal{P}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{P}\right)$.
$M^{\mathcal{N}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{N}\right)$.

For a polynomial f, define matrix M_{f} as follows.

Partial Derivative Measure

Nisan and Wigderson [NW 95]
Partition [d] into \mathcal{P} and \mathcal{N}.
$M^{\mathcal{P}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{P}\right)$.
$M^{\mathcal{N}}$ multilinear monomials over $\left(X_{i}: i \in \mathcal{N}\right)$.

For a polynomial f, define matrix M_{f} as follows.

The Partial Derivative Measure is the $\operatorname{rank}\left(M_{f}\right)$.

Properties of μ

$\mu: \mathbb{F}_{\text {sm }}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathbb{N}$
μ is sub-additive: $\quad \mu(f+g) \leq \mu(f)+\mu(g)$
μ is multiplicative: $\quad \mu(f g)=\mu(f) \mu(g)$
$\mu(f) \leq \min \left(M^{\mathcal{P}}, M^{\mathcal{N}}\right)$

A typical lower bound proof

The lower bound proof outline.

- Come up with a measure $\mu: \mathbb{F}_{\mathrm{sm}}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathbb{R}_{\geq 0}$.
- Show that $\mu\left(\mathrm{IMM}_{n, d}\right)$ is large.
- Show that $\mu\left(\mathrm{sm} . \sum \Pi \sum \Pi \sum\right)$ is small.

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

$$
\text { For } \mathcal{P}=\{i \mid i \text { odd }\} \text { and } \mathcal{N}=\{j \mid j \text { even }\} \quad \text { (Assume } d \text { even) }
$$

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

$$
\text { For } \mathcal{P}=\{i \mid i \text { odd }\} \text { and } \mathcal{N}=\{j \mid j \text { even }\} \quad \text { (Assume } d \text { even) }
$$

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

$$
\text { For } \mathcal{P}=\{i \mid i \text { odd }\} \text { and } \mathcal{N}=\{j \mid j \text { even }\} \quad \text { (Assume } d \text { even) }
$$

Coeff of

$$
\begin{gathered}
X_{1, i_{1}}^{(1)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)} X_{j_{1}, j_{2}}^{(2)} \cdots X_{j_{d-1,1}}^{(d)} \\
\text { in IMM }_{n, d}
\end{gathered}
$$

$$
X_{1, i_{1}}^{(1)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)}
$$

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

For $\mathcal{P}=\{i \mid i$ odd $\}$ and $\mathcal{N}=\{j \mid j$ even $\} \quad$ (Assume d even)
$X_{1, i_{1}}^{(1)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)}$
Coeff of
$X_{1, i_{1}}^{(1)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)} X_{j_{1}, j_{2}}^{(2)} \cdots X_{j_{d-1}, 1}^{(d)}$
in $\mathrm{IMM}_{n, d}$
$\left\{\begin{array}{l}=1 \text { if }\left(i_{1}, . ., i_{d-1}\right)=\left(j_{1}, . ., j_{d-1}\right) \\ =0 \text { otherwise } .\end{array}\right.$

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

$$
\text { For } \mathcal{P}=\{i \mid i \text { odd }\} \text { and } \mathcal{N}=\{j \mid j \text { even }\} \quad \text { (Assume } d \text { even) }
$$

$$
X_{1, i_{1}}^{(1)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)}\left(\begin{array}{ccc}
1 & M^{\mathcal{N}} \longrightarrow \\
& \boxed{1} & \\
& & 1
\end{array}\right) \quad\left\{\begin{array}{l}
=1 \text { if }\left(i_{1}, . ., i_{d-1}\right)=\left(j_{1}, . ., j_{d-1}\right) \\
=0 \text { otherwise. }
\end{array}\right.
$$

The measure applied to $\mathrm{IMM}_{n, d}$

Recall that

$$
\mathrm{IMM}_{n, d}=\sum_{i_{1}, \ldots, i_{d-1} \in[n]} X_{1, i_{1}}^{(1)} \cdot X_{i_{1}, i_{2}}^{(2)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-1}, 1}^{(d)}
$$

$$
\text { For } \mathcal{P}=\{i \mid i \text { odd }\} \text { and } \mathcal{N}=\{j \mid j \text { even }\} \quad \text { (Assume } d \text { even) }
$$

$$
X_{1, i_{1}}^{(1)} \cdot X_{i_{2}, i_{3}}^{(3)} \cdots X_{i_{d-2}, i_{d-1}}^{(d-1)}\left(\begin{array}{ccc}
1 & M^{\mathcal{N}} \longrightarrow \\
& \boxed{1} & \\
& & 1
\end{array}\right) \quad\left\{\begin{array}{l}
=1 \text { if }\left(i_{1}, . ., i_{d-1}\right)=\left(j_{1}, . ., j_{d-1}\right) \\
=0 \text { otherwise. }
\end{array}\right.
$$

The matrix is full-rank! $\mathrm{rk}\left(\mathrm{IMM}_{n, d}\right)=n^{d-1}$.

A typical lower bound proof

The lower bound proof outline.

- Come up with a measure $\mu: \mathbb{F}_{\text {sm }}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathbb{R}_{\geq 0}$.
- Show that $\mu\left(\mathrm{IMM}_{n, d}\right)$ is large.
- Show that $\mu\left(\mathrm{sm} . \sum \Pi \sum \Pi \sum\right)$ is small.

$\sum \Pi \sum$ set-multilinear formulas

Let $\left(X_{1}, \ldots, X_{d}\right)$ be a partition of variables.

$$
F(X)=\sum_{i=1}^{s} \prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)
$$

each $\ell_{i, j}$ homogeneous linear polynomial over X_{j}.

$\sum \prod \sum$ set-multilinear formulas

Let $\left(X_{1}, \ldots, X_{d}\right)$ be a partition of variables.

$$
F(X)=\sum_{i=1}^{s} \prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)
$$

each $\ell_{i, j}$ homogeneous linear polynomial over X_{j}.
For each $i \in[s], j \in[d], \mu\left(\ell_{i, j}\left(X_{j}\right)\right)$ at most 1.

$\sum \prod \sum$ set-multilinear formulas

Let $\left(X_{1}, \ldots, X_{d}\right)$ be a partition of variables.

$$
F(X)=\sum_{i=1}^{s} \prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)
$$

each $\ell_{i, j}$ homogeneous linear polynomial over X_{j}.
For each $i \in[s], j \in[d], \mu\left(\ell_{i, j}\left(X_{j}\right)\right)$ at most 1.
For each $i \in[s], \mu\left(\prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)\right)$ at most 1 .

$\sum \prod \sum$ set-multilinear formulas

Let $\left(X_{1}, \ldots, X_{d}\right)$ be a partition of variables.

$$
F(X)=\sum_{i=1}^{s} \prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)
$$

each $\ell_{i, j}$ homogeneous linear polynomial over X_{j}.
For each $i \in[s], j \in[d], \mu\left(\ell_{i, j}\left(X_{j}\right)\right)$ at most 1.
For each $i \in[s], \mu\left(\prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)\right)$ at most 1 .
By subadditivity of rank, $\mu(F(X))$ at most s.

$\sum \prod \sum$ set-multilinear formulas

Let $\left(X_{1}, \ldots, X_{d}\right)$ be a partition of variables.

$$
F(X)=\sum_{i=1}^{s} \prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)
$$

each $\ell_{i, j}$ homogeneous linear polynomial over X_{j}.
For each $i \in[s], j \in[d], \mu\left(\ell_{i, j}\left(X_{j}\right)\right)$ at most 1.
For each $i \in[s], \mu\left(\prod_{j=1}^{d} \ell_{i, j}\left(X_{j}\right)\right)$ at most 1 .
By subadditivity of rank, $\mu(F(X))$ at most s.

Conclusion: $\sum \prod \sum$ s.m. form. for $\mathrm{IMM}_{n, d}$ has size $\geq n^{d-1}$.

$\Sigma \Pi \sum \Pi$ set-multilinear formulas

Product of Inner Products Polynomial.
Let $X_{j}=\left\{x_{j, 1}, \ldots, x_{j, m}\right\}$ for $j \in[d]$.

$$
\operatorname{PIP}\left(X_{1}, \ldots, X_{d}\right)=\prod_{j=1}^{d / 2}\left(\sum_{k=1}^{m} x_{2 j-1, k} \cdot x_{2 j, k}\right)
$$

PIP has product-depth 2 set-multilinear formula of size $O(m d)$.

For $\mathcal{P}=\{i \mid i$ odd $\}$ and $\mathcal{N}=\{i \mid i$ even $\}$,
$M_{\text {PIP }}$ is a permutation matrix.
$\mathrm{rk}(\mathrm{PIP})$ is full.

Idea: Different set sizes

Idea: Different set sizes

Idea: Different set sizes

We want to ensure $\left|M^{\mathcal{P}}\right|=\left|M^{\mathcal{N}}\right|$.

Idea: Different set sizes

We want to ensure $\left|M^{\mathcal{P}}\right|=\left|M^{\mathcal{N}}\right|$.

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

- $k>\ell>k / 2$
- Full rank $=2^{k t}$

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

- $k>\ell>k / 2$
- Full rank $=2^{k t}$

Focus on one term F, which is $F_{1} \times F_{2} \times \ldots \times F_{r}$.

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

$$
F
$$

$$
\text { - } k>\ell>k / 2
$$

- Full rank $=2^{k t}$

Focus on one term F, which is $F_{1} \times F_{2} \times \ldots \times F_{r}$.
Sufficient to show $\mu(F) \leq \frac{2^{k t}}{n^{\sqrt{d} / 100}}=\frac{\sqrt{2^{k t 2^{\ell(d-t)}}}}{2^{k \sqrt{d} / 100}}$.

Each F_{j} is a ($\sum \Pi \sum$) set-multilinear formula. It covers $p_{j} \mathcal{P}$-variables-sets and q_{j} from \mathcal{N}.

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

$$
\begin{gathered}
\\
\sum \\
\Pi_{j}\left(\sum \Pi \Sigma\right) \\
\hline
\end{gathered}
$$

$$
\text { - } k>\ell>k / 2
$$

- Full rank $=2^{k t}$

Focus on one term F, which is $F_{1} \times F_{2} \times \ldots \times F_{r}$.
Sufficient to show $\mu(F) \leq \frac{2^{k t}}{n^{\sqrt{d} / 100}}=\frac{\sqrt{2^{k t 2^{\ell(d-t)}}}}{2^{k \sqrt{d} / 100}}$.

Each F_{j} is a $\left(\sum \Pi \sum\right)$ set-multilinear formula. It covers $p_{j} \mathcal{P}$-variables-sets and q_{j} from \mathcal{N}.
So $\mu(F)=\mu\left(F_{1}\right) \times \cdots \times \mu\left(F_{r}\right)$
$=\frac{\sqrt{2^{k p_{1} 2^{\ell q_{1}}}}}{\operatorname{Loss}\left(F_{1}\right)} \times \cdots \times \frac{\sqrt{2^{k p_{r} \ell^{\ell q q_{r}}}}}{\operatorname{Loss}\left(F_{r}\right)}$

$\sum \prod \sum \prod \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$
Focus on one term F, which is $F_{1} \times F_{2} \times \ldots \times F_{r}$.

Sufficient to show $\mu(F) \leq \frac{2^{k t}}{n^{\sqrt{d} / 100}}=\frac{\sqrt{2^{k+2^{2(d-t)}}}}{2^{k \sqrt{d} / 100}}$.

Each F_{j} is a $\left(\sum \prod \sum\right)$ set-multilinear formula. It covers $p_{j} \mathcal{P}$-variables-sets and q_{j} from \mathcal{N}.
So $\mu(F)=\mu\left(F_{1}\right) \times \cdots \times \mu\left(F_{r}\right)$
$=\frac{\sqrt{2^{k p_{1}}{ }^{2 q_{1}}}}{\operatorname{Loss}\left(F_{1}\right)} \times \cdots \times \frac{\sqrt{2^{k p_{r} 2^{\ell q_{r}}}}}{\operatorname{Loss}\left(F_{r}\right)}$

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$
F

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

Case 1 There is an F_{j} with degree $\geq \sqrt{d} / 2$.

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

Case 1 There is an F_{j} with degree $\geq \sqrt{d} / 2$.

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$

We saw $\mu\left(\sum \Pi \sum\right) \leq \operatorname{size}\left(\sum \Pi \sum\right)$.
If the size is $\geq 2^{k \sqrt{d} / 50}$
Otherwise

$$
2^{k \sqrt{d} / 50} \geq \mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j} 2^{\ell q_{j}}}}}{\operatorname{Loss}\left(F_{j}\right)} \geq \frac{2^{k \sqrt{d} / 8}}{\operatorname{Loss}\left(F_{j}\right)}
$$

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

Case 1 There is an F_{j} with degree $\geq \sqrt{d} / 2$.

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$

We saw $\mu\left(\sum \Pi \sum\right) \leq \operatorname{size}\left(\sum \Pi \sum\right)$.
If the size is $\geq 2^{k \sqrt{d} / 50}$
Otherwise

$$
2^{k \sqrt{d} / 50} \geq \mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j} 2^{\ell q_{j}}}}}{\operatorname{Loss}\left(F_{j}\right)} \geq \frac{2^{k \sqrt{d} / 8}}{\operatorname{Loss}\left(F_{j}\right)}
$$

Conclusion: $\operatorname{Loss}\left(F_{j}\right) \geq 2^{k \sqrt{d} / 100}$.

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{\ell q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$
Case 2 All F_{j} have degree $<\sqrt{d} / 2$.

$\sum \Pi \sum \Pi \sum$ set-multilinear formulas

- Sets of size $2^{k}, 2^{\ell}$

Case 2 All F_{j} have degree $<\sqrt{d} / 2$.

- $k>\ell>k / 2$
- Full rank $=2^{k t}$
- $\mu\left(F_{j}\right)=\frac{\sqrt{2^{k p_{j}} 2^{l q_{j}}}}{\operatorname{Loss}\left(F_{j}\right)}$
- We want:
$2^{k \sqrt{d} / 100} \leq \prod \operatorname{Loss}\left(F_{j}\right)$

Let us choose $\ell=\lfloor k-k /(10 \sqrt{d})\rfloor$.

Focus on the ratio between the $\#$ of rows and of columns:

$$
\left|k p_{j}-\ell q_{j}\right|>\frac{q_{j} k}{10 \sqrt{d}}
$$

So $\operatorname{Loss}\left(F_{j}\right) \geq 2^{q_{j} k /(20 \sqrt{d})}$.
Conclusion: $\Pi \operatorname{Loss}\left(F_{j}\right) \geq \prod 2^{q_{j} k /(20 \sqrt{d})} \geq 2^{k \sqrt{d} / 40}$.

A typical lower bound proof

The lower bound proof outline.

- Come up with a measure $\mu: \mathbb{F}_{\text {sm }}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathbb{R}_{\geq 0}$.
- Show that $\mu\left(\mathrm{IMM}_{n, d}\right)$ is large.
- Show that $\mu\left(\mathrm{sm} . \sum \Pi \sum \Pi \sum\right)$ is small.

We just showed:
Set-multilinear formula lower bound
Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth 5 must have size $n^{\Omega(\sqrt{d})}$.

We just showed:
Set-multilinear formula lower bound
Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth 5 must have size $n^{\Omega(\sqrt{d})}$.

In particular,

General formula lower bound

Let n, d be growing parameters with $d=o(\log n)$. Assume \mathbb{F} is characteristic 0 .
Any algebraic circuits of depth 3 computing $\mathrm{IMM}_{n, d}$ must have size $n^{\Omega(\sqrt{d})}$.

General case

Set-multilinear formula lower bound

Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth Δ must have size $n^{\operatorname{dexp}(-O(\Delta))}$.

General case

Set-multilinear formula lower bound

Let $d \leq O(\log n)$. Any set-multilinear formula C computing $\mathrm{IMM}_{n, d}$ of depth Δ must have size $n^{\operatorname{dexp}(-O(\Delta))}$.

In particular,

General formula lower bound

Let n, d be growing parameters with $d=o(\log n)$.
Assume \mathbb{F} is characteristic 0 .
Any algebraic circuits of depth 「 computing $\mathrm{IMM}_{n, d}$ must have size $n^{d^{\exp (-O(\Gamma))}}$.

Open Questions

Can the lower bound be improved? What about $n^{\Omega\left(d^{1 / \Delta}\right)}$?

Can we remove the characteristic 0 condition?

Can we get better lower bounds if we consider non-commutative computations?

Can combining known measures give better lower bounds?

