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This talk

1. Privacy-preserving Airtag stalker detection (with
polynomial lattice reduction!)

2. On the Possibility of a Backdoor in the Micali-Schnorr
Generator (with integer lattices!)



Privacy-preserving Airtag
stalker detection
Abuse-Resistant Location Tracking: Balancing Privacy and Safety
in the Offline Finding Ecosystem. Gabrielle Beck, Harry
Eldridge, Matthew Green, Nadia Heninger, and Abhishek
Jain. https://eprint.iacr.org/2023/1332

https://eprint.iacr.org/2023/1332


How do airtags work?

LTA
(near-owner mode)

Tracking NetworkOwner Device

LTA
(separated mode)

Service Provider (SP)

BLE/
UWB

BLE/
UWB Internet

Internet

pairing relationship 

1. Airtags emit a 248-bit Bluetooth Low Energy broadcast
every 2s.

2. Any nearby devices receive broadcasts, collect, and
upload to Apple’s servers along with location.

3. Users can query server for tag identifier and receive
location reports.



Privacy threats
Threat: Airtags allow others to monitor your location

• Countermeasure: Tags rotate identifiers periodically.

Threat: Stalker places an Airtag on your car/person
• Countermeasure: Your device sends an alert if it sees
the same identifier for some period of time.
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Threat: Stalker places an Airtag on your car/person
• Countermeasure: Your device sends an alert if it sees
the same identifier for some period of time.



Research Goal
Allow stalker detection while maximizing privacy against
location tracking.

Construction Idea:
• Use Shamir secret sharing.
• Tag chooses secret polynomial f ∈ Fq[z ] and broadcasts
evaluations

(z1, f (z1)), (z2, f (z2)), . . . , (zn, f (zn))

• Privacy threshold: No party observing fewer than deg f
broadcasts can distinguish from random.

• Noise: A moving device will receive broadcasts from
many tags; some broadcasts dropped.

Stalker detection is polynomial interpolation with noise
= Reed-Solomon decoding.

Detecting multiple stalkers = Reed-Solomon list decoding



Polynomial interpolation with noise
Input:

z1 z2 z3 z4 z5 z6 z7 z8
y1 y2 y3 y4 y5 y6 y7 y8

r1(z1) r1(z2) r2(z3) r1(z4) r3(z5) r1(z6) r2(z7) r1(z8)

Desired output: r1

Let
N(z) =

∏
i

(z − zi ); H(z) =
∏

i |r1(zi )=yi

(z − zi )

Interpolate a(z) so
a(zi ) = yi

Then
gcd(r1(z)− a(z),N(z)) = H(z)



Polynomial lattices

Definition
F[z ]-module: B = (b1, b2, . . . , bn), bi ∈ F(z)n

L(B) = {vi |vi =
∑

i aibi , ai ∈ F[z ], bi ∈ B}.

Definition
Vector length
deg v = maxi deg vi .

Definition
Determinant
det L(B) = detB

b1

b2



Lattice basis reduction for polynomial lattices
von zur Gathen, Mulders and Storjohann

Pivot: right-most element of maximal degree in vector
Definition
A basis is reduced if its pivots are all in different columns.

Fact
If {bi} is a reduced basis for L, deg det L =

∑
i deg bi .

Theorem
A reduced basis contains a vector with deg v < (deg det L)/ dim L.

Theorem
A reduced basis contains a shortest vector of L.

Theorem (Giorgi, Jeannerod, Villard)
(dim L)ω+o(1)D running time for polynomial lattice reduction
(D =max degree)



Reed-Solomon decoding via polynomial lattices

Input: z1 z2 z3 z4 z5 z6 z7 . . . zn
y1 y2 y3 y4 y5 y6 y7 . . . yn

Output: r s.t. deg r ≤ ℓ and r(xi ) = yi for ≥ h values of i .

1. Let
N(z) =

∏
i

(z − zi ); a(z) | a(zi ) = yi ∀i

2. Construct

B =

[
zℓ −a(z)

N(z)

]
dim L(B) = 2

deg det L(B) = ℓ+ n

3. Reduce B to find a vector (zℓq1(z), q2(z)).
4. If (ℓ+ n)/2 < h then solution r(z) = q2(z)/q1(z).



List-decoding for Reed-Solomon codes
Guruswami Sudan

Theorem (Guruswami Sudan)
In polynomial time can find all ri (z) s.t. deg ri (z) < h2/n.

Previous construction: Construct polynomial
Q(x) = q1(z)x + q2(z) with the property that Q(r(z)) = 0.

Guruswami-Sudan construction: Construct polynomial
Q(x) of degree t; roots ri are among t roots of Q.

Theorem (Jeannerod, Neiger, Schost, Villard)
Interpolation/reduction step can be done in
O(tω−1 M(tℓ) log(tℓ) log(ℓ)) time.



Applying Guruswami-Sudan for stalker detection
Problem 1: Privacy threshold far from stalker detection time.

Problem 2: Huge memory consumption and running time at
asymptotic bounds.
Dimension t ≈ hn and degree nh2; n > 1800 for 2s broadcasts
and 1h window.



Alternative coding-based constructions

Various extensions of Reed-Solomon codes have better
theoretical decoding rates:

• Parvaresh-Vardy
• Folded Reed-Solomon Codes

However:

• Algebraically structured correlations within/across
broadcasts may not satisfy secret sharing properties.
Open problem: Say something more rigorous about
this.

• Don’t perform well for our desired parameters.



Construction: Multiple polynomial evalutions
(Like an interleaved Reed-Solomon code)

In each epoch, user generates random r1, . . . rc ∈ F[z ].

z1 z2 z3 z4 z5 z6 z7 z8
r1(z1) r1(z2) r1(z3) r1(z4) r1(z5) r1(z6) r1(z7) r1(z8)
r2(z1) r2(z2) r2(z3) r2(z4) r2(z5) r2(z6) r2(z7) r2(z8)
...

...
...

...
...

...
...

...
rc(z1) rc(z2) rc(z3) rc(z4) rc(z5) rc(z6) rc(z7) rc(z8)



Noisy simultaneous polynomial recovery

Input:
z1 z2 z3 z4 z5 z6 z7 z8

r11(z1) r11(z2) r21(z3) r11(z4) r31(z5) r21(z6) r21(z7) r11(z8)
r12(z1) r12(z2) r22(z3) r12(z4) r32(z5) r22(z6) r22(z7) r12(z8)

...
...

...
...

...
...

...
...

r1c(z1) r1c(z2) r2c(z3) r1c(z4) r3c(z5) r2c(z6) r2c(z7) r1c(z8)

Desired output: r11, r12, . . . , r1c , maybe r21, r22, . . . , r2c



Noisy simultaneous polynomial recovery
Input:

z1 z2 z3 z4 z5 z6 z7 z8
r11(z1) r11(z2) r21(z3) r11(z4) r31(z5) r21(z6) r21(z7) r11(z8)
r12(z1) r12(z2) r22(z3) r12(z4) r32(z5) r22(z6) r22(z7) r12(z8)

...
...

...
...

...
...

...
...

r1c(z1) r1c(z2) r2c(z3) r1c(z4) r3c(z5) r2c(z6) r2c(z7) r1c(z8)

Desired output: r11, r12, . . . , r1c
Let

N(z) =
∏
i

(z − zi ); H(z) =
∏

i |r1j (zi )=yij∀j

(z − zi )

Interpolate a1(z), . . . , ac(z) so aj(zi ) = yij ∀i , j

Then

gcd(r11(z)− a1(z), r12(z)− a2(z), . . . ,N(z)) = H(z)



Noisy simultaneous polynomial recovery via lattices

1. Let N(z) =
∏

i (z − zi ); a1(z), . . . , ac(z) | aj(zi ) = yij

2. Construct

B =


zℓ −a1(z)

zℓ −a2(z)
. . . ...

zℓ −ac(z)
N(z)


dim L(B) = c + 1

deg det L(B) = cℓ+ n

3. Reduce B to find m short vectors.

4. Map vectors to linear equations in m unkowns; solve
system for rij .

5. If (cℓ+ n)/(c + 1) < h then hope to find solution.



Polynomial lattice duality

Definition
The dual lattice L∗ is defined as all
vectors w ∈ F(x)m satisfying
⟨w , v⟩ ∈ F[x ] for v ∈ L.

• (L∗)∗ = L

Explicit basis: If B is full rank, then
(B−1)T is an explicit basis for L∗(B).

b1

b2



Noisy simultaneous polynomial recovery, dual form
1. Let N(z) =

∏
i (z − zi ); a1(z), . . . , ac(z) | aj(zi ) = yij

2. Construct rescaled (by zℓN(z)) dual basis:

B∗ =


N(z)

N(z)
. . .

N(z)
a1(z) a2(z) . . . ac(z) zℓ


dim L(B∗) = c + 1

deg det L(B∗) = ℓ+ cn

3. Reduce B∗.

4. Let E (z) =
∏

i error(z − zi ). Target vector
v = (r1(z)E (z), r2(z)E (z), . . . , rc(z)E (z), x

ℓE (z)) in L∗ by
construction.

5. If (ℓ+ cn)/(c + 1) > n− h+ ℓ then expect v to be shortest
vector. (Equivalent to bound obtained by primal.)



Multi-polynomial recovery for stalker detection
Results: Privacy threshold improves with more curves.

Practical considerations: BLE broadcasts have 246 bits available. So e.g.
for c = 10 can use 22-bit F.



Dealing with multiple stalkers/valid solutions

Semi-principled approach: Use higher degree polynomials.

• Impractical: Dimension increases exponentially with
degree.

• Remains heuristic.



Dealing with multiple stalkers/valid solutions

Ad hoc approach with “linear” construction:
If multiple valid solutions match same number of inputs:

• Reduced lattice basis contains multiple vectors
matching target length.

• Vectors contain arbitrary-looking rational functions.
• We have a sort of ad hoc construction to recover the
targets after another reduction.

If one valid solution matches ≥ 2 more points than others:
• The most matchiest one is in the reduced basis; the
others are not.

• We can remove the matching points and iterate to
recover the others.

Open question: What is going on here?



Thoughts/Discussion
• Nearly all papers in this area focus on asymptotics;
application-oriented readers have great difficulty setting
or extracting actual parameters and running times.

• Open question: More formal/less heuristic theorems
matching case where received shares/messages are all
polynomial evaluations and not random noise.

• I am increasingly persuaded that what I presented as
the “dual” form is the “correct” formulation for all these
types of problems (including integer versions for
multivariate Coppersmith-type methods).

• Cryptographic secret-sharing community has been
applying some of this stuff for years in often exotic
settings.



On the possibility of a backdoor
in the Micali-Schnorr generator
On the Possibility of a Backdoor in the Micali-Schnorr
Generator. Hannah Davis, Matthew D. Green, Nadia
Heninger, Keegan Ryan, and Adam Suhl.
https://eprint.iacr.org/2023/440

https://eprint.iacr.org/2023/440


2004: Dual EC presented at NIST workshop



2005-2006: Dual EC standardized in NIST SP
800-90A



2005-2007: State-recovery backdoor possible in
Dual EC

“The relationship between P
and Q [in Dual EC] is used as an
escrow key and stored. . . the
output of the generator [is
used] to reconstruct the
random number with the
escrow key."



2012-2015: Hack of Juniper Network’s Dual EC
constants
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2012-2015: Hack of Juniper Network’s Dual EC
constants



History of Dual EC

. . . and Micali-Schnorr

Dual EC
2004 Proposed inclusion in ANSI x9.82
2005 NIST SP 800-9A draft

2005-2007 Identification of possible
backdoor

2013 Snowden Disclosures
2014 Removal from SP 800-90A

2012-2015 Exploitation of Juniper Networks

Micali-Schnorr
✓

ISO 18031
?
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History of Dual EC. . . and Micali-Schnorr

Dual EC
2004 Proposed inclusion in ANSI x9.82
2005 NIST SP 800-9A draft

2005-2007 Identification of possible
backdoor

2013 Snowden Disclosures
2014 Removal from SP 800-90A

2012-2015 Exploitation of Juniper Networks
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✓
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Micali-Schnorr’s design: repeated RSA encryption
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Micali-Schnorr’s design: repeated RSA encryption

2ksi+1 + bi+1 ≡ si
e (mod N)



Micali-Schnorr’s design: repeated RSA encryption

2ksi+1 + bi+1 ≡ si
e (mod N)



Micali-Schnorr’s design: repeated RSA encryption

Unclear how to recover the state using RSA decryption.



Does the factorization of the public modulus
lead to an attack against Micali-Schnorr?



Does the factorization, or otherwise malicious
construction, of the public modulus lead to an

attack against Micali-Schnorr?



Attacks against pseudorandom number generators

Attack model: Adversary knows or controls all parameters
except for initial seed, and observes algorithm outputs.

Attacker would like to:
• Compute current secret state.
• Predict future outputs.
• Distinguish outputs from truly random values.



Observation 1

There is no simple backdoor in
Micali-Schnorr.



No simple backdoors in Micali-Schnorr

Theorem
If RSA encryption is replaced with an invertible random function
then the Micali-Schnorr construction is provably secure.

Corollary
Any potential backdoor in Micali-Schnorr must exploit the
non-random structure of textbook RSA encryption.

RSA decryption alone is not enough.

Micali-Schnorr is like a sponge with duplex construction.
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Corollary
Any potential backdoor in Micali-Schnorr must exploit the
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Observation 2

There is an algebraic attack on
the standard with non-default

settings



Attempting Coppersmith-type methods
We want to recover unknown state from observed output.

s0
e − 2ks1 − b1 ≡ 0 mod N

s1
e − 2ks2 − b2 ≡ 0 mod N

Let |si | < R = 2r . Construct the lattice basis

B =


Re 0 −2kR 0 −b1
0 Re 0 −2kR −b2
0 0 NR 0 0
0 0 0 NR 0
0 0 0 0 N

 det L(B) = R2e+2N3

dim L(B) = 5

Success condition (ignoring small constants):

(det L(B))1/ dim L(B) = (R2e+2N3)1/5 < N

This gives R < N1/(e+1) or r < n/(e + 1).
Doesn’t work. ISO 18031 sets r = 2n/e.
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Backdooring Micali-Schnorr with non-default
exponent

Backdoor idea: Use non-default public exponent e where
the private exponent d is small. (e.g. e = 3−1 mod φN)

Coppersmith’s method successfully solves this polynomial.

(si+12k + bi+1)
d ≡ si mod N

ISO 18031: “The implementation should allow” non-default e.

But this is not a satisfying backdoor: Large e looks
suspicious.
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the private exponent d is small. (e.g. e = 3−1 mod φN)
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Observation 3

We can force short cycles in a
related RSA-based construction



RSA PRG

• State si = s0
e i mod N



RSA PRG can have short cycles

RSA PRG with N = 5154904286740261 and e = 3.
Iteration Value State si Output bi

0 s0 4047975530247052 338c
1 s0

e 2492861700191393 34a1
2 s0

e2 4862773567328857 9259
. . . . . . . . . . . .
16 s0

e16 810645248255668 a6b4
17 s0

e17 2887166220613321 b6c9
18 s0

e18 3479941204398616 d218

19 s0
e19 810645248255668 a6b4

20 s0
e20 2887166220613321 b6c9

. . . . . . . . . . . .
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. . . . . . . . . . . .
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. . . . . . . . . . . .



RSA PRG can have short cycles

• si ≡ se
i

0 mod N .

• We’re in an exponent in an exponent

• Order of s0 divides φ(φ(N))

• Easy to generate parameters where period is very
small factor of φ(φ(N)), giving short cycles

• Such parameters are insecure. . . but cycling outputs
would be visible to external user.



Observation 4

We can undetectably hide
relations between RSA PRG

states.



Candidate backdoor for RSA PRG: N embeds sparse
relation

Simple relation gives obvious cycles:

e i ≡ e j mod φ(N)

=⇒ si ≡ sj mod N

Cycles (obvious)

But relation with more terms hides cycles:

eh + e i ≡ e j + eℓ mod φ(N)

=⇒ sh · si ≡ sj · sℓ mod N
No cycles, but still exploitable!

Candidate RSA PRG backdoor:
Choose N to encode a sparse relation between powers of e
mod φ(N). Exploit via multivariate Coppersmith method.



Example RSA PRG backdoor

Fix e. Choose a sparse relation like
f (e) = e200 + e20 − e180 − e0 ≡ 0 mod φ(N).

Modulus generation:
1. Use ECM to find small factors pi of f (e).
2. Choose subsets S of factors and check if 1+

∏
i pi prime.

3. Repeat above until we have two factors.



Example RSA PRG backdoor

Fix e. Choose a sparse relation like
f (e) = e200 + e20 − e180 − e0 ≡ 0 mod φ(N).

Exploiting backdoor: Recall si ≡ se
i

0 mod N .

e200 + e20 ≡ e180 + e0 mod φ(N)

se
200

0 · se20

0 ≡ se
180

0 · se0

0 mod N

s200 · s20 ≡ s180 · s0 mod N

(2k r200 + b200)(2k r20 + b20) ≡ (2k r180 + b180)(2k r0 + b0) mod N

A simple multivariate Coppersmith construction can solve
for |ri | < N1/8.



Unclear how to get backdoor to work for
Micali-Schnorr

Truncation prevents us from building exploitable relations

• RSA PRG has an elegant closed form: si = s0
e i

• MS does not: si = ((((s0
e − b1)/2k)e − b2)/2k . . .

Trying to extend this idea results in a polynomial with
exponentially many terms in the number of outputs.

Open problem: Need further ideas to extend candidate
backdoor to Micali-Schnorr.
(e.g. Each state recurrence relation has few terms; can we
somehow solve without expanding?)



Thoughts/Discussion

• Open problem: Is there a Gröbner basis approach?
System is underconstrained without size limits on
solutions. We tried various methods to constrain
solution size but none worked.

• This problem has nerd-sniped generations of
cryptographers, and after this talk hopefully it has
nerd-sniped you too.

• We have never heard of anyone using Micali-Schnorr in
the real world.

• Micali-Schnorr will be removed from ISO 18031 in next
revision.


