
Superpolynomial lower bounds for circuits of
constant depth

Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas

26 / 09 / 2023

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi .

Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi).

Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Spoiler

P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Needs O(2N) operations.

P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Needs O(N) operations.

How many operations are needed for computing a polynomial?

Main result,

∃H which can not be written of the form:
H(x1, . . . , xN) =

∑
i1∈[N]

∏
i2∈[N] · · ·

∑
ip−1∈[N]

∏
ip∈[N] Ti1,...,ip

where

Ti are constants or variables,

the number of alternations between
∑

and
∏

is
bounded by a constant.

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.
We will always assume:

the top node is a
∑

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.
We will always assume:

the top node is a
∑

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.
We will always assume:

the top node is a
∑

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.

We will always assume:

the top node is a
∑

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.
We will always assume:

the top node is a
∑

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Size = Number of operations.

In this case 8.

A formula is a circuit with tree as the underlying undir. graph.

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Size = Number of operations. In this case 8.

A formula is a circuit with tree as the underlying undir. graph.

Model(s) for Evaluating a Polynomial
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN] (In this talk think F = Q)

An algebraic circuit (or ‘straight-line program’) is:

Depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Size = Number of operations. In this case 8.

A formula is a circuit with tree as the underlying undir. graph.

Algebraic analogue of P

Definition (VP – Valiant’s P, or “efficiently computable”)

Polynomials f (x1, . . . , xn) that can be computed by poly(n)-sized
algebraic circuits?

Algebraic analogue of P

Definition (VP – Valiant’s P, or “efficiently computable”)

Polynomials f (x1, . . . , xn), of degree d = poly(n), that can be
computed by poly(n)-sized algebraic circuits.

In particular they can be “efficiently” simulated by Boolean circuits
(bits computation).

Algebraic analogue of P

Definition (VP – Valiant’s P, or “efficiently computable”)

Polynomials f (x1, . . . , xn), of degree d = poly(n), that can be
computed by poly(n)-sized algebraic circuits.

Examples:

[Ben-Or] ESymd(x1, · · · , xn) =
∑

S⊆[n],|S|=d

∏
i∈S

xi

[Berkowitz,Mahajan-Vinay] Detn =

∣∣∣∣∣∣∣
x11 · · · xn1

...
. . .

...
xn1 · · · xnn

∣∣∣∣∣∣∣

Algebraic analogue of P

Definition (VP – Valiant’s P, or “efficiently computable”)

Polynomials f (x1, . . . , xn), of degree d = poly(n), that can be
computed by poly(n)-sized algebraic circuits.

Examples:

[Ben-Or] ESymd(x1, · · · , xn) =
∑

S⊆[n],|S|=d

∏
i∈S

xi

[Berkowitz,Mahajan-Vinay] Detn =

∣∣∣∣∣∣∣
x11 · · · xn1

...
. . .

...
xn1 · · · xnn

∣∣∣∣∣∣∣
Fact: [Valiant] Detn is complete* for VP.

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

Examples:

HCn

Permn = perm

 x11 · · · xn1
...

. . .
...

xn1 · · · xnn

=
∑
π∈Sn

n∏
i=1

xiπ(i)

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

An exponential sum of a VP polynomial g(x, y):

f (x) =
∑

y∈{0,1}m
g(x, y)

Examples:

HCn

Permn = perm

 x11 · · · xn1
...

. . .
...

xn1 · · · xnn

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

An exponential sum of a VP polynomial g(x, y):

f (x) =
∑

y∈{0,1}m
g(x, y)

Fact: [Valiant] Permn is complete for VNP.

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

An exponential sum of a VP polynomial g(x, y):

f (x) =
∑

y∈{0,1}m
g(x, y)

Fact: [Valiant] Permn is complete for VNP.

VP vs VNP

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

An exponential sum of a VP polynomial g(x, y):

f (x) =
∑

y∈{0,1}m
g(x, y)

Fact: [Valiant] Permn is complete for VNP.

VP vs VNP
∼⇐⇒ Det vs Perm

Algebraic analogue of NP

Definition (VNP – Valiant’s NP, or “explicit polynomials”)

“Anything that can be succinctly described”

An exponential sum of a VP polynomial g(x, y):

f (x) =
∑

y∈{0,1}m
g(x, y)

Fact: [Valiant] Permn is complete for VNP.

VP vs VNP
∼⇐⇒ Det vs Perm

Under GRH, VP = VNP =⇒ P/poly = NP/poly = PH/poly

How does one begin?

[Baur-Strassen 83]: Any circuit computing Powd
n =

∑n
i=1 X

d
i

has size at least Ω(n log d).

[Kalorkoti 85]: Any formula computing the polynomial∑n
i=1

∑n
j=1 X

j
i Yj has size at least Ω(n2).

... They are still the best lower bounds for an explicit
function!!!!

“If you can’t solve a problem, there is
a simpler problem that you can’t solve.
Find it.” – George Pólya

How does one begin?

[Baur-Strassen 83]: Any circuit computing Powd
n =

∑n
i=1 X

d
i

has size at least Ω(n log d).

[Kalorkoti 85]: Any formula computing the polynomial∑n
i=1

∑n
j=1 X

j
i Yj has size at least Ω(n2).

... They are still the best lower bounds for an explicit
function!!!!

“If you can’t solve a problem, there is
a simpler problem that you can’t solve.
Find it.” – George Pólya

How does one begin?

[Baur-Strassen 83]: Any circuit computing Powd
n =

∑n
i=1 X

d
i

has size at least Ω(n log d).

[Kalorkoti 85]: Any formula computing the polynomial∑n
i=1

∑n
j=1 X

j
i Yj has size at least Ω(n2).

... They are still the best lower bounds for an explicit
function!!!!

“If you can’t solve a problem, there is
a simpler problem that you can’t solve.
Find it.” – George Pólya

How does one begin?

[Baur-Strassen 83]: Any circuit computing Powd
n =

∑n
i=1 X

d
i

has size at least Ω(n log d).

[Kalorkoti 85]: Any formula computing the polynomial∑n
i=1

∑n
j=1 X

j
i Yj has size at least Ω(n2).

... They are still the best lower bounds for an explicit
function!!!!

“If you can’t solve a problem, there is
a simpler problem that you can’t solve.
Find it.” – George Pólya

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Boolean lower bounds imply Algebraic lower bounds

Exponentially lower bounds for Constant Depth
circuits have been known for almost 50 years

=⇒We can combine them to get our goal!!!

Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Boolean lower bounds imply Algebraic lower bounds
Exponentially lower bounds for Constant Depth

circuits have been known for almost 50 years

=⇒We can combine them to get our goal!!!

Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Boolean lower bounds imply Algebraic lower bounds
Exponentially lower bounds for Constant Depth

circuits have been known for almost 50 years

=⇒We can combine them to get our goal!!!

Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Boolean lower bounds imply Algebraic lower bounds
Exponentially lower bounds for Constant Depth

circuits have been known for almost 50 years
=⇒We can combine them to get our goal!!!

Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Lower bounds against constant depth?

Goal: obtain superpolynomial lower bounds against constant
algebraic circuits.

Boolean lower bounds imply Algebraic lower bounds
Exponentially lower bounds for Constant Depth

circuits have been known for almost 50 years
=⇒We can combine them to get our goal!!!
Problem in the first point:

Small Algebraic Circuits simulated by Small Boolean ones
But

Small Algebraic Circuits of constant depth are not simulated
by Small Boolean Circuits of constant depth

See: a sum of variables

Are algebraic constant depth circuits a
weak model?

They can’t be simulated by constant-depth Boolean circuits∑∏∑
can compute ESymn,d in a non-homogeneous way

Can simulate general Algebraic Circuits with a
subexponential cost!

[VSBR – AV/K/T – GKKS]

If P can be computed by a circuit of size s,
then it can be computed by a

log-depth circuit of size poly(sN),

homogeneous
∑∏∑∏

circuit of size (sN)O(
√
d),∑∏∑

circuit of size (sN)O(
√
d).

IMM

Another example of problem in VP: (still almost VP-complete)

A
 =

 ×

 × . . . ×

A X1 X2 Xd

IMMn,d defined over variable sets X1, . . . ,Xd , each of size n2.

Each Xi thought of as an n × n matrix.

IMMn,d is the (1, 1)th entry of product X1 · X2 · . . . · Xd .

(polynomial with dn2 variables and degree d)

Reduction to log-depth

Depth to compute IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

“Divide and Conquer”:

Compute (recursively) IMMn,d/2 on the left and on the right.

Recombine with one matrix multiplication.

IMMn,d is computed by a circuit of size poly(n, d) and depth
O(log d).

Reduction to log-depth

Depth to compute IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

“Divide and Conquer”:

Compute (recursively) IMMn,d/2 on the left and on the right.

Recombine with one matrix multiplication.

IMMn,d is computed by a circuit of size poly(n, d) and depth
O(log d).

Reduction to log-depth

Depth to compute IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

“Divide and Conquer”:

Compute (recursively) IMMn,d/2 on the left and on the right.

Recombine with one matrix multiplication.

IMMn,d is computed by a circuit of size poly(n, d) and depth
O(log d).

Are algebraic constant depth circuits a
weak model?

They can’t be simulated by constant-depth Boolean circuits∑∏∑
can compute ESymn,d in a non-homogeneous way

Can simulate general Algebraic Circuits with a
subexponential cost!

[VSBR – AV/K/T – GKKS]

If P can be computed by a circuit of size s,
then it can be computed by a

log-depth circuit of size poly(sN),

homogeneous
∑∏∑∏

circuit of size (sN)O(
√
d),∑∏∑

circuit of size (sN)O(
√
d).

Reduction to depth 4

Depth-4 circuits for IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

Split into
√
d blocks of

√
d matrices each.

Compute IMMn,
√
d for each block.

Recombine by computing IMMn,
√
d again.

IMMn,d is computed by a
∑∏∑∏

circuit of size nO(
√
d).

Reduction to depth 4

Depth-4 circuits for IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

Split into
√
d blocks of

√
d matrices each.

Compute IMMn,
√
d for each block.

Recombine by computing IMMn,
√
d again.

IMMn,d is computed by a
∑∏∑∏

circuit of size nO(
√
d).

Reduction to depth 4

Depth-4 circuits for IMMn,d?

 ×

 × . . . ×

X1 X2 Xd

Split into
√
d blocks of

√
d matrices each.

Compute IMMn,
√
d for each block.

Recombine by computing IMMn,
√
d again.

IMMn,d is computed by a
∑∏∑∏

circuit of size nO(
√
d).

Are algebraic constant depth circuits a
weak model?

They can’t be simulated by constant-depth Boolean circuits∑∏∑
can compute ESymn,d in a non-homogeneous way

Can simulate general Algebraic Circuits with a
subexponential cost!

[VSBR – AV/K/T – GKKS]

If P can be computed by a circuit of size s,
then it can be computed by a

log-depth circuit of size poly(sN),

homogeneous
∑∏∑∏

circuit of size (sN)O(
√
d),

∑∏∑
circuit of size (sN)O(

√
d).

Are algebraic constant depth circuits a
weak model?

They can’t be simulated by constant-depth Boolean circuits∑∏∑
can compute ESymn,d in a non-homogeneous way

Can simulate general Algebraic Circuits with a
subexponential cost!

[VSBR – AV/K/T – GKKS]

If P can be computed by a circuit of size s,
then it can be computed by a

log-depth circuit of size poly(sN),

homogeneous
∑∏∑∏

circuit of size (sN)O(
√
d),∑∏∑

circuit of size (sN)O(
√
d).

Constant Depth Lower Bounds
Boolean circuit lower bounds.

Strong lower bounds for constant-depth Boolean circuits
known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].

Algebraic circuit lower bounds.

The size of
∑∏

formulas is just the number of monomials.
(Ex: P(x1, . . . , xN) =

∑
S⊆[N]

∏
i∈S xi has 2N monomials.)

Best known lower bound for
∑∏∑

circuits is Ω(N3/ log2 N)
[Kayal,Saha,T.,2016].
Best known lower bound for

∑∏∑∏
circuits is Ω(N2.5)

[Gupta,Saha,Thankey,2020].
For depth ∆ ≥ 5, lower bound in N1+Ω(1/∆)

[Shoup,Smolensky,96,Raz10].

N
o

su
p

er
p

ol
yn

om
ia

l
lo

w
er

b
ou

n
d

s
E

xp
.

lo
w

er
b

ou
n

d
s

Constant Depth Lower Bounds
Boolean circuit lower bounds.

Strong lower bounds for constant-depth Boolean circuits
known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].

Algebraic circuit lower bounds.

The size of
∑∏

formulas is just the number of monomials.
(Ex: P(x1, . . . , xN) =

∑
S⊆[N]

∏
i∈S xi has 2N monomials.)

Best known lower bound for
∑∏∑

circuits is Ω(N3/ log2 N)
[Kayal,Saha,T.,2016].
Best known lower bound for

∑∏∑∏
circuits is Ω(N2.5)

[Gupta,Saha,Thankey,2020].
For depth ∆ ≥ 5, lower bound in N1+Ω(1/∆)

[Shoup,Smolensky,96,Raz10].

N
o

su
p

er
p

ol
yn

om
ia

l
lo

w
er

b
ou

n
d

s
E

xp
.

lo
w

er
b

ou
n

d
s

Constant Depth Lower Bounds
Boolean circuit lower bounds.

Strong lower bounds for constant-depth Boolean circuits
known since the 80s.
[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].

Algebraic circuit lower bounds.

The size of
∑∏

formulas is just the number of monomials.
(Ex: P(x1, . . . , xN) =

∑
S⊆[N]

∏
i∈S xi has 2N monomials.)

Best known lower bound for
∑∏∑

circuits is Ω(N3/ log2 N)
[Kayal,Saha,T.,2016].
Best known lower bound for

∑∏∑∏
circuits is Ω(N2.5)

[Gupta,Saha,Thankey,2020].
For depth ∆ ≥ 5, lower bound in N1+Ω(1/∆)

[Shoup,Smolensky,96,Raz10].

N
o

su
p

er
p

ol
yn

om
ia

l
lo

w
er

b
ou

n
d

s
E

xp
.

lo
w

er
b

ou
n

d
s

Superpolynomial Lower Bounds against
Constant Depth Circuits

Main Theorem

Let n, d be growing parameters with d ≤ log n.
Assume F is of characteristic 0.

Any depth-Γ circuit for IMMn,d must have size nd
εΓ

where εΓ depends only on Γ.
Any depth-Γ circuit for Detn must have size n(log n)εΓ .

If Γ = 3, we have ε3 = 1/2 (optimal for IMM).

If Γ = 4, we have ε4 = 1/4.

Superpolynomial Lower Bounds against
Constant Depth Circuits

Main Theorem

Let n, d be growing parameters with d ≤ log n.
Assume F is of characteristic 0.

Any depth-Γ circuit for IMMn,d must have size nd
εΓ

where εΓ depends only on Γ.
Any depth-Γ circuit for Detn must have size n(log n)εΓ .

If Γ = 3, we have ε3 = 1/2 (optimal for IMM).

If Γ = 4, we have ε4 = 1/4.

Consequence: Polynomial Identity Testing
Subexponential time PIT

Given black-box access to a constant-depth poly(N)-size
circuit computing a polynomial P,

there is a deterministic algorithm for checking whether
P ≡ 0 that runs in subexponential time
(i.e., NO(Nµ) for any µ > 0).

Prior to this deterministic nO(k) time algorithm known for∑[k]∏∑ circuits. [Saxena,Seshadhri,2012]

Algebraic hardness vs. randomness (by
[Chou,Kumar,Solomon,2018]) + our lower bound.

Builds on [Kabanets,Impagliazzo,2004],
[Dvir,Shpilka,Yehudayoff,2009].

Consequence: Polynomial Identity Testing
Subexponential time PIT

Given black-box access to a constant-depth poly(N)-size
circuit computing a polynomial P,
there is a deterministic algorithm for checking whether
P ≡ 0 that runs in subexponential time
(i.e., NO(Nµ) for any µ > 0).

Prior to this deterministic nO(k) time algorithm known for∑[k]∏∑ circuits. [Saxena,Seshadhri,2012]

Algebraic hardness vs. randomness (by
[Chou,Kumar,Solomon,2018]) + our lower bound.

Builds on [Kabanets,Impagliazzo,2004],
[Dvir,Shpilka,Yehudayoff,2009].

Consequence: Polynomial Identity Testing
Subexponential time PIT

Given black-box access to a constant-depth poly(N)-size
circuit computing a polynomial P,
there is a deterministic algorithm for checking whether
P ≡ 0 that runs in subexponential time
(i.e., NO(Nµ) for any µ > 0).

Prior to this deterministic nO(k) time algorithm known for∑[k]∏∑ circuits. [Saxena,Seshadhri,2012]

Algebraic hardness vs. randomness (by
[Chou,Kumar,Solomon,2018]) + our lower bound.

Builds on [Kabanets,Impagliazzo,2004],
[Dvir,Shpilka,Yehudayoff,2009].

Lower bounds against weaker formulas

Lower bounds against general formulas

Escalation

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

P ∈ Fsm[X1, . . . ,Xd], where X1, . . . ,Xd are sets of variables.

Each monomial uses exactly one variable per set.

Examples

IMMn,d

A

 =

 ×

 × . . . ×

A X1 X2 Xd

PIPn,d = 〈X1,X2〉 × 〈X3,X4〉 × . . .× 〈Xd−1,Xd〉
Homogeneous circuits/formulas

All gates compute homogeneous polynomials.

Set-multilinear circuits/formulas

All gates compute set-multilinear polynomials.

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

P ∈ Fsm[X1, . . . ,Xd], where X1, . . . ,Xd are sets of variables.

Each monomial uses exactly one variable per set.

Examples

IMMn,d

A

 =

 ×

 × . . . ×

A X1 X2 Xd

PIPn,d = 〈X1,X2〉 × 〈X3,X4〉 × . . .× 〈Xd−1,Xd〉
Homogeneous circuits/formulas

All gates compute homogeneous polynomials.

Set-multilinear circuits/formulas

All gates compute set-multilinear polynomials.

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

P ∈ Fsm[X1, . . . ,Xd], where X1, . . . ,Xd are sets of variables.

Each monomial uses exactly one variable per set.

Examples

IMMn,d

A

 =

 ×

 × . . . ×

A X1 X2 Xd

PIPn,d = 〈X1,X2〉 × 〈X3,X4〉 × . . .× 〈Xd−1,Xd〉

Homogeneous circuits/formulas

All gates compute homogeneous polynomials.

Set-multilinear circuits/formulas

All gates compute set-multilinear polynomials.

Homogeneous/Set-multilinear restrictions

Set-multilinear polynomials

P ∈ Fsm[X1, . . . ,Xd], where X1, . . . ,Xd are sets of variables.

Each monomial uses exactly one variable per set.

Examples

IMMn,d

A

 =

 ×

 × . . . ×

A X1 X2 Xd

PIPn,d = 〈X1,X2〉 × 〈X3,X4〉 × . . .× 〈Xd−1,Xd〉
Homogeneous circuits/formulas

All gates compute homogeneous polynomials.

Set-multilinear circuits/formulas

All gates compute set-multilinear polynomials.

Homogeneization (Raz’s approach)
Let P(x1, . . . , xN) be a set-multilinear polynomial
of degree d .

[Raz 2009]

Set-multilinear formula computing P
of size poly(s) · (log s)O(d)

Formula of size s computing P

Efficient conversion

Homogeneization (Raz’s approach)
Let P(x1, . . . , xN) be a set-multilinear polynomial
of degree d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P
of size poly(s) · (log s)O(d)

Formula of size s computing P

Efficient conversion

Homogeneization (Raz’s approach)
Let P(x1, . . . , xN) be a set-multilinear polynomial
of degree d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P
of size poly(N)

Formula of size poly(N) computing P

Efficient conversion

Homogeneization (Raz’s approach)
Let P(x1, . . . , xN) be a set-multilinear polynomial
of degree d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P

needs size Nωd(1)

Any formula computing P needs superpolynomial size

Escalation

Homogeneization (Raz’s approach)
Let P(x1, . . . , xN) be a set-multilinear polynomial
of degree d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P

needs size Nωd(1)

Any formula computing P needs superpolynomial size

Escalation
Caveat: Raz’s transformation does
not work for constant depth.

Low degree regime - the blow-ups in size
are all polynomial

Assumptions d <
√

log n and char(F) 6= 0.

Parallelization

Parallelization of the circuits to depth O(log d). [VSBR83]

Parallelization of the formulas to depth O(log s). [BKM73]

Parallelization of the homogeneous formulas to depth
O(log d). [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]

Idem for formulas. [Raz13]

Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2.
[SW01,CKSV16,LST21]

Sufficient to prove nω(d) lower bounds for
set-multilinear formulas of depth O(log d)!

Low degree regime - the blow-ups in size
are all polynomial

Assumptions d <
√

log n and char(F) 6= 0.
Parallelization

Parallelization of the circuits to depth O(log d). [VSBR83]

Parallelization of the formulas to depth O(log s). [BKM73]

Parallelization of the homogeneous formulas to depth
O(log d). [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]

Idem for formulas. [Raz13]

Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2.
[SW01,CKSV16,LST21]

Sufficient to prove nω(d) lower bounds for
set-multilinear formulas of depth O(log d)!

Low degree regime - the blow-ups in size
are all polynomial

Assumptions d <
√

log n and char(F) 6= 0.
Parallelization

Parallelization of the circuits to depth O(log d). [VSBR83]

Parallelization of the formulas to depth O(log s). [BKM73]

Parallelization of the homogeneous formulas to depth
O(log d). [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]

Idem for formulas. [Raz13]

Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2.
[SW01,CKSV16,LST21]

Sufficient to prove nω(d) lower bounds for
set-multilinear formulas of depth O(log d)!

Low degree regime - the blow-ups in size
are all polynomial

Assumptions d <
√

log n and char(F) 6= 0.
Parallelization

Parallelization of the circuits to depth O(log d). [VSBR83]

Parallelization of the formulas to depth O(log s). [BKM73]

Parallelization of the homogeneous formulas to depth
O(log d). [FLMST23]

Structural results

Homogeneization/Set-multilinearization of the circuits.
[Str73,NW97]

Idem for formulas. [Raz13]

Hom./S-multilinearization of the circuits
where the depth is multiplied by at most 2.
[SW01,CKSV16,LST21]

Sufficient to prove nω(d) lower bounds for
set-multilinear formulas of depth O(log d)!

Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
depth. [NW 95, Raz 2009, RY 2009]

exp(Ω(d)) · poly(N)

For escalation to work, we need:

NΩ(f (d))

Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
depth. [NW 95, Raz 2009, RY 2009]

exp(Ω(d)) · poly(N)

For escalation to work, we need:

NΩ(f (d))

Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
depth. [NW 95, Raz 2009, RY 2009]

exp(Ω(d)) · poly(N)

For escalation to work, we need:

NΩ(f (d))

Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
depth. [NW 95, Raz 2009, RY 2009]

exp(Ω(d)) · poly(N)

For escalation to work, we need:

NΩ(f (d))

Our Lower Bound

A non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d ≤ O(log n).
For any ∆ ≥ 1 any set-multilinear formula C computing
IMMn,d of depth ∆ must have size nd

ε∆ .

First case ∆ = 5: bound in nΩ(
√
d)

Case Γ = 3

We just stated:

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth 5 must have size nΩ(
√
d).

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth 3 computing IMMn,d

must have size nΩ(
√
d).

Case Γ = 3

We just stated:

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth 5 must have size nΩ(
√
d).

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth 3 computing IMMn,d

must have size nΩ(
√
d).

Techniques

A typical lower bound proof

The lower bound proof outline.

Come up with a measure µ : Fsm[X1, . . . ,Xd]→ R≥0.

"

Show that µ(IMMn,d) is large.

"

Show that µ(sm.
∑∏∑∏∑

) is small.

"

Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).

MN multilinear monomials over (Xi : i ∈ N).

For a polynomial f , define matrix Mf as follows.

a

MP
MN

m1

m2 Coeff of m1 ·m2 in f

Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).

MN multilinear monomials over (Xi : i ∈ N).

For a polynomial f , define matrix Mf as follows.

a

MP
MN

m1

m2 Coeff of m1 ·m2 in f

Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).

MN multilinear monomials over (Xi : i ∈ N).

For a polynomial f , define matrix Mf as follows.

a

MP
MN

m1

m2 Coeff of m1 ·m2 in f

Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).

MN multilinear monomials over (Xi : i ∈ N).

For a polynomial f , define matrix Mf as follows.

a

MP
MN

m1

m2 Coeff of m1 ·m2 in f

The Partial Derivative Measure is the rank(Mf).

Properties of µ

µ : Fsm[X1, . . . ,Xd]→ N

µ is sub-additive: µ(f + g) ≤ µ(f) + µ(g)

µ is multiplicative: µ(fg) = µ(f)µ(g)

µ(f) ≤ min(MP ,MN)

A typical lower bound proof

The lower bound proof outline.

Come up with a measure µ : Fsm[X1, . . . ,Xd]→ R≥0. "

Show that µ(IMMn,d) is large.

"

Show that µ(sm.
∑∏∑∏∑

) is small.

"

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

a

a

a

MP MN

The matrix is full-rank! rk(IMMn,d) = nd−1.

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

a

a

a

MP MN

m1

m2

Coeff of m1 ·m2 in IMMn,d

The matrix is full-rank! rk(IMMn,d) = nd−1.

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

a

a

a

MP MN

X
(1)
1,i1
· X (3)

i2,i3
· · ·X (d−1)

id−2,id−1

X
(2

)

j 1
,j 2
· X

(4
)

j 3
,j 4
· · ·
X
(d

)

j d−
1
,1

Coeff of
X

(1)
1,i1
· · ·X (d−1)

id−2,id−1
X

(2)
j1,j2
· · ·X (d)

jd−1,1

in IMMn,d

The matrix is full-rank! rk(IMMn,d) = nd−1.

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

a

a

a

MP MN

X
(1)
1,i1
· X (3)

i2,i3
· · ·X (d−1)

id−2,id−1

X
(2

)

j 1
,j 2
· X

(4
)

j 3
,j 4
· · ·
X
(d

)

j d−
1
,1

Coeff of
X

(1)
1,i1
· · ·X (d−1)

id−2,id−1
X

(2)
j1,j2
· · ·X (d)

jd−1,1

in IMMn,d{
= 1 if (i1, .., id−1) = (j1, .., jd−1)

= 0 otherwise.

The matrix is full-rank! rk(IMMn,d) = nd−1.

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

1

1

1

MP MN

X
(1)
1,i1
· X (3)

i2,i3
· · ·X (d−1)

id−2,id−1

X
(2

)

i 1,
i 2
· X

(4
)

i 3,
i 4
· · ·
X
(d

)

i d−
1
,1

{
= 1 if (i1, .., id−1) = (j1, .., jd−1)

= 0 otherwise.

Permutation matrix

The matrix is full-rank! rk(IMMn,d) = nd−1.

The measure applied to IMMn,d

Recall that

IMMn,d =
∑

i1,...,id−1∈[n]

X
(1)
1,i1
· X (2)

i1,i2
· X (3)

i2,i3
· · ·X (d)

id−1,1
.

For P = {i | i odd} and N = {j | j even} (Assume d even)

1

1

1

MP MN

X
(1)
1,i1
· X (3)

i2,i3
· · ·X (d−1)

id−2,id−1

X
(2

)

i 1,
i 2
· X

(4
)

i 3,
i 4
· · ·
X
(d

)

i d−
1
,1

{
= 1 if (i1, .., id−1) = (j1, .., jd−1)

= 0 otherwise.

Permutation matrix

The matrix is full-rank! rk(IMMn,d) = nd−1.

A typical lower bound proof

The lower bound proof outline.

Come up with a measure µ : Fsm[X1, . . . ,Xd]→ R≥0. "

Show that µ(IMMn,d) is large. "

Show that µ(sm.
∑∏∑∏∑

) is small.

"

∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i ,j(Xj)

each `i ,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], µ (`i ,j(Xj)) at most 1.

For each i ∈ [s], µ
(∏d

j=1 `i ,j(Xj)
)

at most 1.

By subadditivity of rank, µ(F (X)) at most s.

Conclusion:
∑∏∑

s.m. form. for IMMn,d has size ≥ nd−1.

∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i ,j(Xj)

each `i ,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], µ (`i ,j(Xj)) at most 1.

For each i ∈ [s], µ
(∏d

j=1 `i ,j(Xj)
)

at most 1.

By subadditivity of rank, µ(F (X)) at most s.

Conclusion:
∑∏∑

s.m. form. for IMMn,d has size ≥ nd−1.

∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i ,j(Xj)

each `i ,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], µ (`i ,j(Xj)) at most 1.

For each i ∈ [s], µ
(∏d

j=1 `i ,j(Xj)
)

at most 1.

By subadditivity of rank, µ(F (X)) at most s.

Conclusion:
∑∏∑

s.m. form. for IMMn,d has size ≥ nd−1.

∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i ,j(Xj)

each `i ,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], µ (`i ,j(Xj)) at most 1.

For each i ∈ [s], µ
(∏d

j=1 `i ,j(Xj)
)

at most 1.

By subadditivity of rank, µ(F (X)) at most s.

Conclusion:
∑∏∑

s.m. form. for IMMn,d has size ≥ nd−1.

∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i ,j(Xj)

each `i ,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], µ (`i ,j(Xj)) at most 1.

For each i ∈ [s], µ
(∏d

j=1 `i ,j(Xj)
)

at most 1.

By subadditivity of rank, µ(F (X)) at most s.

Conclusion:
∑∏∑

s.m. form. for IMMn,d has size ≥ nd−1.

∑∏∑∏
set-multilinear formulas

Product of Inner Products Polynomial.

Let Xj = {xj ,1, . . . , xj ,m} for j ∈ [d].

PIP(X1, . . . ,Xd) =

d/2∏
j=1

(
m∑

k=1

x2j−1,k · x2j ,k

)
PIP has product-depth 2 set-multilinear formula of size
O(md).

For P = {i | i odd} and N = {i | i even},
MPIP is a permutation matrix.

rk(PIP) is full.

Idea: Different set sizes

X1 X2

. . .

Xt

Xt+1 Xt+2 Xt+3

. . .

Xd

2k elts in each set 2` elts in each set

Idea: Different set sizes

X1 X2

. . .

Xt

Xt+1 Xt+2 Xt+3

. . .

Xd

2k elts in each set 2` elts in each set

k > ` > k/2

Idea: Different set sizes

X1 X2

. . .

Xt

Xt+1 Xt+2 Xt+3

. . .

Xd

2k elts in each set 2` elts in each set

k > ` > k/2

We want to ensure |MP | = |MN |.

Idea: Different set sizes

X1 X2

. . .

Xt

Xt+1 Xt+2 Xt+3

. . .

Xd

2k elts in each set 2` elts in each set

k > ` > k/2

kt = (d − t)`

We want to ensure |MP | = |MN |.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fr .

Sufficient to show µ(F) ≤ 2kt

n
√
d/100

=
√

2kt2`(d−t)

2k
√
d/100

.

Each Fj is a (
∑∏∑

) set-multilinear formula.

It covers pj P-variables-sets and qj from N .
So µ(F) = µ(F1) × · · · × µ(Fr)

=
√

2kp1 2`q1

Loss(F1) × · · · ×
√

2kpr 2`qr
Loss(Fr)

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fr .

Sufficient to show µ(F) ≤ 2kt

n
√
d/100

=
√

2kt2`(d−t)

2k
√
d/100

.

Each Fj is a (
∑∏∑

) set-multilinear formula.

It covers pj P-variables-sets and qj from N .
So µ(F) = µ(F1) × · · · × µ(Fr)

=
√

2kp1 2`q1

Loss(F1) × · · · ×
√

2kpr 2`qr
Loss(Fr)

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fr .

Sufficient to show µ(F) ≤ 2kt

n
√
d/100

=
√

2kt2`(d−t)

2k
√
d/100

.

Each Fj is a (
∑∏∑

) set-multilinear formula.

It covers pj P-variables-sets and qj from N .

So µ(F) = µ(F1) × · · · × µ(Fr)

=
√

2kp1 2`q1

Loss(F1) × · · · ×
√

2kpr 2`qr
Loss(Fr)

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fr .

Sufficient to show µ(F) ≤ 2kt

n
√
d/100

=
√

2kt2`(d−t)

2k
√
d/100

.

Each Fj is a (
∑∏∑

) set-multilinear formula.

It covers pj P-variables-sets and qj from N .
So µ(F) = µ(F1) × · · · × µ(Fr)

=
√

2kp1 2`q1

Loss(F1) × · · · ×
√

2kpr 2`qr
Loss(Fr)

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fr .

Sufficient to show µ(F) ≤ 2kt

n
√
d/100

=
√

2kt2`(d−t)

2k
√
d/100

.

Each Fj is a (
∑∏∑

) set-multilinear formula.

It covers pj P-variables-sets and qj from N .
So µ(F) = µ(F1) × · · · × µ(Fr)

=
√

2kp1 2`q1

Loss(F1) × · · · ×
√

2kpr 2`qr
Loss(Fr)

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 1 There is an Fj with degree ≥
√
d/2.

We saw µ(
∑∏∑

) ≤ size(
∑∏∑

).

If the size is ≥ 2k
√
d/50

Otherwise

2k
√
d/50 ≥ µ(Fj) =

√
2kpj 2`qj

Loss(Fj)
≥ 2k

√
d/8

Loss(Fj)
.

Conclusion: Loss(Fj) ≥ 2k
√
d/100.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 1 There is an Fj with degree ≥
√
d/2.

We saw µ(
∑∏∑

) ≤ size(
∑∏∑

).

If the size is ≥ 2k
√
d/50

Otherwise

2k
√
d/50 ≥ µ(Fj) =

√
2kpj 2`qj

Loss(Fj)
≥ 2k

√
d/8

Loss(Fj)
.

Conclusion: Loss(Fj) ≥ 2k
√
d/100.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 1 There is an Fj with degree ≥
√
d/2.

We saw µ(
∑∏∑

) ≤ size(
∑∏∑

).

If the size is ≥ 2k
√
d/50

Otherwise

2k
√
d/50 ≥ µ(Fj) =

√
2kpj 2`qj

Loss(Fj)
≥ 2k

√
d/8

Loss(Fj)
.

Conclusion: Loss(Fj) ≥ 2k
√
d/100.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 1 There is an Fj with degree ≥
√
d/2.

We saw µ(
∑∏∑

) ≤ size(
∑∏∑

).

If the size is ≥ 2k
√
d/50

Otherwise

2k
√
d/50 ≥ µ(Fj) =

√
2kpj 2`qj

Loss(Fj)
≥ 2k

√
d/8

Loss(Fj)
.

Conclusion: Loss(Fj) ≥ 2k
√
d/100.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 2 All Fj have degree <
√
d/2.

Let us choose ` = bk − k/(10
√
d)c.

Focus on the ratio between the # of rows and of columns:

|kpj − `qj | >
qjk

10
√
d
.

So Loss(Fj) ≥ 2qjk/(20
√
d).

Conclusion:
∏

Loss(Fj) ≥
∏

2qjk/(20
√
d) ≥ 2k

√
d/40.

∑∏∑∏∑
set-multilinear formulas

Sets of size 2k , 2`

k > ` > k/2

Full rank = 2kt

µ(Fj) =

√
2
kpj 2

`qj

Loss(Fj)

We want:

2k
√
d/100 ≤

∏
Loss(Fj)

∏
j (
∑∏∑

)

Fj

F

Case 2 All Fj have degree <
√
d/2.

Let us choose ` = bk − k/(10
√
d)c.

Focus on the ratio between the # of rows and of columns:

|kpj − `qj | >
qjk

10
√
d
.

So Loss(Fj) ≥ 2qjk/(20
√
d).

Conclusion:
∏

Loss(Fj) ≥
∏

2qjk/(20
√
d) ≥ 2k

√
d/40.

A typical lower bound proof

The lower bound proof outline.

Come up with a measure µ : Fsm[X1, . . . ,Xd]→ R≥0. "

Show that µ(IMMn,d) is large. "

Show that µ(sm.
∑∏∑∏∑

) is small. "

We just showed:

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth 5 must have size nΩ(
√
d).

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth 3 computing IMMn,d

must have size nΩ(
√
d).

We just showed:

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth 5 must have size nΩ(
√
d).

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth 3 computing IMMn,d

must have size nΩ(
√
d).

General case

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth ∆ must have size nd
exp(−O(∆))

.

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth Γ computing IMMn,d

must have size nd
exp(−O(Γ))

.

General case

Set-multilinear formula lower bound

Let d ≤ O(log n). Any set-multilinear formula C com-

puting IMMn,d of depth ∆ must have size nd
exp(−O(∆))

.

In particular,

General formula lower bound

Let n, d be growing parameters with d = o(log n).
Assume F is characteristic 0.
Any algebraic circuits of depth Γ computing IMMn,d

must have size nd
exp(−O(Γ))

.

Open Questions

Can the lower bound be improved? What about nΩ(d1/∆)?

Can we remove the characteristic 0 condition?

Can we get better lower bounds if we consider
non-commutative computations?

Can combining known measures give better lower bounds?

	Why Algebraic Complexity?

