Applications of fast integer and
polynomial lattice reduction
in cryptography

Nadia Heninger
UC San Diego

September 28, 2023

Are you looking for fun cryptographic applications?
NIST Post-Quantum Round 1 Additional Signatures

family submissions

code-based

isogenies

lattice-based

MPC-in-the-head

multivariate 1
symmetric

other

UUhONN—O

Are you looking for fun cryptographic applications?
NIST Post-Quantum Round 1 Additional Signatures

Are you looking for fast lattice reduction?
Coppersmith RSA small public exponent attack

2*0 [—KEF
------ KEF with Rounding
216 H —— fpLLL
------ fpLLL with Rounding
912
w
el
c
g 28
&
o1
20
= | " I I I L - - ! :

I
214 216 218 220 222 224 226 228 230 232 234 23G

lattice potential

Theorem (Heuristic)
Integer lattice reduction in time O(n®(p + n)1*e).
“Fast Practical Lattice Reduction through Iterated Compression”

Keegan Ryan and Nadia Heninger Crypto 2023
https://github.com/keeganryan/flatter

https://github.com/keeganryan/flatter

Are you looking for fast lattice reduction?
Coppersmith RSA small public exponent attack

912 |{--- Lot 4

seconds

98 | LT i
B P

21 |- ,—"' i

20 |- " -

! ! ! ! ! |
914 216 218 230 9232 934 236

Theorem (Heuristic)
Integer lattice reduction i e O(n“(p + n)**e).

“Fast Practical Lattice Reduction through Iterated Compression”
Keegan Ryan and Nadia Heninger Crypto 2023
https://github.com/keeganryan/flatter

https://github.com/keeganryan/flatter

This talk

1. Privacy-preserving Airtag stalker detection (with
polynomial lattice reduction!)

2. On the Possibility of a Backdoor in the Micali-Schnorr
Generator (with integer lattices!)

Privacy-preserving Airtag
stalker detection

Abuse-Resistant Location Tracking: Balancing Privacy and Safety
in the Offline Finding Ecosystem. Gabrielle Beck, Harry
Eldridge, Matthew Green, Nadia Heninger, and Abhishek
Jain. https://eprint.iacr.org/2023/1332

https://eprint.iacr.org/2023/1332

How do airtags work?

Internet

pairing relanonsh/p 1

BLE/ BLE/
UWB UWB

LTA LTA

(near-owner mode) (separated mode)
Owner Device

Internet
- »

Service Provider (SP)

Tracking Network

1. Airtags emit a 248-bit Bluetooth Low Energy broadcast

every 2s.

2. Any nearby devices receive broadcasts, collect, and
upload to Apple’s servers along with location.

3. Users can query server for tag identifier and receive

location reports.

Privacy threats
Threat: Airtags allow others to monitor your location
e Countermeasure: Tags rotate identifiers periodically.

Privacy threats

Threat: Airtags allow others to monitor your location
e Countermeasure: Tags rotate identifiers periodically.

Threat: Stalker places an Airtag on your car/person

e Countermeasure: Your device sends an alert if it sees
the same identifier for some period of time.

Tracking Notification

nnnn

L

or

@ e
Your current location can

Disable AirTag

Pause Tracking Notifications

Privacy threats

Threat: Airtags allow others to monitor yo

ur locati
e Countermeasure: Tags rotate identifie

Threat: Stalker places an Airtag on your car/person
e Countermeasure: Your device send 2

ds-an-alert if it sees
the same identifier for some period of time.

Tracking Notification "

nnnn

) o

o]\ Washington

o/
s o
<o~
% S

n =
F— =

. @ O e

Your current location can o)

be seen by the owner of
this AirTag

Disable AirTag
AirTag Detected Near You s
Bring iPhone Near AirTag Pust
° bring the top of your iPhone
Play Sound AT,
b notfication to e an Apple we bste
(]

Pause Tracking Notifications

Research Goal
Allow stalker detection while maximizing privacy against
location tracking.

Construction ldea:
e Use Shamir secret sharing.

¢ Tag chooses secret polynomial f € Fq[z] and broadcasts
evaluations

(z1,f(21)), (22, (22)), ..., (2n, f(2zn))

¢ Privacy threshold: No party observing fewer than deg f
broadcasts can distinguish from random.

¢ Noise: A moving device will receive broadcasts from
many tags; some broadcasts dropped.

Stalker detection is polynomial interpolation with noise
= Reed-Solomon decoding.

Detecting multiple stalkers = Reed-Solomon list decoding

Polynomial interpolation with noise

Input:
4 2o z3 Z4 Zs5 Z6 z7 Z3
n Y2 y3 Y4 Y5 Y6 yr 8
r1(21) r1(22) r2(23) r1(24) r3(25) r1(z6) r2(27) r1(28)

Desired output: r

Let
Nz)=][(z=2): Hz)=][] (z-2)

i iln(zi)=y;
Interpolate a(z) so
a(zj) =yi

Then

Polynomial lattices

Definition

F[z]-module: B = (by, by, . ..

, bn), b; € F(Z)n

L(B) = {vilvi=)", aib;, a; € Fz], b; € B}.

Definition
Vector length
deg v = max; deg v;.

Definition
Determinant
det L(B) = det B

Lattice basis reduction for polynomial lattices

von zur Gathen, Mulders and Storjohann

Pivot: right-most element of maximal degree in vector

Definition
A basis is reduced if its pivots are all in different columns.

Fact
If {bi} is a reduced basis for L, degdet L =). deg b;.

Theorem
A reduced basis contains a vector with deg v < (degdet L)/ dim L.

Theorem
A reduced basis contains a shortest vector of L.

Theorem (Giorgi, Jeannerod, Villard)

(dim L)**t°(M) D running time for polynomial lattice reduction
(D =max degree)

Reed-Solomon decoding via polynomial lattices

Z1 Zy Z3 Zy Zy Zs Z7 oo Zn
Yo Y2 Y3 ya Ys Yo Yr .- Yn
Output: r s.t. deg r < ¢ and r(x;) = y; for > hvalues of i.

Input:

1. Let
Nz)=]J(z—2): a(2)]a(z)=yVi

2. Construct

¢ —a(z) dimL(B) =2
B= [N(z)] degdetL(B)={(+n
3. Reduce B to find a vector (z/q1(z2), g2(2)).
4. If (¢ + n)/2 < hthen solution r(z) = g2(2)/q1(2).

List-decoding for Reed-Solomon codes

Guruswami Sudan

Theorem (Guruswami Sudan)
In polynomial time can find all ri(z) s.t. deg ri(z) < h?/n.

Previous construction: Construct polynomial
Q(x) = g1(2)x + g2(2) with the property that Q(r(z)) = 0.

Guruswami-Sudan construction: Construct polynomial
Q(x) of degree t; roots r; are among t roots of Q.

Theorem (Jeannerod, Neiger, Schost, Villard)

Interpolation/reduction step can be done in
O(t*~1 M(tl) log(tl) log(¥)) time.

Applying Guruswami-Sudan for stalker detection

Problem 1: Privacy threshold far from stalker detection time.

Achievable Privacy at Different Noise Rates

1 stalker 2 stalker 3 stalker
60 60
50 50 50
= 401 z % = 404
E g g
o 2 2
g 30 g 304 g 301
& = =
x x x
3 3 3
= 204 = 204 = 20-\\
10 10 10
ol r T 0L r T 0L r T
0.0 05 1.0 0.0 0.5 10 0.0 05 10
Non-stalker noise rate (%) Non-stalker noise rate (%) Non-stalker noi —— Gs)

Problem 2: Huge memory consumption and running time at

asymptotic bounds.
Dimension t ~ hn and degree nh?; n > 1800 for 2s broadcasts

and 1h window.

Alternative coding-based constructions

Various extensions of Reed-Solomon codes have better
theoretical decoding rates:

e Parvaresh-Vardy

e Folded Reed-Solomon Codes

However:

e Algebraically structured correlations within/across
broadcasts may not satisfy secret sharing properties.

Open problem: Say something more rigorous about
this.

e Don't perform well for our desired parameters.

Construction: Multiple polynomial evalutions

(Like an interleaved Reed-Solomon code)

In each epoch, user generates random ry, ... r. € F[Z].

Z1 Z2 Z3 Z4 Z5 Zg z7 zZg
rl(zl) r1(22) r1(23) r1(24) r1(25) r1(26) I’1(Z7) r1(28)
r(z1) | r(z2) rn(zs) rn(z) rn(z) rplz) plz) o)

() | re(@) re(z) re(z) relzs) re(zs) relz) re(zs)

Noisy simultaneous polynomial recovery

Input:
71 2 z3 Z4 Z5 Z6 z7 Z8
rll(zl) rll(z2) I’21(Z3) r11(24) r31(25) I’21(26) r21(27) rll(ZS)
no(z1) no(z) ro(z) no(za) rmo(zs) roa(ze) ro(zr) rna(zs)

flc&Zl) f1c&22) rzc(-Zs) f1ci24) f3c£25) r2c(-26) f2ct27) rlc(z8)

Desired output: ri1, rio, ..., ric, maybe ry, ro, ..., rac

Noisy simultaneous polynomial recovery

Input:

Z1 22 Z3 Z4 Z5 Zp z7 zZ3
[ni(z1) rmi(z) rmi(z) ri(z) mi(zs) rmi(ze) mi(z) ni(zs) |
n2(z1) na(z) r2(zs) n2(z) rma(zs) ra(zs) rn2(z) ro(zs)
rlc(Zl) rlc(z2) r2c(z3) rlc(z4) r3c(Z5) r2c(26) r2c(z7) rlc(ZS)

Desired output: ri1, o, ..., ric

Let

Nz)=][(z=2): H=z=][] (z-2)
i i\rij(zi)=y;Vj
Interpolate ai(z),...,ac(z) so aj(zi) = y; Vi, j
Then

ged(n1(z) — ai(z), n2(z) — ax(z),

...,N(z)) = H(2)

Noisy simultaneous polynomial recovery via lattices

1. Let N(z) =[[;(z — zi); a1(2),...,ac(2) | aj(zi) = yjj

2. Construct

B —a1(2)]
z* ~a(2) dimL(B) = c +1
B = : degdetL(B)=cl+n
z' —ac(z)
N(z) |

3. Reduce B to find m short vectors.

4. Map vectors to linear equations in m unkowns; solve
system for r;;.

5. If (¢ + n)/(c + 1) < hthen hope to find solution.

Polynomial lattice duality

Definition

The dual lattice L* is defined as all
vectors w € F(x)™ satisfying
(w,v) € F[x] forv € L.

Explicit basis: If B is full rank, then

(B~1)T is an explicit basis for L*(B).

Noisy simultaneous polynomial recovery, dual form

B*

1.
2.

Let N(z) =[[;(z—z); ai(2),...,ac(2) | aj(zi) = yj
Construct rescaled (by zN(z)) dual basis:

N(z)
N(z) dimL(B*) =c+1
' degdet L(B*) ={¢+cn
N(z
La1(2) a(z) ... ac(z) ZY]
. Reduce B*.

Let E(z) = [[;error(z — zi). Target vector
v=(n(z)E(z),rn(z)E(2),..., rc(z)E(z),er(z)) in L* by
construction.

If (¢ +cn)/(c+1) > n— h+{then expect v to be shortest
vector. (Equivalent to bound obtained by primal.)

Multi-polynomial recovery for stalker detection
Results: Privacy threshold improves with more curves.

Achievable Privacy at Different Noise Rates

1 stalker 2 stalker 3 stalker
60 60
50 - 50 1 \ 50 %
T 401 z a0 z 40—\
E E £
z Z g
= = =
= o o
> bl ka3
T © ©
= 20 = 20 = 20—\
10 4 10 4 10 4 G5
c=4
— =9
0 ‘ ‘ oL . . 0 = c=10
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0— c=14
Non-stalker noise rate (%) Non-stalker noise rate (%) Non-stalker 1 —— ¢=17)

Practical considerations: BLE broadcasts have 246 bits available. So e.g.
for ¢ = 10 can use 22-bit F.

Dealing with multiple stalkers/valid solutions

Semi-principled approach: Use higher degree polynomials.

¢ Impractical: Dimension increases exponentially with
degree.

e Remains heuristic.

Dealing with multiple stalkers/valid solutions

Ad hoc approach with “linear” construction:
If multiple valid solutions match same number of inputs:

e Reduced lattice basis contains multiple vectors
matching target length.
e Vectors contain arbitrary-looking rational functions.

e We have a sort of ad hoc construction to recover the
targets after another reduction.

If one valid solution matches > 2 more points than others:
e The most matchiest one is in the reduced basis; the
others are not.

e We can remove the matching points and iterate to
recover the others.

Open question: What is going on here?

Thoughts/Discussion

e Nearly all papers in this area focus on asymptotics;
application-oriented readers have great difficulty setting
or extracting actual parameters and running times.

e Open question: More formal/less heuristic theorems
matching case where received shares/messages are all
polynomial evaluations and not random noise.

¢ | am increasingly persuaded that what | presented as
the “dual” form is the “correct” formulation for all these
types of problems (including integer versions for
multivariate Coppersmith-type methods).

e Cryptographic secret-sharing community has been
applying some of this stuff for years in often exotic
settings.

On the possibility of a backdoor
in the Micali-Schnorr generator

On the Possibility of a Backdoor in the Micali-Schnorr
Generator. Hannah Davis, Matthew D. Green, Nadia
Heninger, Keegan Ryan, and Adam Suhl.
https://eprint.iacr.org/2023/440

https://eprint.iacr.org/2023/440

2004: Dual EC presented at NIST workshop

ECC DRBG Flowchart

——

seedTrs
1 Ened

madaly (o 5) (s 1)) olx(S* Q)L Extrart ___, Pseudorandom

Bits Rits
additional input T T
0 F 0

I aditimal g = ol

July 20, 2004 (dbj) NIST RNG Workshop 10
Number Theoretic DRBGs

2005-2006: Dual EC standardized in NIST SP
800-90A

A1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves with associated points shall be
used in applications requiring certification under [FIPS 140]. More details about these
curves may be found in [FIPS 186]. If alternative points are desired, they shall be
generated as specified in Appendix A.2.

Px = 6bl7d1f2 e12c4247 f8bcebe5 63a440f2 77037d81 2deb33al
4213945 dB9B8c296

Py = 4fe342e2 fela7f9% BeeTebda 7c0f9%16 2bce3357 6b3lbece
cbb64068 37bf51f5

Ox = c97445f4 5cdef9£f0 d3e05ele 585fc297 235b82b5 beBfflef
ca67c598 520181892

Qy = b28ef557 ba3ldfch dd2lac46 e2a%le3c 304f44cb 87058ada
2cb81515 1e610046

2005-2007: State-recovery backdoor possible in
Dual EC

L9

On the Possibility of a Back Door
in the NIST SP800-90 Dual Ec
Prng

Dan Shumow
Niels Ferguson
Microsoft

“The relationship between P
and Q [in Dual EC] is used as an
escrow key and stored...the
output of the generator [is
used] to reconstruct the
random number with the
escrow key."

2012-2015: Hack of Juniper Network’s Dual EC
constants

Important Announcement about ScreenOS®

™ Byadscholl posted 12-17-2015 09:02

IMPORTANT JUNIPER SECURITY ANNOUNCEMENT

2012-2015: Hack of Juniper Network’s Dual EC

constants

Important Announcement about ScreenOS®

®

By dscholl posted 12-17-2015 09:02

‘CUSTOMER UPDATE: DECEMBER 20,2015

IMPORTANT JUNIPER SECURITY ANNOUNCEMENT

through 6.3.020.

First on CNN: Newly discovered hack has U.S.
fearing foreign infiltration

[Y& e
o o - e 23

Avses

2012-2015: Hack of Juniper Network’s Dual EC
constants

Important Announcement about ScreenOS®

®

By dsch

IMPORT

cusTomeR uPDAT)

Administative Acced
through 6.3.020.

Westrongly recomny

POSTED BY B0BW(

|

2c55e5e45edf713d
c43475effe8813a6
0326a64d9ba3d2e3

|

9585320EEAF81044
F20D55030A035B11
BECE81C785E6C933
E4ABA131F6578107

|
a
%

APT 5—Suspected
Chinese state-
sponsored hackers—
break into...

.Juniper Networks
and alter NetScreen's
ScreenOS software...

.by replacing the
“Qvalue,” a large
number in the algorithm
used to help create
encryption keys.

This hijacks the alleged
backdoor in the NSA
algorithm, enabling the
hackers to...

_.potentially decode
the encrypted
communications of
NetScreen customers.

researchers

iiar with the matter, compar

NCEMENT

201577

it prioriy

First on CNN: Newly discovered hack has U.S.
fearing foreign infiltration

. @ By Evan Porez and stimen Prokupecs, CNN
Updated 10:09 AM EST, Sat Decemoer 19,2015

Avses

History of Dual EC

Dual EC
2004 Proposed inclusion in ANSI x9.82
2005 NIST SP 800-9A draft

2005-2007 Identification of possible
backdoor

2013 Snowden Disclosures
2014 Removal from SP 800-90A
2012-2015 Exploitation of Juniper Networks

2004: Micali-Schnorr presented at NIST workshop

Micali-Schnorr DRBG

T —

H =gt = hfmotohit
Lot tima 4nd ot miwd @T i fmodn | "

|+ [3faps R :
{0yt i 1‘ Tt Pt doandan bits
Ve 221

Em»l gr= 1l

E
o
e

—

t
B8

July 20, 2004 (dbj) NIST RNG Workshop

Number Theoretic DRBGs

2005: Micali-Schnorr standardized in ISO 18031

bé6fbfda
b421b158
el2e6d771
d0355aal

clla0O1f2
905b06£f4
4f8bla6b
509299%bb
7973e36¢
e71lbdOba
2d036el3
3b486d74

fbac2fd8
0753£304
ableca54
55d4d912

5daf396a
1f6d47ab
96661e40
cca63dee
1fb13086
b9b269c3
0e07e233
371a20fc

The hexadecimal value of the modulus 7 is:

2ebl3dc4
a671ff8b
e62bfdb5
6140dcfa

The hexadecimal value of the modulus 7 is:

a927157b
1b3a2cl2
7d3043ec
435a2251
d9231b6b
9a7a827a
06a39b18
3e2l4bce

D.2.2 Default modulus n of size 1024 bits

4fal70ff
55dd8abf
85c311b0
b9p03£62

D.2.3 Default modulus n of size 2048 bits

af6£504f
17d14d15
d1023126
ad0765d4
925a8495
41311ffa
dbOe8efe
7ed0e797

c9f7cTb5
b53d31lab
58e9cd3f
a5032d06

78cba324
070c9da5
5d8ealdl
9d29db2e
4balfbca
4470140c
64418880
5ead44453

1d55b214
alad742f
aab758a5
536d8574

57b58c6b
24734ada
81lcf23c6
f5abal6l
feaB844ea
8b6509fe
8lac3673
cdl61d32

4cc2257b
21857acf
€2896849
0988£384

£7d851af
2fel7a95
dd3dec9e
279%aeb5f
77a9£852
5dbd39e3
2b4091£f6
8185204

Each modulus is of the form n = pg with p = 2p; + 1, g = 2q; + 1, where p; and g are (Ig(n)/2 — 1)-bit primes.

29df3£f62
8l4af3fl
6ecldd5l
27£35885

42385cc’7
e600ae9a
b3fce204
6899fe48
£86915a4
ec816066
63690403
59896571

History of Dual EC...and Micali-Schnorr

Dual EC Micali-Schnorr
2004 Proposed inclusion in ANSI x9.82 v
2005 NIST SP 800-9A draft ISO 18031
2005-2007 Identification of possible
backdoor

2013 Snowden Disclosures
2014 Removal from SP 800-90A
2012-2015 Exploitation of Juniper Networks

Micali-Schnorr's design: repeated RSA encryption

Micali-Schnorr's design: repeated RSA encryption

| s |

—

‘ s¢ mod N

Micali-Schnorr's design: repeated RSA encryption

| . |
I
. k bits s
[1
‘ s¢ mod N ‘
L l 1 I
‘ Si+1 ‘ bi+1 }—*

2kS,'+1 + biy1 = si€ (mod N)

Micali-Schnorr's design: repeated RSA encryption

S; ‘
J
. k bits s
[1

‘ s¢ mod N ‘
L l 1 l I

‘ Si+1 ‘ bi+1
J

f—

€
‘ 57,4 mod N
L 1

l |

‘ Si+2 ‘ bi+2

"

"

2kS,'+1 + biy1 = si€ (mod N)

Micali-Schnorr's design: repeated RSA encryption

| |

Unclear how to recover the state using RSA decryption.

Does the factorization of the public modulus
lead to an attack against Micali-Schnorr?

Does the factorization, or otherwise malicious
construction, of the public modulus lead to an
attack against Micali-Schnorr?

Attacks against pseudorandom number generators

Attack model: Adversary knows or controls all parameters
except for initial seed, and observes algorithm outputs.

Attacker would like to:
e Compute current secret state.
e Predict future outputs.
e Distinguish outputs from truly random values.

Observation 1

There is no simple backdoor in
Micali-Schnorr.

No simple backdoors in Micali-Schnorr

Theorem
If RSA encryption is replaced with an invertible random function
then the Micali-Schnorr construction is provably secure.

Corollary

Any potential backdoor in Micali-Schnorr must exploit the
non-random structure of textbook RSA encryption.

RSA decryption alone is not enough.

No simple backdoors in Micali-Schnorr

Theorem
If RSA encryption is replaced with an invertible random function
then the Micali-Schnorr construction is provably secure.

Corollary

Any potential backdoor in Micali-Schnorr must exploit the
non-random structure of textbook RSA encryption.

RSA decryption alone is not enough.

absorbing | squeezing
|

pi 1 20 Z1

Micali-Schnorr is like a sponge with duplex construction.

Observation 2

There is an algebraic attack on
the standard with non-default
settings

Attempting Coppersmith-type methods

We want to recover unknown state from observed output.

50¢ —2Ks; — by =0 mod N

Sle —2k52 — b2 =0mod N

Attempting Coppersmith-type methods

We want to recover unknown state from observed output.

50¢ —2Ks; — by =0 mod N

Sle —2k52 — b2 =0mod N

Let |si| < R = 2". Construct the lattice basis

Re 0 —2kR 0 —b

0 RE 0 2R —hy L et2 a3
B=|0 0 NR 0 0 det L(B) = R™T°N

0 0 0 NR 0 dimL(B) =5

0 0 0 0 N

Success condition (ignoring small constants):
(det L(B))l/dim L(B) _ (R2e+2N3)1/5 <N

This gives R < NY/(¢+D or r < n/(e +1).

Attempting Coppersmith-type methods

We want to recover unknown state from observed output.

50¢ —2Ks; — by =0 mod N

Sle —2k52 — b2 =0mod N

Let |si| < R = 2". Construct the lattice basis

Re 0 —2kR 0 —b

0 RE 0 2R —hy L et2 a3
B=|0 0 NR 0 0 det L(B) = R™T°N

0 0 0 NR 0 dimL(B) =5

0 0 0 0 N

Success condition (ignoring small constants):
(det L(B))l/dim L(B) _ (R2e+2N3)1/5 <N

This gives R < NY/(¢+D or r < n/(e +1).
Doesn’t work. ISO 18031 sets r = 2n/e.

Backdooring Micali-Schnorr with non-default
exponent

Backdoor idea: Use non-default public exponent e where
the private exponent d is small. (e.g. e = 37! mod pN)

Coppersmith’s method successfully solves this polynomial.

(5,-+12k + b,-+1)d = s mod N

Backdooring Micali-Schnorr with non-default
exponent

Backdoor idea: Use non-default public exponent e where
the private exponent d is small. (e.g. e = 37! mod pN)

Coppersmith’s method successfully solves this polynomial.

(5,-+12k + b,-+1)d = s mod N

ISO 18031: “The implementation should allow” non-default e.

But this is not a satisfying backdoor: Large e looks
suspicious.

Observation 3

We can force short cyclesin a
related RSA-based construction

RSA PRG

k bits

| %

‘ s1=s;mod N
L

‘ 59 = s{ mod N |
L

| s3 = sy mod N |
L

e State s; = soei mod N

RSA PRG can have short cycles

RSA PRG with N = 5154904286740261 and e = 3.

Iteration Value States; Output b;
0 o 4047975530247052 338¢

1 s0¢ 2492861700191393 34a1

2 ¢ 4862773567328857 9259

16 0% 810645248255668 a6b4

17 ¢ 2887166220613321 b6c9

18 50" 3479941204398616 d218

RSA PRG can have short cycles

RSA PRG with N = 5154904286740261 and e = 3.

Iteration Value States; Output b;
0 o 4047975530247052 338¢

1 s0¢ 2492861700191393 34a1

2 ¢ 4862773567328857 9259

16 0¢° 810645248255668 a6bd

17 ¢ 2887166220613321 b6c9

18 50" 3479941204398616 d218

19 0¢° 810645248255668 a6b4

RSA PRG can have short cycles

RSA PRG with N = 5154904286740261 and e = 3.

Iteration Value States; Output b;
0 o 4047975530247052 338¢

1 s0¢ 2492861700191393 34a1

2 ¢ 4862773567328857 9259

16 0¢° 810645248255668 a6b4

17 ¢ 2887166220613321 b6c9

18 50" 3479941204398616 d218

19 0¢° 810645248255668 a6b4

20 0 2887166220613321 b6c9

RSA PRG can have short cycles

5 = sgi mod N.
¢ We're in an exponent in an exponent
e Order of sy divides ¢(¢(N))

e Easy to generate parameters where period is very
small factor of o(p(N)), giving short cycles

e Such parameters are insecure... but cycling outputs
would be visible to external user.

Observation 4

We can undetectably hide
relations between RSA PRG
states.

Candidate backdoor for RSA PRG: N embeds sparse
relation

Simple relation gives obvious cycles:

el =¢ mod p(N)
= s;=s5 mod N
Cycles (obvious)

But relation with more terms hides cycles:

e+ e =e +e' mod p(N)

= sp-5i=s-5 mod N
No cycles, but still exploitable!

Candidate RSA PRG backdoor:
Choose N to encode a sparse relation between powers of e
mod ¢(N). Exploit via multivariate Coppersmith method.

Example RSA PRG backdoor

Fix e. Choose a sparse relation like
f(e) = €200 4 20 _ 180 _ o0 = () mod o(N).

Modulus generation:
1. Use ECM to find small factors p; of f(e).
2. Choose subsets S of factors and check if 1+ []; pi prime.
3. Repeat above until we have two factors.

Example RSA PRG backdoor

Fix e. Choose a sparse relation like
f(e) = €200 4 20 _ 180 _ 20 = () mod o(N).

Exploiting backdoor: Recall s; = s¢ mod N.

6200 + e20 = e180 + eO mod (p(N)

200 0

2 180 0
ss S5 =55 s mod N
5200 * S20 = 5180 * SO mod N

(2K 00 + baoo)(25 20 + bao) = (25 180 + bigo) (2510 + bo) mod N

A simple multivariate Coppersmith construction can solve
for |rj| < NV/8,

Unclear how to get backdoor to work for
Micali-Schnorr

Truncation prevents us from building exploitable relations

e RSA PRG has an elegant closed form: s; = 50
e MS does not: s; = ((((s0® — b1)/25)¢ — by) /2K ...

Trying to extend this idea results in a polynomial with
exponentially many terms in the number of outputs.

Open problem: Need further ideas to extend candidate
backdoor to Micali-Schnorr.

(e.g. Each state recurrence relation has few terms; can we
somehow solve without expanding?)

Thoughts/Discussion

® Open problem: Is there a Grébner basis approach?
System is underconstrained without size limits on
solutions. We tried various methods to constrain
solution size but none worked.

¢ This problem has nerd-sniped generations of
cryptographers, and after this talk hopefully it has
nerd-sniped you too.

e We have never heard of anyone using Micali-Schnorr in
the real world.

e Micali-Schnorr will be removed from ISO 18031 in next
revision.

