Computing the non-commutative rank of linear matrices

Gábor Ivanyos HUN-REN SZTAKI

RTCA 2023, Fundamental Algorithms and Algorithmic Complexity, 15-29 September 2023, Paris.

Based (mostly) on joint works with Youming Qiao and K. V. Subrahmanyam

Commutative and noncommutative rank

\square linear n by n matrix: $A(x)=A\left(x_{1}, \ldots, x_{k}\right)=A_{1} x_{1}+\ldots+A_{k} x_{k}$

$$
A_{1}, \ldots, A_{k} \in F^{n \times n}\left(=M_{n}(F)\right)
$$

\sim matrix space $\mathcal{A}=\operatorname{Span}\left(A_{1}, \ldots, A_{k}\right)$;

- ordinary (commutative) rank rk $A(x)$: as a matrix over $F\left(x_{1}, \ldots, x_{n}\right)$ max rank from \mathcal{A} (if F is large enough)
- computational problem: determine rk $A(x)$ (Edmonds 1967)
an instance of PIT, $\in R P$, not known to be in P
"derandomization" would imply circuit lower bounds for NEXP
(Kabanets, Impagliazzo 2003)
■ noncommutative rank ncrk $A(x)$: as a matrix over the free skewfield $\max \left\{\right.$ max rank from $\mathcal{A} \otimes_{F} D: D$ skewfield ext. of $\left.F\right\}$
$\mathcal{A} \otimes_{F} D=" D$-span" of A_{j}
Gaussian elim. and consequences to rank remain valid over skewfields

Commutative vs. noncommutative rank

- rk $A(x) \leq \operatorname{ncrk} A(x)$

■ Example for $<: \mathcal{A}=$ skew-symmetric 3 by 3 real matrices, A_{1}, A_{2}, A_{3} a basis $\operatorname{rk} A(x)=2$; ncrk $A(x)=3$ (over the quaternions)

- which one is easier to compute?
- ncrk is a proper relaxation of rk
- but its definition is more complicated uses a difficult object or a (possibly) infinite family of skewfields (can be pulled down to exp size)
even computability in randomized poly time is not obvious
■ ncrk is "easier":
computable even in deterministic polynomial time!
- Garg, Gurvits, Oliveira, Wigderson 2015-2016 $\quad(\operatorname{char}(F)=0)$;
- IQS 2015-2018;
- Hamada, Hirai 2021

The nc rank as a rank of a large matrix

- Can assume D is finite (d^{2}-)dimensional over its center C, where C is a fin. gen. (possibly transcendental) extension of F
- $D \otimes_{C} L \cong L^{d \times d}$ explicitly for some field $L \geq C$
\square both D and $F^{d \times d}$ embedded in $L^{d \times d}$ as spanning subsets
- switching procedures
$\mathcal{A} \otimes D \longleftrightarrow \mathcal{A} \otimes L^{d \times d} \longleftrightarrow \mathcal{A} \otimes F^{d \times d} \subseteq F^{n d \times n d}$
rank r over $D \longrightarrow$ rank $\geq r \cdot d$ in $F^{n d \times n d}$
rank R in $F^{n d \times n d} \longrightarrow$ rank $\geq\lceil R / d\rceil$ over D
- round trip $\mathcal{A} \otimes F^{d \times d} \rightarrow \mathcal{A} \otimes D \rightarrow \mathcal{A} \otimes F^{d \times d}$
rank R over $D \longrightarrow$ rank $\geq d\lceil R / d\rceil$ over F
IQS 2015: can be done in deterministic poly time (for suitable D)
- Connection to invariant theory:
determinants of matrices in $\mathcal{A} \otimes F^{d \times d}$
\sim invariants of $S L_{n} \times S L_{n}$ (degree dn homomgenous part)

Blowups of matrix spaces

- $\mathcal{A} \otimes F^{d \times d}$: "blown up" matrix space (d : blowup factor) n by n matrices with entries from $F^{d \times d}$
- based on the rounding, Derksen-Makam 2015-2017:
a tool reducing d to $d-1$ if $d \geq n$
preserving the "relative rank"
matrix of $\mathrm{rk} d$ ncrk \rightarrow matrix of $\mathrm{rk}(d-1)$ ncrk
$\operatorname{ncrk} A(x)=\frac{1}{d}$ max rank in $\mathcal{A} \otimes F^{d \times d}$ for some $d \leq n-1$.
\Rightarrow ncrk computable in randomized poly time

Deterministic polynomial time algorithms

■ Garg, Gurvits, Oliveira, Wigderson 2015-2016:
operator scaling for over fileds of zero characteristic
■ IQS 2015-2018: a constructive algorithm

- computes a matrix of rank $d \cdot \operatorname{ncrk} A(x)$ in $\mathcal{A} \otimes F^{d \times d}$
$d \leq n-1$ (or $d \leq n \log n$ if F is too small)
- computes an ("upper") witness for that ncrk cannot be larger
- uses analogues of the alternating paths for matchings if graphs + an efficient implementation of the DM reduction tool
■ Franks, Soma, Goemans 2023:
a version of GGOW that also finds an upper witness
■ Hamada, Hirai 2021:
convex optimization (based on finding an upper witness)

The upper witnesses: shrunk subspaces (Hall-like obstacles)

■ ℓ-shrunk subspace: $U \leq F^{n}$ mapped to a subspace of dimension $\operatorname{dim} U-\ell$ by \mathcal{A}

$$
\mathcal{A} \leq\left(\begin{array}{ccccc}
* & * & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & * & * & *
\end{array}\right) \text { alias }\left(\begin{array}{lllll}
* & * & & & \\
* & * & & & \\
* & * & & & \\
* & * & * & * & *
\end{array}\right)
$$

$\exists \ell$-shrunk subsp. \Rightarrow the max rank in \mathcal{A} is at most $n-\ell$

- Inheritance: $U \otimes F^{d \times d}$ mapped to a subspace of dim less by $\ell \cdot d \Rightarrow$ max rank in $\mathcal{A} \otimes F^{d \times d}$ is at most $n d-\ell d$.
■ \Rightarrow ncrk $\leq n-\ell$
$\square \sim$ a characterization of the nullcone of invariants $S L_{n} \times S L_{n}$ (by Hilbert-Mumford)

Main tool of IQS: the Wong sequence

■ Idea: attempt to find a shrunk subspace
(used in spec. commutative cases: Fortin, Reutenauer 2004; I., Karpinski, Saxena 2010; I., Karpinski, Qiao, Santha 2015)
■ Assume we have $B \in \mathcal{A}$ with rk $B=$ ncrk, $\ell=n-$ ncrk, U ℓ-shrunk. Then

$$
U \geq \operatorname{ker} B \text { and } \mathcal{A} U=\operatorname{lm} B .
$$

■ Wong sequence (\sim alternating forest in bipartite graph matching):

$$
\left.U_{1}=\operatorname{ker} B ; U_{i+j}=B^{-1}\left(\mathcal{A} U_{j}\right) \quad \text { (inverse image under } B\right)
$$

- Either stabilizes inside $\operatorname{Im} B$: gives an ℓ-shrunk subspace
- or "escapes" : $\mathcal{A} U_{j} \nsubseteq \operatorname{Im} B$: (\sim augmenting path $)$

Escaping Wong sequence ~ augmenting path

■ sequence i_{1}, \ldots, i_{s} - with s smallest - s.t.

$$
A_{i_{s}} B^{-1}\left(A_{i_{s-1}} B^{-1}\left(\ldots B^{-1}\left(A_{i_{1}} \operatorname{ker} B\right)\right)\right) \nsubseteq \operatorname{Im} B
$$

■ Key fact: $\mathrm{ncrk}=\mathrm{rk}$ if $\operatorname{dim} \mathcal{A} \leq 2$ (Atkinson, Stephens 1978)
if A^{j} ker $B \nsubseteq \operatorname{Im} B$ for some j, then

$$
\operatorname{rk}(B+\lambda A)>\operatorname{rk} B \text { for some } \lambda \text { (if } F \text { is large enough) }
$$

- Idea: $\operatorname{try} A=\sum \lambda_{i} A_{i}$

■ Why ncrk $\neq \mathrm{rk}$ in general: escaping " paths" may cancel out

- Workaround let $d \geq s$;
- Put $A_{1}^{\prime}=B^{\prime}=B \otimes I_{d}, A_{2}^{\prime}=\sum A_{i j} \otimes E_{j, j+1} \in \mathcal{A} \otimes F^{d \times d}$; $\mathcal{A}^{\prime}=\left\langle A_{1}^{\prime}, A_{2}^{\prime}\right\rangle$
- Then the Wong seq. escapes $\operatorname{Im} B^{\prime}$ and $C^{\prime}=B^{\prime}+\lambda A_{2}^{\prime}$ has rank $>d \cdot \mathrm{rk} B$ for some λ
- Round up the rank of C^{\prime} in $\mathcal{A} \otimes F^{d \times d}$ to a multiple of d

Summary of the IQS algorithm

■ iterate the above "scaled" rank incrementation procedure (with iteratively blowing up \mathcal{A})

- combine with the reduction tool to control blowup factor
- Result: $A \in \mathcal{A} \otimes F^{d \times d}$ of rank d. ncrk; and a maximally (by $(n-d)$ ncrk) shrunk subspace (of $F^{n d}$) for $\mathcal{A} \otimes F^{d \times d}$
- Use converse of inheritance to obtain a maximally (by n - ncrk) shrunk subspace of F^{n} for \mathcal{A}.
■ Remarks:
(1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk $=n$.)
(2) The largest one can also be found (duality)

Applications I.: Module isomorphism

- Module data (over m-generated algebras)
$B_{1}, \ldots, B_{m} \in \mathbb{F}^{n \times n} \sim$ action of generators
- Space of homomorphisms
V, V^{\prime} with data $B_{1}, \ldots, B_{m}, B_{1}^{\prime}, \ldots, B_{m}^{\prime}$

$$
\operatorname{Hom}\left(V, V^{\prime}\right)=\left\{A \in \mathbb{F}^{n \times n}: A B_{i}=B_{i}^{\prime} A\right\}
$$

Isomorphism: nonsingular element
■ Blowups of Hom-spaces

$$
\operatorname{Hom}\left(V, V^{\prime}\right) \otimes \mathbb{F}^{d \times d}=\operatorname{Hom}\left(V^{\oplus d}, V^{\prime \oplus d}\right)
$$

Module isomorphism II.

- Krull-Schmidt
- Unique direct decomposition into indecomposables
- $V^{\oplus d} \cong V^{\prime \oplus d} \Longleftrightarrow V \cong V^{\prime}$
- $V \cong V^{\prime} \Longleftrightarrow$ ncrk $\operatorname{Hom}\left(V, V^{\prime}\right)=n$
- deciding \cong : a simple application of ncrank computation
- can be made constructive
using a "lazy" constructive Krull-Schmidt
■ Unpublished, \exists several more direct approaches, e.g.,
- Brooksbank, Luks (2008)
- I., Karpinski, Saxena (2010) based on Chistov, I., Karpinski (1997) (for the semisimple case)
- Ciocănea-Teodorescu (2015)

Applications II. (Invariant theory and related)

■ Orbit closure separation for left-right action of $S L$

- Derksen, Makam 2018

Compute a separating invariant (if \exists)

- Brascamp-Lieb inequalities

$$
\int_{x \in \mathbb{R}^{n}} \prod_{i}\left(f_{i}\left(B_{i} x\right)\right)^{p_{i}} d x \leq C \prod_{i}\left(\int_{y_{i} \in \mathbb{R}^{n_{i}} f_{i}\left(y_{i}\right.} d y_{i}\right)^{p_{i}}
$$

$$
\begin{aligned}
& \forall 0 \leq f_{i}: \in L^{1}\left(\mathbb{R}^{n_{i}}\right) \\
& 0<C \leq \infty \text { (the BL-constant) } \\
& \quad \text { depending on } B_{i} \in \mathbb{R}^{n_{i} \times n}, p_{i} \geq 0 .
\end{aligned}
$$

- capture many known inequalities, e.g., Hölder's
- Garg, Gurvits, Oliveira, Wigderson 2018

Operator scaling for a related matix space computes C

- $C<\infty$ iff full ncrk

Applications III.

Block triangularization in the full ncrk case
■ \sim finding flag of 0 -shrunk subspaces $U(\operatorname{dim} \mathcal{A} U=\operatorname{dim} U)$

- If $I \in \mathcal{A}$ then $($ as $\mathcal{A} W \geq W)$ equivalent to $\mathcal{A} U=U$.

■ U : a submodule for the enveloping algebra of \mathcal{A},

- over many F, \exists good algorithms
- If $A \in \mathcal{A}$ of full rank found, $I \in A^{-1} \mathcal{A}$

$$
\mathcal{A} \leftarrow A^{-1} \mathcal{A}
$$

- In the general case,
- Find $A \in \mathcal{A} \otimes F^{d \times d}$ of full rank,
- Block triangularize $\mathcal{A} \otimes F^{d \times d}$ as above
- Pull back by "reverse inheritance" Blowup as a "magnifier"

Applications of block triangularization

- Effective orbit closure intersection
- I., Qiao 2023
- Compute one-parameter subgroups driving from orbits to the intersection of orbit closures
- In multivariate cryptography
- based on hardness of solving polynomial systems
- Sometimes: secret \sim block triang. strucure
- e.g, Patarin's balanced Oil and Vinegar scheme

