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Commutative and noncommutative rank

linear n by n matrix: A(x) = A(x1, . . . , xk) = A1x1 + . . .+ Akxk
A1, . . . ,Ak ∈ F n×n(= Mn(F ))

∼ matrix space A = Span(A1, . . . ,Ak);

ordinary (commutative) rank rkA(x): as a matrix over F (x1, . . . , xn)

max rank from A (if F is large enough)

computational problem: determine rkA(x) (Edmonds 1967)

an instance of PIT, ∈ RP, not known to be in P
”derandomization” would imply circuit lower bounds for NEXP

(Kabanets, Impagliazzo 2003)

noncommutative rank ncrkA(x): as a matrix over the free skewfield

max{max rank from A⊗F D: D skewfield ext. of F}
A⊗F D = ”D-span” of Aj s

Gaussian elim. and consequences to rank

remain valid over skewfields



Commutative vs. noncommutative rank

rkA(x) ≤ ncrkA(x)

Example for <: A = skew-symmetric 3 by 3 real matrices,

A1,A2,A3 a basis
rkA(x) = 2; ncrkA(x) = 3 (over the quaternions)

which one is easier to compute?

ncrk is a proper relaxation of rk
but its definition is more complicated
uses a difficult object or a (possibly) infinite family of skewfields

(can be pulled down to exp size)

even computability in randomized poly time is not obvious

ncrk is ”easier”:

computable even in deterministic polynomial time!

Garg, Gurvits, Oliveira, Wigderson 2015-2016 (char(F ) = 0) ;
IQS 2015-2018;
Hamada, Hirai 2021



The nc rank as a rank of a large matrix

Can assume D is finite (d2-)dimensional over its center C ,

where C is a fin. gen. (possibly transcendental) extension of F

D ⊗C L ∼= Ld×d explicitly for some field L ≥ C
both D and F d×d embedded in Ld×d as spanning subsets

switching procedures

A⊗ D ←→ A⊗ Ld×d ←→ A⊗ F d×d ⊆ F nd×nd

rank r over D −→ rank ≥ r · d in F nd×nd

rank R in F nd×nd −→ rank ≥ dR/de over D
round trip A⊗ F d×d → A⊗ D → A⊗ F d×d

rank R over D −→ rank ≥ ddR/de over F
IQS 2015: can be done in deterministic poly time (for suitable D)

Connection to invariant theory:

determinants of matrices in A⊗ F d×d

∼ invariants of SLn × SLn (degree dn homomgenous part)



Blowups of matrix spaces

A⊗ F d×d : ”blown up” matrix space (d : blowup factor)

n by n matrices with entries from F d×d

based on the rounding, Derksen-Makam 2015-2017:

a tool reducing d to d − 1 if d ≥ n

preserving the ”relative rank”

matrix of rk dncrk → matrix of rk (d − 1)ncrk

ncrkA(x) = 1
d max rank in A⊗ F d×d for some d ≤ n − 1.

⇒ ncrk computable in randomized poly time



Deterministic polynomial time algorithms

Garg, Gurvits, Oliveira, Wigderson 2015-2016:

operator scaling for over fileds of zero characteristic

IQS 2015-2018: a constructive algorithm

computes a matrix of rank d · ncrkA(x) in A⊗ F d×d

d ≤ n − 1 (or d ≤ n log n if F is too small)
computes an (”upper”) witness for that ncrk cannot be larger

uses analogues of the alternating paths for matchings if graphs
+ an efficient implementation of the DM reduction tool

Franks, Soma, Goemans 2023:

a version of GGOW that also finds an upper witness

Hamada, Hirai 2021:

convex optimization (based on finding an upper witness)



The upper witnesses: shrunk subspaces (Hall-like
obstacles)

`-shrunk subspace: U ≤ F n mapped to a subspace of
dimension dimU − ` by A

A ≤


∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗

 alias


∗ ∗
∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗


∃ `-shrunk subsp. ⇒ the max rank in A is at most n − `
Inheritance: U ⊗ F d×d mapped to a subspace of dim
less by ` · d ⇒ max rank in A⊗ F d×d is at most nd − `d .

⇒ ncrk ≤ n − `
∼ a characterization of the nullcone of invariants SLn × SLn (by Hilbert-Mumford)



Main tool of IQS: the Wong sequence

Idea: attempt to find a shrunk subspace
(used in spec. commutative cases: Fortin, Reutenauer 2004; I., Karpinski,

Saxena 2010; I., Karpinski, Qiao, Santha 2015)

Assume we have B ∈ A with rkB = ncrk , ` = n − ncrk , U
`-shrunk. Then

U ≥ kerB and AU = ImB.

Wong sequence (∼ alternating forest in bipartite graph matching):
U1 = kerB; Ui+j = B−1(AUj) (inverse image under B)

Either stabilizes inside ImB: gives an `-shrunk subspace
or ”escapes” : AUj 6⊆ ImB: (∼ ∃ augmenting path)



Escaping Wong sequence ∼ augmenting path

sequence i1, . . . , is – with s smallest – s.t.

AisB
−1(Ais−1B

−1(. . .B−1(Ai1 kerB))) 6⊆ ImB

Key fact: ncrk = rk if dimA ≤ 2 (Atkinson, Stephens 1978)

if Aj kerB 6⊆ ImB for some j , then
rk (B + λA) > rkB for some λ (if F is large enough)

Idea: try A =
∑
λiAi

Why ncrk 6= rk in general: escaping ”paths” may cancel out

Workaround let d ≥ s;

Put A′1 = B ′ = B ⊗ Id , A′2 =
∑

Aij ⊗ Ej,j+1 ∈ A⊗ F d×d ;
A′ = 〈A′1,A′2〉
Then the Wong seq. escapes ImB ′ and
C ′ = B ′ + λA′2 has rank > d · rkB for some λ
Round up the rank of C ′ in A⊗ F d×d to a multiple of d



Summary of the IQS algorithm

iterate the above ”scaled” rank incrementation procedure
(with iteratively blowing up A)

combine with the reduction tool to control blowup factor

Result: A ∈ A⊗ F d×d of rank d · ncrk ; and a maximally
(by (n − d)ncrk ) shrunk subspace (of F nd) for A⊗ F d×d

Use converse of inheritance to obtain a maximally (by
n − ncrk ) shrunk subspace of F n for A.

Remarks:
(1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk = n.)

(2) The largest one can also be found (duality)



Applications I.: Module isomorphism

Module data (over m-generated algebras)

B1, . . . ,Bm ∈ Fn×n ∼ action of generators

Space of homomorphisms
V ,V ′ with data B1, . . . ,Bm,B

′
1, . . . ,B

′
m

Hom(V ,V ′) = {A ∈ Fn×n : ABi = B ′iA}

Isomorphism: nonsingular element

Blowups of Hom-spaces

Hom(V ,V ′)⊗ Fd×d = Hom(V⊕d ,V ′
⊕d

)



Module isomorphism II.

Krull-Schmidt

Unique direct decomposition into indecomposables
V⊕d ∼= V ′

⊕d ⇐⇒ V ∼= V ′

V ∼= V ′ ⇐⇒ ncrk Hom(V ,V ′) = n

deciding ∼=: a simple application of ncrank computation

can be made constructive

using a ”lazy” constructive Krull-Schmidt

Unpublished, ∃ several more direct approaches, e.g.,

Brooksbank, Luks (2008)
I., Karpinski, Saxena (2010)

based on Chistov, I., Karpinski (1997) (for the semisimple case)

Ciocănea-Teodorescu (2015)



Applications II. (Invariant theory and related)

Orbit closure separation for left-right action of SL

Derksen, Makam 2018
Compute a separating invariant (if ∃)

Brascamp-Lieb inequalities

∫
x∈Rn

∏
i

(fi (Bix))pidx ≤ C
∏
i

(∫
yi∈Rni fi (yi

dyi

)pi

∀ 0 ≤ fi :∈ L1(Rni )
0 < C ≤ ∞ (the BL-constant)

depending on Bi ∈ Rni×n, pi ≥ 0.
capture many known inequalities, e.g., Hölder’s
Garg, Gurvits, Oliveira, Wigderson 2018
Operator scaling for a related matix space computes C
C <∞ iff full ncrk



Applications III.

Block triangularization in the full ncrk case

∼ finding flag of 0-shrunk subspaces U (dimAU = dimU)

If I ∈ A then (as AW ≥W ) equivalent to AU = U.

U: a submodule for the enveloping algebra of A,
over many F , ∃ good algorithms

If A ∈ A of full rank found, I ∈ A−1A
A ← A−1A

In the general case,

Find A ∈ A⊗ F d×d of full rank,
Block triangularize A⊗ F d×d as above
Pull back by ”reverse inheritance”

Blowup as a ”magnifier”



Applications of block triangularization

Effective orbit closure intersection

I., Qiao 2023
Compute one-parameter subgroups driving from orbits
to the intersection of orbit closures

In multivariate cryptography

based on hardness of solving polynomial systems
Sometimes: secret ∼ block triang. strucure
e.g, Patarin’s balanced Oil and Vinegar scheme
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