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At present time...

• Riemann–Roch spaces are di!cult to compute in general.

• Practical applications are restricted to a few families of curves with explicit
Riemann–Roch spaces.

• Riemann–Roch spaces are involved in more and more applications in com-
puter science.

Goals

• Have an asymptotically reasonably fast algorithm.

• Have software implementations able to handle curves of degree a few thou-
sands over "nite "elds.

• Speed-up the algorithms for !2 and some usual families of curves.
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Error correcting codes
GOPPA (1977) for ordinary curves
TSFASMAN, VLĂDUŢ, and ZINK (1982), explicit constructions that beat random
codes
Secret sharing
CHEN and CRAMER (2006)
Resilience in distributed storage systems
BARG, TAMO, and VLĂDUŢ (2017)
Secure multi-party computations and zero-knowledge proofs
BORDAGE, LHOTEL, NARDI, and RANDRIAM (2022)
. . .
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• " is a "eld.

• F∈"[x,y, z] is an absolutely irreducible homogeneous polynomial.

• ℙ2 is the projective plane over "̄.

• The set of zeros of F in ℙ2 is written %.

• The set of rational functions de"ned on % over " is written "(%), that is

"(%)≔{AB :A and B are homogenous, B is prime to F,deg A=deg B}/∼
where A/B∼A′/B′⟺AB′−A′B∈(F).
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Up to a (random) change of coordinates: ζ=(0 :0 :1) and F(x,y, 1) is monic in y.
F(x,y, 1) locally factorizes into

F(x,y, 1)=u(x,y) f1(x,y) f2(x,y) ⋅ ⋅ ⋅ fn(x,y),
where u is a unit in "[[x, y]] and fi ∈ "[[x]][y] is monic and irreducible, for
i=1, . . . ,n.
The valuation valx of "((x)) extends uniquely to a valuation vi of "((x))[y]/( fi),
of valuation group ri−1 ℤ.
Let A∈"[x,y, z] be homogeneous and prime to F.

Divζ A≔ r1v1(A)31+ ⋅ ⋅ ⋅ + rnvn(A)3n

3i is a symbol, called a place ≡ fi(x,y) independently of the coordinates.

Computational problem: obtain f1, . . . , fn and v1, . . . ,vn e!ciently.
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A,B∈"[x,y, z] are prime to F.

Div(A)≔ ∑
F(ζ)=A(ζ)=0 Divζ(A) Div(A/B)≔Div(A)−Div(B)

Generally a divisor D=∑3 c3 3 is a "nite ℤ-combination of places of %.

∑3 c3 3⩽∑3 c3′ 3 ⟺ ∀3, c3 ⩽ c3′
D is said to be positive (also called e%ective) whenever D⩾0.
The degree of a divisor is de"ned by:

deg((((((((((((((∑3 c3 3))))))))))))))≔∑3 c3
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Given a divisor D of %, we want to compute a "-basis of the Riemann–Roch
space

ℒ(D)≔{AB ∈"(%)∖ {0} :Div(A/B)⩾−D}∪ {0}.
Example 1. degD<0 ⟹ ℒ(D)={0}
Notation: D=D+ −D−, where D+ and D− are positive with disjoint supports.
Dense input size ≈(deg F)2 +degD+
Example 2. "≔!2, F(x,y, z)≔y3+x3+y2z, D=3, where 3 is the place of % at
the regular point ζ≔ (0 :1 :1).

ℒ(D)=⟨1, yx⟩ has dimension 2.
Around ζ and for z=1: y=1+x3+O(x4), vζ(1)=0 and vζ(y

x)=−1.
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Arithmetic algorithms. Derived from the work of HENSEL and LANDBERG (1902)
COATES (1970), DAVENPORT (1981)
HESS (2002): deterministic, polynomial time, state-of-the-art algorithm.
Implemented in the MAGMA and SINGULAR computer algebra system.
Integral closures are the first bottleneck: sharp bounds given by ABELARD (2020).

Geometric algorithms. Derived from the work of BRILL and NOETHER (1874, for
ordinary curves only)
LE BRIGAND and RISLER (1988) for general curves.
HACHÉ (1996, PhD) for an implementation in Axiom.

HUANG and IERARDI (1994): O((deg F)6ω deg D+) for ordinary curves,
O((deg FdegD+)2ω) for smooth curves and rational support for D.

(ω≡ feasible complexity exponent for matrix multiplication)
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VOLCHECK (1994): use of Puiseux series for char. 0
CAMPILLO and FARRÁN (2002): Hamburger–Noether expansions for char. >0
KHURI-MAKDISI (2007): additions in the Jacobian of general genus-g curves in
time Õ(gω)
LE GLUHER and SPAENLEHAUER (2020): modern computer algebra techniques,
fast C++ implementation for nodal curves, heuristic Õ(((deg F)2 +degD+)ω)
ABELARD, COUVREUR, and LECERF (2022): for ordinary curves

Õ(((deg F)2 +degD+)ω+12 ) “operations”

today's talkABELARD, BERARDINI, COUVREUR, and LECERF (2022):

Õ(((deg F)2 +degD+)ω)
for general curves in char. zero or >deg F.
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Problem. F(x,y, z)=y, α1, . . . ,αn are distinct values in ", m1, . . . ,mn are in ℤ
D≔m1 (α1 :0 :1)+ ⋅ ⋅ ⋅ +mn(αn :0 :1)

Solution. Easy in this case!

1. H(x,y, z)≔∏i=1,mi>0n (x−αi z)mi is a common denominator for ℒ(D).

2. G(x,y, z)≔∏i=1,mi<0n (x−αi z)−mi and Gi(x,y, z)≔ zl−i xiG for i=0,. . . , l, where

l≔deg H−degG=degD.
Finally, G0/H, . . . ,Gl/H is a basis of ℒ(D).
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Algorithm
Input. An absolutely irreducible plane projective curve % de"ned over " by

the equation F=0, and a "-rational divisor D of %.
Output. A "-basis of ℒ(D).
1. Compute the adjoint divisor H ≔Div(dx)−Div(∂F∂y) of %.
2. Find a homogeneous polynomial H∈"[x,y, z] prime to F such thatDiv(H)⩾D+H.
3. Compute Div(H)−D.
4. Compute a "-basis G1, . . . ,Gl of the space of all homogeneous polyno-

mials G∈"[x,y, z] of degree deg H such that Div(G)⩾Div(H)−D.
5. Return G1/H, . . . ,Gl/H.
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Task Complexity
1. Adjoint divisor H Õ((deg F)3)
2. Denominator H of ℒ(D) Õ(((deg F)2+degD+)ω)
3. Div(H)−D Õ(((deg F)2+degD+)2)
4. Numerator basis G1, . . . ,Gl Õ(((deg F)2+degD+)ω)
Theorem. [ABELARD, BERARDINI, COUVREUR, LECERF]• ℒ(D) can be computed by a probabilistic algorithm of Las Vegas type with

an expected number of Õ(((deg F)2 +degD+)ω) operations in ", wheneverchar "=0 or >deg F." is algebraically closed of characteristic zero and roots of univariate poly-
nomials are “for free”, then the cost drops to Õ(((deg F)2 +degD+)ω+12 ).

• If the curve has only ordinary singularities then the cost drops to Õ(((degF)2+degD+)ω+12 ) for any characteristic.
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1. Apply a random linear change of coordinates.
2. Solve F(x,y, 1)= ∂F∂y(x,y, 1)=0.

!="q. Use VILLARD's bivariate system solver (2023) with quasi-linear time.
Otherwise. Use classical resultant and gcd, with directed evaluation

(VAN DER HOEVEN, LECERF, 2020), in time Õ((deg F)3).

3. Compute the rational Puiseux expansions at each solution.
For all Puiseux expansion X(t),Y(t), of rami"cation index r, compute

valt(((((((((((((((((((((((( r tr−1
∂F∂y(X(t),Y(t),1)))))))))))))))))))))))))

char 0 or >deg F. Use the algorithm by POTEAUX and WEIMANN (2021), in
time Õ((deg F)3).

Ordinary curves. Ad hoc method in time Õ((deg F)3).
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By construction• H is a common denominator of ℒ(D), degy H<deg F;• Div(H)⩾H +D;• There exists a smooth divisor R such that Div(H)=H +R;• d≔deg H satis"es ddeg F=O((deg F)2+degD+).

This is made possible thanks to the Riemann–Roch theorem.

Algorithm

1. Solve H(x,y, 1)=F(x,y, 1)=0 outside the singular locus of %.

As before, in time Õ(((deg F)2+degD+)1.5), and faster over "nite "elds.

2. For all solutions ζ compute valζ H.
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General problem: compute bases of bivariate polynomials satisfying certain
degree bounds and vanishing conditions.
Vanishing condition: (∆(b),µ(a),X(t),Y(t),m)

1. A truncation order m∈ℕ>0.
2. A rational Puiseux expansion

" ⊆ "[β]≔"[b]/(∆(b)) ⊆ "[α,β]≔ ("[β])[a]/(µ(a))separable separable
(X(t),Y(t))∈("[α,β][[t]]/(tm))2, with X(t)=β+γ tr, γ invertible in "[α,β],
and r is the rami"cation index.

We say that a polynomial g∈"[x,y] satis"es this vanishing condition when

valt(g(X(t),Y(t)))⩾m.
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Unknowns: polynomials g∈"[x,y] such thatdegy g<deg F and deg g⩽d≔deg H.

The number of unknowns is Nddeg F=O((deg F)2+degD+)
Linear equations: g∈"[x,y] satis"es several vanishing conditions

((∆i(b),µi(a),Xi(t),Yi(t),mi))i=1, . . . ,e
The number of linear equations is

σ≔∑
i=1
e

mideg ∆ideg µi=O((deg F)2 +degD+)
Problem: Find a "-basis of the solutions g.





Tasks 2 and 4. Particular cases 19/21

Split case. " is algebraically closed of characteristic zero and is endowed with
a routine that computes the roots of any polynomial θ∈"[x] in softly linear time.

Theorem 1.5 of ”Computing minimal interpolation bases”, by JEANNEROD,
NEIGER, SCHOST, VILLARD, J. Symbolic Comput., 83:272–314, 2017.
Let P≔(deg F−1,deg F−2, . . . , 1,0). A basis in P-Popov form can be computed
in time

Õ((deg F)ω−1 (σ+(deg F)2))= Õ(((deg F)2 +degD+)ω+12 )
%%%%%%%%% only admits ordinary singularities.

Theorem 1.4 of “Fast computation of shifted Popov forms of polynomial matrices
via systems of modular polynomial equations” by NEIGER, ISSAC'16.
A basis in P-Popov form can be computed in time

Õ((deg F)ω−1 ((deg F)2+degD+))= Õ(((deg F)2 +degD+)ω+12 )
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hardness
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!

!

• Extend the complexity exponent ω for any positive characteristic and
any curve.

• Avoid generic linear change of coordinates, at least in practice.

• Achieve a software implementation that can handle curves of degree a
few thousands over "nite "elds.

• Speed up the algorithms for special families of curves.

• Extend the complexity exponent (ω + 1)/2 to more curves: the bottle-
neck mostly lies in structured linear algebra.
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Thank you for your attention!


