On the complexity of computing characteristic polynomials

joint work with P. Karpman, V. Neiger, H. Signargout, A. Storjohann and G. Villard

Clément Pernet Grenoble INP – UGA, France

Recent Trends in Computer Algebra: Fundamental Algorithms and Algorithmic complexity, Insitut Henri Poincarré, Paris. September 28, 2023 Introduction

Introduction

Context

- ▶ Exact linear algebra: over a field \mathbb{K} , (sometimes a ring R or \mathbb{Z}
- Mostly algebraic complexity, counting field operations), (somtimes bitcomplexity)

Problem

Given $\mathbf{M} \in \mathbb{K}^{m \times m}$, compute $\chi_{\mathbf{M}} = \mathsf{det}(x\mathbf{I}_m - \mathbf{M}) \in \mathbb{K}[x]$.

Applications

- Matrix invariants (eigenvalues, invariant factors), test for similarity
- Invariant subspace decomposition
- Gröbner basis (change of ordering)
- Modular forms (action of the Hecke Operator)

Dense linear algebra: reductions of most problems to matrix multiplication

 ω : a feasible exponent of MatMul over \mathbb{K} : $\mathfrak{m} \times \mathfrak{m}$ by $\mathfrak{m} \times \mathfrak{m}$ in $O(\mathfrak{m}^{\omega})$

Dense linear algebra: reductions of most problems to matrix multiplication

 ω : a feasible exponent of MatMul over $\mathbb{K}:\ m\times m$ by $m\times m$ in $O(m^\omega)$

Dense linear algebra: reductions of most problems to matrix multiplication

 ω : a feasible exponent of MatMul over $\mathbb{K}:\ m\times m$ by $m\times m$ in $O(m^\omega)$

Dense linear algebra: reductions of most problems to matrix multiplication

 ω : a feasible exponent of MatMul over $\mathbb{K}:\ m\times m$ by $m\times m$ in $O(m^\omega)$

Challenge: CharPoly = O(MatMul) ?

• Only operation: Mat \times Vect \rightarrow Cost: E

- ► Only operation: Mat × Vect → Cost: E
- [Wiedeman 86]: Minpoly(m) = $O(mE + m^2)$

- ► Only operation: Mat × Vect → Cost: E
- [Wiedeman 86]: Minpoly(m) = $O(mE + m^2)$
- [Villard 01]: Charpoly(m) = $O(m^{1.5}E + m^{2.5})$

- Only operation: Mat \times Vect \rightarrow Cost: E
- [Wiedeman 86]: Minpoly(m) = $O(mE + m^2)$
- [Villard 01]: Charpoly(m) = $O(m^{1.5}E + m^{2.5})$
- ▶ [Villard 03]: Charpoly(\mathfrak{m}) = O($\mathfrak{m}^{2.36}$) when E = O(\mathfrak{m})

Challenge: Blackbox methods \ll Dense methods

- ► Only operation: Mat × Vect → Cost: E
- [Wiedeman 86]: $Minpoly(m) = O(mE + m^2)$
- [Villard 01]: Charpoly(m) = $O(m^{1.5}E + m^{2.5})$
- ▶ [Villard 03]: Charpoly(\mathfrak{m}) = O($\mathfrak{m}^{2.36}$) when E = O(\mathfrak{m})

Challenge: Blackbox methods \ll Dense methods

Matrices with rank displacement structure

- ► Toeplitz, Hankel, Cauchy, Vandermonde, etc
- Generalization: $rank(\Delta(\mathbf{A})) = \alpha \ll \mathfrak{m}$
- until recently: Charpoly = $O(m^2 \alpha^{\omega-1})$

Challenge: Charpoly in sub-quadratic time in $m \ ?$

Outline

Introduction

Via Krylov methods

Keller-Gehrig's algorithm

An implicit Krylov method

Via polynomial matrix arithmetic

Overview of the approach

Complexity and spin-off results

Via Block-Wiedemann's algorithm

Block-Wiedamnn's algorithm

Structured matrices

Open problems

Via Krylov methods

Iterates of one vector

For a vector $\mathbf{v} \in \mathbb{K}^m$, let

$$\mathbf{K} = \begin{bmatrix} \mathbf{v} & \mathbf{A}\mathbf{v} & \dots & \mathbf{A}^{d-1}\mathbf{v} \end{bmatrix}$$

If d is maximal s.t. ${\bf K}$ full-rank , then

$$\mathbf{AK} = \mathbf{K} \underbrace{\begin{bmatrix} \mathbf{0} & & p_{0} \\ \mathbf{1} & & p_{1} \\ & \ddots & & \vdots \\ & & \mathbf{1} & p_{m-1} \end{bmatrix}}_{C_{P}}$$

and $P=X^m-p_{m-1}X^{m-1}-\cdots-p_0$ is the minpoly of ${\bf v}$ wrt. ${\bf A}.$

Iterates of one vector

For a vector $\mathbf{v} \in \mathbb{K}^m$, let

$$\mathbf{X} = \begin{bmatrix} \mathbf{v} & \mathbf{A}\mathbf{v} & \dots & \mathbf{A}^{d-1}\mathbf{v} \end{bmatrix}$$

If d is maximal s.t. K full-rank and d = m, then

$$\mathbf{K}^{-1}\mathbf{A}\mathbf{K} = \underbrace{\begin{bmatrix} \mathbf{0} & & p_0 \\ \mathbf{1} & & p_1 \\ & \ddots & & \vdots \\ & & \mathbf{1} & p_{m-1} \end{bmatrix}}_{C_P}$$

and $P=X^m-p_{m-1}X^{m-1}-\cdots-p_0$ is the minpoly of ${\bf v}$ wrt. ${\bf A}.$

then $\chi_A = P$

Iterates of multiple vectors

For a family of vectors $v_1,\ldots,v_\ell\in\mathbb{K}^m,$ let

If ${\bf K}$ is invertible then ${\bf K}^{-1}{\bf A}{\bf K}=$

Iterates of multiple vectors

For a family of vectors $v_1,\ldots,v_\ell\in\mathbb{K}^m,$ let

If K is invertible and (d_1,\ldots,d_ℓ) is lexico. maximal then $K^{-1}AK=$

Iterates of multiple vectors

For a family of vectors $\mathbf{v}_1,\ldots,\mathbf{v}_\ell\in\mathbb{K}^m,$ let

If K is invertible and (d_1,\ldots,d_ℓ) is lexico. maximal then $K^{-1}AK =$

Then

$$\chi_A = P_1 \times \cdots \times P_\ell$$

where $C_{\mathrm{P}_{i}}$ is the i-th diagonal block

1. Compute
$$\mathbf{K} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{A}\mathbf{v}_1 & \dots & \mathbf{A}^{d_1-1}\mathbf{v}_1 \mid \mathbf{v}_2 & \dots & \mathbf{A}^{d_2-1}\mathbf{v}_2 \mid \dots \mid \mathbf{v}_\ell & \dots & \mathbf{A}^{d_\ell-1}\mathbf{v}_\ell \end{bmatrix}$$
.
2. Compute $\mathbf{H} = \mathbf{K}^{-1}\mathbf{A}\mathbf{K}$ $\rightarrow O(\mathbf{m}^{\omega})$

- 2. Compute $H = K^{-1}AK$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)

 $\rightarrow O(m^3)$

 $\rightarrow O(m^{\omega})$

- 2. Compute $H = \mathbf{K}^{-1} \mathbf{A} \mathbf{K}$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)

[Keller-Gehrig 85]'s iteration (adaptation of square & multiply)

- ▶ Iteratively compute (log₂ m iterations)
 - $$\begin{split} & \diamond \ \mathbf{K}_0 \leftarrow \begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_\ell \end{bmatrix} \\ & \diamond \ \mathbf{K}_1 \leftarrow \begin{bmatrix} \mathbf{K}_0 & \mathbf{A}\mathbf{K}_0 \end{bmatrix} \\ & \diamond & \dots \\ & \diamond \ \mathbf{K}_i \leftarrow \begin{bmatrix} \mathbf{K}_{i-1} & \mathbf{A}^{2^i}\mathbf{K}_{i-1} \end{bmatrix} \end{split}$$
- ▶ Interleave Gaussian elimination to discard linearly dependent columns
 - \rightarrow each \mathbf{K}_i has no more than \mathfrak{m} columns

 $\rightarrow O(m^{\omega})$

 $\rightarrow O(m^3)$

- 2. Compute $H = \mathbf{K}^{-1} \mathbf{A} \mathbf{K}$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)

[Keller-Gehrig 85]'s iteration (adaptation of square & multiply)

- ▶ Iteratively compute (log₂ m iterations)
 - $$\begin{split} & \diamond \ \mathbf{K}_0 \leftarrow \begin{bmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_\ell \end{bmatrix} \\ & \diamond \ \mathbf{K}_1 \leftarrow \begin{bmatrix} \mathbf{K}_0 & \mathbf{A}\mathbf{K}_0 \end{bmatrix} \\ & \diamond & \dots \\ & \diamond \ \mathbf{K}_i \leftarrow \begin{bmatrix} \mathbf{K}_{i-1} & \mathbf{A}^{2^i}\mathbf{K}_{i-1} \end{bmatrix} \end{split}$$
- Interleave Gaussian elimination to discard linearly dependent columns
 - $\textbf{\rightarrow}$ each K_i has no more than m columns

 $\rightarrow O(m^{\omega})$

 $\rightarrow O(m^3)$

k-shifted form:

► Any matrix is in 1-shifted form

k + 1-shifted form:

► Any matrix is in 1-shifted form

 \blacktriangleright Compute iteratively from 1-shifted form to d_1 -shifted form

- Compute iteratively from 1-shifted form to d_1 -shifted form
- ▶ each diagonal block appears in the increasing degree

- \blacktriangleright Compute iteratively from 1-shifted form to $d_1\text{-shifted}$ form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

- Compute iteratively from 1-shifted form to d_1 -shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

How to transform from k to $k+1\mbox{-shifted}$ form ?

 $\blacktriangleright~K=~$ first linearly indep. cols of \overline{K}

 $\blacktriangleright~K=~$ first linearly indep. cols of \overline{K}

 $\bullet \ \mathbf{A}_{k+1} = \mathbf{K}^{-1} \mathbf{A}_k \mathbf{K} \qquad \text{ in } O(\mathfrak{m}(\frac{\mathfrak{m}}{k})^{\omega-1})$

- $\blacktriangleright~K=~$ first linearly indep. cols of \overline{K}
- $\mathbf{A}_{k+1} = \mathbf{K}^{-1}\mathbf{A}_k\mathbf{K}$ in $O(\mathfrak{m}(\frac{\mathfrak{m}}{k})^{\omega-1})$
- Overall cost $T(m) = O(m^{\omega} \sum_{k=1}^{m} \frac{1}{k^{\omega-1}}) = O(m^{\omega})$

- $\blacktriangleright~K=~$ first linearly indep. cols of \overline{K}
- $\mathbf{A}_{k+1} = \mathbf{K}^{-1} \mathbf{A}_k \mathbf{K}$ in $O(\mathfrak{m}(\frac{\mathfrak{m}}{k})^{\omega-1})$
- Overall cost $T(m) = O(m^{\omega} \sum_{k=1}^{m} \frac{1}{k^{\omega-1}}) = O(m^{\omega})$

w.h.p. $\mathbf{K} =$ first m cols of $\overline{\mathbf{K}}$ w.h.p \mathbf{A}_{k+1} is (k+1)-shifted Las-Vegas probabilistic

implementations in the fflas-ffpack library¹: finite field dense linear algebra ¹https://github.com/linbox-team/fflas-ffpack Via polynomial matrix arithmetic

Charpoly via $\mathbb{K}[x]$ -linear algebra

Determinant of a matrix $\mathbf{A} \in \mathbb{K}[x]^{m imes m}$ of degree d	d = 1
$\label{eq:constraint} \begin{array}{l} \mbox{Evaluation-Interpolation: [folklore]} \\ \mbox{at} \sim md \mbox{ points: requires large enough field} \end{array}$	$O(\mathfrak{m}^{\omega+1})$
Diagonalization (Smith form): [Storjohann 2003] Las Vegas randomized + additional logs for small fields	$O(\mathfrak{m}^\omega \log(\mathfrak{m})^2)$
Partial triangularization:	
 Iterative [Mulders-Storjohann 2003] via weak Popov form computations 	$O(m^3)$
 Divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] diagonal of Hermite form must be 1,, 1, det(A) 	$O(\mathfrak{m}^{\omega})$
 Divide and conquer [Neiger-Labahn-Zhou 2017] logarithmic factors in m and d 	O~(m ^w)

Partial block triangularization

Generic case without log factor

General case with log factor

Matrix degree not controlled: degree of B up to $D = \sum \mathsf{rdeg}(\mathbf{A}) \leqslant \mathsf{md}$ but controlled average row degree: at most $\frac{D}{m}$

General input \Rightarrow det(A) in O[~](m^{ω} $\frac{D}{m}$)

- Compute kernel $[K_1 \ K_2]$; deduce B by MatMul
- Compute row basis R

▶ Recursively, compute $det(\mathbf{R})$ and $det(\mathbf{B})$, return $det(\mathbf{R}) det(\mathbf{B})$

[Labahn-Neiger-Zhou 2017]

 $O(\mathfrak{m}^{\omega}\mathsf{M}'(\frac{\mathsf{D}}{\mathfrak{m}}))$ $O^{\sim}(\mathfrak{m}^{\omega}\frac{\mathsf{D}}{\mathfrak{m}}) \text{ with } \mathsf{log}(\mathfrak{m})$

Be lazy: if hard to compute, don't compute

Obstacle: removing log factors in row basis computation

 \Rightarrow solution: remove row basis computation

$$\begin{bmatrix} \mathbf{I}_{m/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

Property: $\det(\mathbf{A}) = \det(\mathbf{A}_1) \det(\mathbf{B}) / \det(\mathbf{K}_2)$

Further obstacles (brought by laziness)

$$\begin{bmatrix} \mathbf{I}_{m/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$
Property: $det(\mathbf{A}) = det(\mathbf{A}_1) det(\mathbf{B}) / det(\mathbf{K}_2)$

- \bullet no log(m) in the computation of A₁, B, K₂
- \mathbf{P} requires nonsingular \mathbf{A}_1 , otherwise det $(\mathbf{K}_2) = \mathbf{0}$
- P 3 recursive calls in matrix size m/2 is i , but requires $\sum \text{rdeg}(A_1) \leq D/2$ otherwise degree control is too weak.
 (this implies $\sum \text{rdeg}(K_2) \leq D/2$)

Further obstacles (brought by laziness)

$$\begin{bmatrix} \mathbf{I}_{m/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$
Property: $det(\mathbf{A}) = det(\mathbf{A}_1) det(\mathbf{B}) / det(\mathbf{K}_2)$

- \bullet no log(m) in the computation of A₁, B, K₂
- \mathbf{P} requires nonsingular \mathbf{A}_1 , otherwise det $(\mathbf{K}_2) = \mathbf{0}$
- P 3 recursive calls in matrix size m/2 is i , but requires $\sum \text{rdeg}(\mathbf{A}_1) \leq D/2$ otherwise degree control is too weak.
 (this implies $\sum \text{rdeg}(\mathbf{K}_2) \leq D/2$)

Solution: require A in weak Popov form (the characteristic matrix $A = xI_m - M$ is in Popov form)

- **i** implies A_1 nonsingular and $\sum rdeg(A_1) \leq D/2$ up to easy transformations
- igstarrow both \mathbf{A}_1 and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
- ${\boldsymbol{\varPhi}} \ K_2$ is in "shifted reduced" form... find weak Popov P with same determinant

$$\begin{split} \mathcal{C}(\mathfrak{m},\mathsf{D}) \leqslant 2 \mathcal{C}\left(\frac{\mathfrak{m}}{2},\left\lfloor\frac{\mathsf{D}}{2}\right\rfloor\right) + \mathcal{C}\left(\frac{\mathfrak{m}}{2},\mathsf{D}\right) + O(\mathfrak{m}^{\omega}\mathsf{M}'\!\left(\frac{\mathsf{D}}{\mathfrak{m}}\right)) \\ \text{where: } \mathsf{M}(d) = \mathsf{PolMul}(d) = O(d^{\omega-1-\epsilon}) \qquad \mathsf{M}'(d) = \mathsf{GCD}(d) \in O(\mathsf{M}(d)\log(d)) \qquad \quad \frac{\mathsf{D}}{\mathfrak{m}} = \frac{\mathsf{degdet}}{\mathfrak{m}} = \mathsf{avg} \text{ row degree } \end{split}$$

Complexity

A deterministic reduction to Matrix multiplication

Results [Neiger-P. 21]

• CharPoly = $\Theta(MatMul) = \Theta(n^{\omega})$ deterministically

▶ Determinant of reduced polynomial matrices in $O(\mathfrak{m}^{\omega}\mathsf{M}'(\frac{\mathsf{D}}{\mathfrak{m}}))$

A deterministic reduction to Matrix multiplication

Results [Neiger-P. 21]

- CharPoly = $\Theta(MatMul) = \Theta(n^{\omega})$ deterministically
- Determinant of reduced polynomial matrices in $O(m^{\omega}M'(\frac{D}{m}))$

Prototype incomplete implementation (does not deal with the non-generic cases)

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $O(m^{\omega})$ field operations.

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $O(m^{\omega})$ field operations.

Corollary

 $\text{The Krylov matrix } \mathbf{K}_{\mathbf{A},\mathbf{v}} = \begin{bmatrix} \mathbf{v} & \mathbf{A}\mathbf{v} & \dots & \mathbf{A}^{m-1}\mathbf{v} \end{bmatrix} \text{ with } \mathbf{A} \in \mathbb{K}^{m \times m} \text{ can be computed in } O(m^{\omega}).$

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $O(m^{\omega})$ field operations.

Corollary

$$\text{The Krylov matrix } \mathbf{K}_{\mathbf{A},\mathbf{v}} = \begin{bmatrix} \mathbf{v} & \mathbf{A}\mathbf{v} & \dots & \mathbf{A}^{m-1}\mathbf{v} \end{bmatrix} \text{ with } \mathbf{A} \in \mathbb{K}^{m \times m} \text{ can be computed in } O(m^{\omega}).$$

Sketch of proof.

$$\left[\begin{array}{c|c} \mathbf{I}_{m} - x\mathbf{A} & -\mathbf{v} \end{array} \right] \begin{bmatrix} \mathbf{s} \\ \mathbf{t} \end{bmatrix} = \mathbf{0}$$

Hence

$$s/t = (\mathbf{I}_m - x\mathbf{A})^{-1}\mathbf{v} = \sum_{i=0}^\infty x^k \mathbf{A}^k \mathbf{v}.$$

A truncated series expansion of $\ensuremath{\mathbf{s}}\xspace/t\xspace$ at order $\ensuremath{\mathbf{m}}\xspace$ produces the Krylov iterates.

Via Block-Wiedemann's algorithm

$$\text{det}(\lambda \mathbf{I}_m - \mathbf{A}) = 1/X^m \, \text{det}(\mathbf{I}_m - X\mathbf{A}) \, \, \text{for} \, \, X = 1/\lambda$$

$$\text{det}(\lambda \mathbf{I}_m - \mathbf{A}) = 1/X^m \, \text{det}(\mathbf{I}_m - X\mathbf{A}) \, \, \text{for} \, \, X = 1/\lambda$$

- **1**. Sample unif. U, $\mathbf{V} \in \mathbb{K}^{m \times k}$
- 2. For all $i \in \{0, \dots, 2m/k\}$ Compute $\mathbf{U}^T \mathbf{A}^i \mathbf{V}$

$$\text{det}(\lambda \mathbf{I}_m - \mathbf{A}) = 1/X^m \, \text{det}(\mathbf{I}_m - X\mathbf{A}) \, \, \text{for} \, \, X = 1/\lambda$$

- **1**. Sample unif. U, $\mathbf{V} \in \mathbb{K}^{m \times k}$
- 2. For all $i \in \{0, \dots, 2m/k\}$ Compute $\mathbf{U}^T \mathbf{A}^i \mathbf{V}$
- 3. Reconstruct a matrix fraction $\mathbf{P}(X)/\mathbf{Q}(X) = \mathbf{U}^{\mathsf{T}}(\mathbf{I}_{\mathfrak{m}} X\mathbf{A})^{-1}\mathbf{V}$

$$\text{det}(\lambda \mathbf{I}_m-\mathbf{A})=1/X^m\,\text{det}(\mathbf{I}_m-X\mathbf{A})\,\,\text{for}\,\,X=1/\lambda$$

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

×	V	\mathbf{BV}		$\mathbf{B}^{s-1}\mathbf{V}$	
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}}\mathbf{V}$	$\mathbf{U}^{T}\mathbf{A}^{r}\mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r} \mathbf{V}$	-
$\mathbf{U}^T \mathbf{A}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{V}$	$\mathbf{U^T}\mathbf{A^{r+1}}\mathbf{V}$		$\mathbf{U}^T \mathbf{A}^{\mathrm{r} \mathrm{s} - \mathrm{r} + 1} \mathbf{V}$	with $rs = m$ and $B = A^r$
:	:	:	·	÷	
$\mathbf{U}^T \mathbf{A}^{r-1}$	$\mathbf{U}^{T}\mathbf{A}^{r-1}\mathbf{V}$	$\mathbf{U}^{T}\mathbf{A}^{2\mathrm{r}-1}\mathbf{V}$		$\mathbf{U}^{T}\mathbf{A}^{m-1}\mathbf{V}$	

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

Combined with avoidance of divisions ([Strassen 73], [Kaltofen 92]) yields

▶ Division free algorithms for the characteristic polynomial [Kaltofen-Villard 05]

 $\diamond~$ over $\mathbb Z$ in $O\tilde{}(m^{2.6973}\log \|A\|)$ bit operations probabilistic

 $\diamond\,$ over any commutative ring in $O(m^{2.6973})$ ring operations deterministic

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

Combined with avoidance of divisions ([Strassen 73], [Kaltofen 92]) yields

▶ Division free algorithms for the characteristic polynomial [Kaltofen-Villard 05]

 $\diamond~$ over $\mathbb Z$ in $O\tilde{}(m^{2.6973}\log \|A\|)$ bit operations probabilistic

 $\diamond\,$ over any commutative ring in $O(m^{2.6973})$ ring operations deterministic

Open Problems:

- ▶ fill the gap with $O^{\sim}(\mathfrak{m}^{\omega} \log ||A||)$ bit complexity over \mathbb{Z} (reached for Det, LinSys, Smith)
- ▶ fill the gap with $O(m^{\omega})$ division free

Toeplitz matrix $\begin{bmatrix} d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d \end{bmatrix}$ T

Toeplitz matrix

$$\begin{bmatrix} d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d \end{bmatrix} - \begin{bmatrix} & & & \\ d & e & f \\ c & d & e \\ b & c & d \end{bmatrix} = \begin{bmatrix} d & e & f & g \\ c & & \\ b & & \\ a & \end{bmatrix}$$
$$\mathbf{T} = \Delta_{Z,Z}(\mathbf{T})$$

Toeplitz matrix

$$\begin{bmatrix} d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d \end{bmatrix} - \begin{bmatrix} & & & \\ d & e & f \\ c & d & e \\ b & c & d \end{bmatrix} = \begin{bmatrix} d & e & f & g \\ c & & \\ b & & \\ a & & \end{bmatrix} = \begin{bmatrix} d & 1 \\ c & 0 \\ b & 0 \\ a & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e & f & g \end{bmatrix}$$
$$T = \Delta_{Z,Z}(T) = G = H^{T}$$

Toeplitz matrix

$$\begin{bmatrix} d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d \end{bmatrix} - \begin{bmatrix} & & & \\ d & e & f \\ c & d & e \\ b & c & d \end{bmatrix} = \begin{bmatrix} d & e & f & g \\ c & & \\ b & & \\ a & & \end{bmatrix} = \begin{bmatrix} d & 1 \\ c & & \\ b & & \\ a & & \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e & f & g \end{bmatrix}$$
$$T \qquad - \qquad \mathbf{ZTZ} = \Delta_{Z,Z}(\mathbf{T}) = \mathbf{G} \qquad \mathbf{H}^{\mathsf{T}}$$

Generalizations

► Toeplitz-like : s.t. $\Delta_{Z,Z}(\mathbf{T}) = \mathbf{T} - \mathbf{Z}\mathbf{T}\mathbf{Z}$ has rank $\boldsymbol{\alpha} (= \mathbf{G}\mathbf{H}^{\mathsf{T}}$ with $\mathbf{G}, \mathbf{H} \in \mathbb{K}^{m \times \alpha}$).

 $\blacktriangleright \text{ Hankel-like, Vandemonde-like, Cauchy-like, etc: similarly with other displ. operators $\Delta_{X,Y}$, $\nabla_{X,Y}$.}$

 RDP_{α} : matrices with a rank displacement structure of order α .

Toeplitz matrix

$$\begin{bmatrix} d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d \end{bmatrix} - \begin{bmatrix} & & & \\ d & e & f \\ c & d & e \\ b & c & d \end{bmatrix} = \begin{bmatrix} d & e & f & g \\ c & & \\ b & & \\ a & & \end{bmatrix} = \begin{bmatrix} d & 1 \\ c & & \\ b & & \\ a & & \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e & f & g \end{bmatrix}$$
$$T \qquad - \qquad \mathbf{ZTZ} \qquad = \qquad \Delta_{Z,Z}(\mathbf{T}) \qquad = \qquad \mathbf{G} \qquad \mathbf{H}^{\mathsf{T}}$$

Generalizations

► Toeplitz-like : s.t. $\Delta_{Z,Z}(\mathbf{T}) = \mathbf{T} - \mathbf{Z}\mathbf{T}\mathbf{Z}$ has rank $\boldsymbol{\alpha} (= \mathbf{G}\mathbf{H}^{\mathsf{T}}$ with $\mathbf{G}, \mathbf{H} \in \mathbb{K}^{m \times \alpha}$).

▶ Hankel-like, Vandemonde-like, Cauchy-like, etc : similarly with other displ. operators $\Delta_{X,Y}$, $\nabla_{X,Y}$.

 RDP_{α} : matrices with a rank displacement structure of order α .

Property

A Toeplitz like matrix decomposes as $T = \sum_{i=1}^{\alpha} L_i U_i$ where L_i are lower triangular and U_i upper triangular Toeplitz matrices.

Multiplication

▶ Toeplitz × Vector: (via polynomial multiplication)

- $O^{(m)}$
- ► $RDP_{\alpha} \times (m \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17] $O^{\sim}(m\alpha^{\omega-1})$

 Toeplitz × Vector: (via polynomial multiplication) 	O~(m)
▶ $RDP_{\alpha} \times (m \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]	$O(\mathfrak{m} \alpha^{\omega-1})$
.inear system	
• Toeplitz $^{-1}$ × Vector: (via polynomial multiplication) [Pan01]	O ~(m)
▶ RDP _{α} ⁻¹ ×(m × α) block-vector: [Bostan Et al. 17]	$O^{\sim}(\mathfrak{m}\alpha^{\omega-1})$
Same costs for Det. Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]	

 Toeplitz × Vector: (via polynomial multiplication) 	$O^{\sim}(\mathfrak{m})$
▶ $RDP_{\alpha} \times (m \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]	$O(m\alpha^{\omega-1})$
inear system	
• Toeplitz $^{-1}$ × Vector: (via polynomial multiplication) [Pan01]	$O^{\sim}(m)$
► RDP _{α} ⁻¹ ×(m × α) block-vector: [Bostan Et al. 17]	$O(m\alpha^{\omega-1})$
Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]	
Characteristic polynomial	
• Charpoly(RDP _{α}) by Evalutation-Interpolation: $m \times Det$	$O^{\sim}(\mathfrak{m}^2 \alpha^{\omega-1})$

Toeplitz × Vector: (via polynomial multiplication)	$O^{\sim}(\mathfrak{m})$
▶ $RDP_{\alpha} \times (\mathfrak{m} \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]	$O(m\alpha^{\omega-1})$
Linear system	
• Toeplitz $^{-1}$ × Vector: (via polynomial multiplication) [Pan01]	$O^{\sim}(\mathfrak{m})$
► RDP _{α} ⁻¹ ×(m × α) block-vector: [Bostan Et al. 17]	$O(m\alpha^{\omega-1})$
Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]	
Characteristic polynomial	
• Charpoly(RDP $_{\alpha}$) by Evalutation-Interpolation: $m \times Det$	$O(m^2 \alpha^{\omega-1})$
Minpoly(Toeplitz-/Hankel-like) probabilistic [Karpman-PSignargout-Villard 21]	$O(m^{1.86}\alpha^{0.53})$
Charpoly(Toeplitz-/Hankel-like) generic [Karpman-PSignargout-Villard 21]	$O(m^{1.58}\alpha^{0.53})$

Toeplitz × Vector: (via polynomial multiplication)	$O^{\sim}(m)$
▶ $RDP_{\alpha} \times (\mathfrak{m} \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]	$O(m\alpha^{\omega-1})$
Linear system	
• Toeplitz $^{-1}$ × Vector: (via polynomial multiplication) [Pan01]	O~(m)
► $RDP_{\alpha}^{-1} \times (m \times \alpha)$ block-vector: [Bostan Et al. 17]	$O(m\alpha^{\omega-1})$
Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]	
Characteristic polynomial	
• Charpoly(RDP $_{\alpha}$) by Evalutation-Interpolation: $m \times Det$	$O(\mathfrak{m}^2\alpha^{\omega-1})$
Minpoly(Toeplitz-/Hankel-like) probabilistic [Karpman-PSignargout-Villard 21]	$O(m^{1.86} \alpha^{0.53})$
 Charpoly(Toeplitz-/Hankel-like) generic [Karpman-PSignargout-Villard 21] 	$O(m^{1.58}\alpha^{0.53})$

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

▶ Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$

×	\mathbf{V}	\mathbf{BV}		$\mathbf{B}^{s-1}\mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathbf{T}}\mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{T} \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r} \mathbf{V}$
$\mathbf{U}^{T}\mathbf{A}$	$\mathbf{U}^{\mathbf{T}}\mathbf{A}\mathbf{V}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}^{\mathrm{r}+1}\mathbf{V}$		$\mathbf{U}^T \mathbf{A}^{rs-r+1} \mathbf{V}$
:			·.	
$\mathbf{U}^{T} \mathbf{A}^{r} - 1$	$\mathbf{U}^{T} \mathbf{A}^{r} - \mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{2r-1} \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{\mathfrak{m}-1} \mathbf{V}$

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

▶ Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$

×	V	\mathbf{BV}		$\mathbf{B}^{s-1}\mathbf{V}$
UT	$\mathbf{U}^{\mathbf{T}}\mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{T} \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r} \mathbf{V}$
$\mathbf{U}^{T}\mathbf{A}$	$\mathbf{U}^{\mathbf{T}}\mathbf{A}\mathbf{V}$	$\mathbf{U}^{\mathbf{T}}\mathbf{A}^{\mathrm{r}+1}\mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r+1} \mathbf{V}$
:	:	:	÷.	:
$\mathbf{U}^T \mathbf{A}^{r-1}$	$\mathbf{U}^{T} \mathbf{A}^{r} \mathbf{-} 1 \mathbf{V}$	$\mathbf{U}^{T}\mathbf{A}^{2r}^{-1}\mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{\mathfrak{m}-1} \mathbf{V}$

► Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha(\mathbf{A}^r) = r \times \alpha(\mathbf{A})$ → $O^{\sim}(\mathfrak{m}^{1.86}\alpha^{0.53})$

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

▶ Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$

×	V	\mathbf{BV}		$\mathbf{B}^{s-1}\mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}}\mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{T} \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r} \mathbf{V}$
$\mathbf{U}^{T}\mathbf{A}$	$\mathbf{U}^{\mathbf{T}}\mathbf{A}\mathbf{V}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}^{\mathrm{r}+1}\mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r+1} \mathbf{V}$
:	:	:	•	:
			· ·	
$\mathbf{U}^{T} \mathbf{A}^{r} = 1$	$\mathbf{U}^{T} \mathbf{A}^{r} \mathbf{-} \mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{2r} - \mathbf{V}$		$\mathbf{U}^{T}\mathbf{A}^{\mathfrak{m}-1}\mathbf{V}$

► Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha(\mathbf{A}^r) = \mathbf{r} \times \alpha(\mathbf{A})$ → $O^{\sim}(\mathfrak{m}^{1.86}\alpha^{0.53})$

► Considering structured U, V does not help

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

▶ Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$

×	V	\mathbf{BV}		$\mathbf{B}^{s-1}\mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}}\mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{T} \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{rs-r} \mathbf{V}$
$\mathbf{U}^{T}\mathbf{A}$	$\mathbf{U}^{\mathbf{T}}\mathbf{A}\mathbf{V}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}^{\mathrm{r}+1}\mathbf{V}$		$\mathbf{U}^{T}\mathbf{A}^{rs-r+1}\mathbf{V}$
:		:	· ·	
$\mathbf{U}^{T} \mathbf{A}^{r} - 1$	$\mathbf{U}^{T} \mathbf{A}^{r} - \mathbf{V}$	$\mathbf{U}^{T} \mathbf{A}^{2r} - 1 \mathbf{V}$		$\mathbf{U}^{T} \mathbf{A}^{\mathfrak{m}-1} \mathbf{V}$

- ► Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha(\mathbf{A}^r) = \mathbf{r} \times \alpha(\mathbf{A})$ → $O^{\sim}(m^{1.86}\alpha^{0.53})$
- Considering structured U, V does not help
- ▶ Rk: in [Neiger-Salvy-Schost-Villard 23] Modular composition uses Charpoly(ModPolyMult) disp. rank remains stable. α(A^r) = α(A)

→ O~(m^{1.43})

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

$$\begin{split} (\mathbf{I}_{m} - X\mathbf{A})^{-1} \\ &= \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_{i} \mathbf{\tilde{U}}_{i} \\ & \text{mod } X^{2m/k} \end{split}$$

 $\begin{array}{ll} \mbox{1. Structured inversion modulo $X^{2m/k}$:} \\ (\mathbf{I}_m - X \mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k} \end{array}$

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

 $\begin{array}{ll} \mbox{1. Structured inversion modulo $X^{2m/k}$:} \\ (\mathbf{I}_m - X \mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k} \end{array}$

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

▶ Structured projections:
$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} \in \mathbb{K}^{m \times k}$$

1. Structured inversion modulo $X^{2m/k}$: $(\mathbf{I}_m - X\mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k}$

$$\begin{array}{l} \text{2. } \mathsf{Crop}: \ \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \sum \tilde{\mathbf{L}}_i \tilde{\mathbf{U}}_i \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} = \\ & \sum_{i=1}^{\alpha} (\tilde{\mathbf{L}}_i)_{1..k,1..k} (\tilde{\mathbf{U}}_i)_{1..k,1..k} \end{array}$$

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

▶ Structured projections:
$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} \in \mathbb{K}^{m \times k}$$

 $\begin{array}{ll} \text{1. Structured inversion modulo } X^{2m/k}: \\ (\mathbf{I}_m - X\mathbf{A})^{-1} &= \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k} \\ \text{2. Crop}: \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \sum \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} = \\ & \sum_{i=1}^{\alpha} (\mathbf{\tilde{L}}_i)_{1..k,1..k} (\mathbf{\tilde{U}}_i)_{1..k,1..k} \end{aligned}$

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

▶ Structured projections:
$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} \in \mathbb{K}^{m \times k}$$

- 1. Structured inversion modulo $X^{2m/k}$: $(\mathbf{I}_m - X\mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k}$
- $\begin{array}{ll} \textbf{2.} & \mathsf{Crop}: \, \left[\mathbf{I}_k & \mathbf{0} \right] \sum \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} = \\ & \sum_{i=1}^{\alpha} (\mathbf{\tilde{L}}_i)_{1..k,1..k} (\mathbf{\tilde{U}}_i)_{1..k,1..k} \end{array}$
- 3. Expand to dense

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

• Structured projections:
$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} \in \mathbb{K}^{m \times k}$$

 \mathbf{S}

- $\begin{array}{ll} \mbox{1. Structured inversion modulo $X^{2m/k}$:} \\ (\mathbf{I}_m X \mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k} \end{array}$
- $\begin{array}{ll} \textbf{2.} & \mathsf{Crop}: \, \begin{bmatrix} I_k & \textbf{0} \end{bmatrix} \sum \tilde{\mathbf{L}}_i \tilde{\mathbf{U}}_i \begin{bmatrix} I_k \\ \textbf{0} \end{bmatrix} = \\ & \sum_{i=1}^{\alpha} (\tilde{\mathbf{L}}_i)_{1..k,1..k} (\tilde{\mathbf{U}}_i)_{1..k,1..k} \end{array}$
- 3. Expand to dense
- 4. Reconstruct a matrix fraction: $\mathbf{S}=\mathbf{P}/\mathbf{Q}$

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

▶ Structured projections:
$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} \in \mathbb{K}^{m \times k}$$

- $\begin{array}{ll} \mbox{1. Structured inversion modulo $X^{2m/k}$:} \\ (\mathbf{I}_m X\mathbf{A})^{-1} = \sum_{i=1}^{\alpha} \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \mod X^{2m/k} \end{array}$
- $\begin{array}{l} \textbf{2.} \ \ \mathsf{Crop}: \ \left[\mathbf{I}_k \quad \mathbf{0}\right] \sum \mathbf{\tilde{L}}_i \mathbf{\tilde{U}}_i \ \left[\begin{matrix} \mathbf{I}_k \\ \mathbf{0} \end{matrix} \right] = \\ \sum_{i=1}^{\alpha} (\mathbf{\tilde{L}}_i)_{1..k,1..k} (\mathbf{\tilde{U}}_i)_{1..k,1..k} \end{array}$
- 3. Expand to dense
- 4. Reconstruct a matrix fraction: $\mathbf{S}=\mathbf{P}/\mathbf{Q}$
- 5. Return $Det(\mathbf{Q})$

- Generic algorithm
- Applies to Toeplitz-like, Hankel-like and Toeplitz-like+Hankel-like
- $O^{\sim}(\mathfrak{m}^{c(\omega)}\alpha^{\omega-c(\omega)})$ with $c(\omega) = 2 1/\omega$

27

 $\rightarrow O^{(m^{1.58}\alpha^{0.53})}$

Dense matrices over a field

▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\epsilon}))$ required for charpoly in $O(m^{\omega})$?

Dense matrices over a field

- ▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\epsilon}))$ required for charpoly in $O(m^{\omega})$?
- MinPoly vs CharPoly:
 - Earlier algorithms: MinPoly often a step towards CharPoly
 - $\diamond~$ [P.-Storjohann 07]: MinPoly deduced from the probabilistic $O(m^{\omega})$ CharPoly
 - $\diamond~$ [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $O(m^{\omega})$ CharPoly

Dense matrices over a field

- ▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\varepsilon}))$ required for charpoly in $O(m^{\omega})$?
- MinPoly vs CharPoly:
 - Earlier algorithms: MinPoly often a step towards CharPoly
 - $\diamond~$ [P.-Storjohann 07]: MinPoly deduced from the probabilistic $O(m^\omega)$ CharPoly
 - $\diamond~$ [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $O(m^{\omega})$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $O(m^{\omega})$

Dense matrices over a field

- ▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\varepsilon}))$ required for charpoly in $O(m^{\omega})$?
- MinPoly vs CharPoly:
 - Earlier algorithms: MinPoly often a step towards CharPoly
 - $\diamond~$ [P.-Storjohann 07]: MinPoly deduced from the probabilistic $O(m^\omega)$ CharPoly
 - $\diamond~$ [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $O(m^{\omega})$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $O(m^{\omega})$

Structured matrices

▶ Make the blackbox approach significantly competitive (improve over [Villard 03] O[~](m^{2.36}) estimate)

Dense matrices over a field

- ▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\epsilon}))$ required for charpoly in $O(m^{\omega})$?
- MinPoly vs CharPoly:
 - Earlier algorithms: MinPoly often a step towards CharPoly
 - $\diamond~$ [P.-Storjohann 07]: MinPoly deduced from the probabilistic $O(m^{\omega})$ CharPoly
 - $\diamond~$ [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $O(m^{\omega})$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $O(m^{\omega})$

Structured matrices

- ▶ Make the blackbox approach significantly competitive (improve over [Villard 03] O[~](m^{2.36}) estimate)
- ▶ Randomize the $O^{(m^{1.58}\alpha^{0.53})}$ generic algorithm for Toeplitz-like+Hankel-like matrices

Dense matrices over a field

- ▶ Is fast polynomial arithmetic $(M(d) = O(d^{\omega-1-\epsilon}))$ required for charpoly in $O(m^{\omega})$?
- MinPoly vs CharPoly:
 - Earlier algorithms: MinPoly often a step towards CharPoly
 - $\diamond~$ [P.-Storjohann 07]: MinPoly deduced from the probabilistic $O(m^{\omega})$ CharPoly
 - $\diamond~$ [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $O(m^{\omega})$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $O(m^{\omega})$

Structured matrices

- ▶ Make the blackbox approach significantly competitive (improve over [Villard 03] O[~](m^{2.36}) estimate)
- ▶ Randomize the $O^{(m^{1.58}\alpha^{0.53})}$ generic algorithm for Toeplitz-like+Hankel-like matrices

CharPoly over $\mathbb{K}[y]$

No improvement since [Kaltofen Villard 05] $O(m^{2.6973})$ division free algorithm

Better understanding of the bivariate matrix structure required