Border rank, homogeneity and de-bordering paradigms in GCT

Based on joint works with – Prateek Dwivedi (IITK), Gorav Jindal (MPI), Fulvio Gesmundo (U. Saarland), Christian Ikenmeyer (U. Warwick), Vladimir Lysikov (U. Bochum), Nitin Saxena (IITK).

Pranjal Dutta National University of Singapore

26th September, 2023 RTCA @ Institut Henri Poincaré, Paris $\Box \quad \text{Can we write } x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^s \ell_i^n, \text{ where } \ell_i \text{ are linear forms,} \\ \text{(i.e. } \ell_i = a_1 x_1 + \cdots + a_n x_n)?$

- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^{s} \ell_i^n$, where ℓ_i are linear forms, (i.e. $\ell_i = a_1 x_1 + \cdots + a_n x_n$)?
- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \det(A)$, where *A* is a matrix, with entries ℓ_i affine linear forms (i.e. $\ell_i = a_0 + a_1x_1 + \cdots + a_nx_n$)?

- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^{s} \ell_i^n$, where ℓ_i are linear forms, (i.e. $\ell_i = a_1 x_1 + \cdots + a_n x_n$)?
- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \det(A)$, where *A* is a matrix, with entries ℓ_i affine linear forms (i.e. $\ell_i = a_0 + a_1x_1 + \cdots + a_nx_n$)?
- □ Can approximations on the RHS help above (think $\ell_i = \ell_i(\varepsilon, \mathbf{x})$ and take $\lim_{\varepsilon \to 0}$)?

- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^{s} \ell_i^n$, where ℓ_i are linear forms, (i.e. $\ell_i = a_1 x_1 + \cdots + a_n x_n$)?
- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \det(A)$, where *A* is a matrix, with entries ℓ_i affine linear forms (i.e. $\ell_i = a_0 + a_1x_1 + \cdots + a_nx_n$)?

□ Can approximations on the RHS help above (think $\ell_i = \ell_i(\varepsilon, \mathbf{x})$ and take $\lim_{\varepsilon \to 0}$)?

 \Box Can we solve $2^{1000000} \times 2^{1000000}$ Sudoku efficiently?

- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^{s} \ell_i^n$, where ℓ_i are linear forms, (i.e. $\ell_i = a_1 x_1 + \cdots + a_n x_n$)?
- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \det(A)$, where *A* is a matrix, with entries ℓ_i affine linear forms (i.e. $\ell_i = a_0 + a_1x_1 + \cdots + a_nx_n$)?

□ Can approximations on the RHS help above (think $\ell_i = \ell_i(\varepsilon, \mathbf{x})$ and take $\lim_{\varepsilon \to 0}$)?

- \Box Can we solve $2^{1000000} \times 2^{1000000}$ Sudoku efficiently?
- □ Content of the talk: They are intimately related!

- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \sum_{i=1}^{s} \ell_i^n$, where ℓ_i are linear forms, (i.e. $\ell_i = a_1 x_1 + \cdots + a_n x_n$)?
- □ Can we write $x_1 \cdots x_n + y_1 \cdots y_n = \det(A)$, where *A* is a matrix, with entries ℓ_i affine linear forms (i.e. $\ell_i = a_0 + a_1x_1 + \cdots + a_nx_n$)?

□ Can approximations on the RHS help above (think $\ell_i = \ell_i(\varepsilon, \mathbf{x})$ and take $\lim_{\varepsilon \to 0}$)?

- \Box Can we solve $2^{1000000} \times 2^{1000000}$ Sudoku efficiently?
- □ Content of the talk: They are intimately related!
- □ We study different measure on $S^d \mathbb{C}^n := \mathbb{C}[x_1, \cdots, x_n]_d$ = set of *d*-degree homogeneous polynomials.

- 1. Determinant vs. Permanent
- 2. Waring and border Waring rank
- 3. Border Complexity
- 4. A few more complexity measures
- 5. Some upper bounds and lower bounds on border Chow rank
- 6. Conclusion

Determinant vs. Permanent

□ P ≠ NP: One of the most fundamental open problem both in theoretical computer science and mathematics. ← Inefficiency to solving Sudoku

□ P ≠ NP: One of the most fundamental open problem both in theoretical computer science and mathematics. ← Inefficiency to solving Sudoku

□ P ≠ NP: One of the most fundamental open problem both in theoretical computer science and mathematics. ← Inefficiency to solving Sudoku

□ Besides the 'intellectual barrier', some barrier results are known, explaining why we *couldn't' solve it*! E.g. 1994 Razborov-Rudich '*natural proofs barrier*'.

□ P ≠ NP: One of the most fundamental open problem both in theoretical computer science and mathematics. ← Inefficiency to solving Sudoku

- Besides the 'intellectual barrier', some barrier results are known, explaining why we couldn't' solve it! E.g. 1994 Razborov-Rudich 'natural proofs barrier'.
- □ Very few techniques are known that could potentially break this barrier.

□ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.

- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.
 - ➤ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or the determinant vs permanent problem.

- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.
 - ➤ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or the determinant vs permanent problem.
 - GCT defines Border Complexity, which was independently defined by Bürgisser (2001).

- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.
 - ➤ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or the determinant vs permanent problem.
 - GCT defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.

- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.
 - ➤ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or the determinant vs permanent problem.
 - GCT defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - GCT proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].

- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the natural-proof barrier.
 - ➤ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or the determinant vs permanent problem.
 - GCT defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - GCT proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].
 - ➢ GCT captures 'algebraic approximations'.

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}$$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

 \Box E.g. dc($x_1 \cdots x_n + y_1 \cdots y_n$) = n, since

$$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}.$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n + y_1 \cdots y_n$) = n, since

$$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

□ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?
- A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?
- A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} \, .$$

□ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $dc(f_n) = n^{\omega(1)}$?
- A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the **permanental** complexity pc(*f*).

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\label{eq:VBP} \Box \ \ \mathsf{VBP} \subseteq \mathsf{VNP}.$

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\label{eq:VBP} \Box \ \ \mathsf{VBP} \subseteq \mathsf{VNP}.$

```
Valiant's Conjecture [Valiant 1979]
```

VNP $\not\subseteq$ VBP. Equivalently, dc(perm_n) = $n^{\omega(1)}$.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\Box VBP \subseteq VNP.$

Valiant's Conjecture [Valiant 1979]

VNP $\not\subseteq$ VBP. Equivalently, dc(perm_n) = $n^{\omega(1)}$. In other words, if perm_n = det_m($\ell_1, \ldots, \ell_{m^2}$), then $m = n^{\omega(1)}$.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\Box VBP \subseteq VNP.$

Valiant's Conjecture [Valiant 1979]

VNP $\not\subseteq$ VBP. Equivalently, dc(perm_n) = $n^{\omega(1)}$. In other words, if perm_n = det_m($\ell_1, \ldots, \ell_{m^2}$), then $m = n^{\omega(1)}$.

(1) Over \mathbb{F} of characteristic $\neq 2$, $2^n - 1 \ge m \ge n^2/2$ [Mignon-Ressayre'04, Cai-Chen-Li'10, Grenet'14].

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\Box VBP \subseteq VNP.$

Valiant's Conjecture [Valiant 1979]

VNP $\not\subseteq$ VBP. Equivalently, dc(perm_n) = $n^{\omega(1)}$. In other words, if perm_n = det_m($\ell_1, \ldots, \ell_{m^2}$), then $m = n^{\omega(1)}$.

(1) Over F of characteristic ≠ 2, 2ⁿ - 1 ≥ m ≥ n²/2 [Mignon-Ressayre'04, Cai-Chen-Li'10, Grenet'14].
 (2) Over R, m ≥ (n - 1)² + 1 [Yabe'15].

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

> P/poly \neq NP/poly \implies VBP \neq VNP (over finite fields).

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.
- $\square P/poly = NP/poly \implies PH = \Sigma_2$

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.
- □ P/poly = NP/poly \implies PH = Σ_2 (i.e. Polynomial Hierarchy collapses) [Karp-Lipton 1980].

Waring and border Waring rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of h, WR(h), is the smallest r such that h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

Let $h \in S^d \mathbb{C}^n$. Waring rank of h, WR(h), is the smallest r such that h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

 \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

Let $h \in S^d \mathbb{C}^n$. Waring rank of h, WR(h), is the smallest r such that h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

 \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

 \succ WR(·) is *sub-additive*: WR(*f* + *g*) ≤ WR(*f*) + WR(*g*).

Let $h \in S^d \mathbb{C}^n$. Waring rank of h, WR(h), is the smallest r such that h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

 \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

- ▶ $WR(\cdot)$ is sub-additive: $WR(f + g) \le WR(f) + WR(g)$.
- $\succ \text{ [Carlini-Catalisano-Geramita 2012]} \\ \text{WR}(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$

Let $h \in S^d \mathbb{C}^n$. Waring rank of h, WR(h), is the smallest r such that h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

 \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

- ▶ $WR(\cdot)$ is sub-additive: $WR(f + g) \le WR(f) + WR(g)$.
- $\succ \text{ [Carlini-Catalisano-Geramita 2012]} \\ \text{WR}(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$
- □ The class VW is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded WR (f_n) .

□ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\Box X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\square X_1 = \{h \mid WR(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\Box X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.
- □ Such $f = b^2 4ac$ is sometimes called a 'polynomial obstruction' or a 'separating polynomial'.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\square X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.
- □ Such $f = b^2 4ac$ is sometimes called a 'polynomial obstruction' or a 'separating polynomial'.
- □ X_1 is a *closed* set. If there are three sequences (a_n, b_n, c_n) such that $a_n \rightarrow a, b_n \rightarrow b, c_n \rightarrow c$, i.e. limits exist, such that $(a_n, b_n, c_n) \in X_1$, then $(a, b, c) \in X_1$.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\square X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.
- □ Such $f = b^2 4ac$ is sometimes called a 'polynomial obstruction' or a 'separating polynomial'.
- □ X_1 is a *closed* set. If there are three sequences (a_n, b_n, c_n) such that $a_n \rightarrow a, b_n \rightarrow b, c_n \rightarrow c$, i.e. limits exist, such that $(a_n, b_n, c_n) \in X_1$, then $(a, b, c) \in X_1$.

□ Example: $WR(x^2y) \le 3$, because

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

Prove: $WR(x^2y) = 3$.

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

D Prove: $WR(x^2y) = 3$.

 $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

□ Prove: WR(x²y) = 3. □ Let $h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h$ (coefficient-wise).

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 $\begin{array}{l} \square \mbox{ Prove: } WR(x^2y) = 3. \\ \\ \square \mbox{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right) \\ \\ &= x^2y + \epsilon xy^2 + \frac{\epsilon^2}{3}y^3 \stackrel{\epsilon \to 0}{\to} x^2y =: h \ \ (\mbox{coefficient-wise}). \end{array}$

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

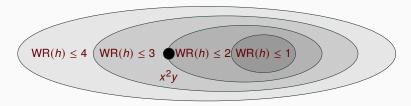
 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

□ Prove: WR(x²y) = 3.
□ Let
$$h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$$

 $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h$ (coefficient-wise).

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!



Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2,$

Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

 $\Box \overline{WR}(x^2y) = 2$, since,

$$x^2 y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$

Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

 $\Box \overline{WR}(x^2y) = 2$, since,

$$x^2 y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$

□ We *do not understand* the gap between the Waring rank and border Waring rank.

□ Question. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?

□ Question. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?

 $\square WR(P) \le 1/k \cdot {\binom{d+k}{k}} [Blekherman-Teitler'15].$

- □ Question. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?
- □ WR(P) ≤ $1/k \cdot {\binom{d+k}{k}}$ [Blekherman-Teitler'15].
- □ When $\overline{WR}(P) \le 5$, then $WR(P) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

- □ **Question**. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?
- □ WR(P) ≤ $1/k \cdot {\binom{d+k}{k}}$ [Blekherman-Teitler'15].
- □ When $\overline{WR}(P) \le 5$, then $WR(P) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov, 2023]

Let $P \in \mathbb{C}[\mathbf{x}]$, of degree D, such that $\overline{WR}(P) = k$, for k < D. Then,

$$WR(P) \leq \frac{2}{k} \cdot {\binom{2k-1}{k-1}} \cdot D$$

- □ **Question**. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?
- □ WR(P) ≤ $1/k \cdot {\binom{d+k}{k}}$ [Blekherman-Teitler'15].
- □ When $\overline{WR}(P) \le 5$, then $WR(P) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov, 2023]

Let $P \in \mathbb{C}[\mathbf{x}]$, of degree D, such that $\overline{WR}(P) = k$, for k < D. Then,

$$WR(P) \leq \frac{2}{k} \cdot {\binom{2k-1}{k-1}} \cdot D$$

Remarks. (1) When $k = O(\log D)$, $WR(P) \le poly(D)$.

- □ **Question**. Given $P \in \mathbb{C}[x]$, of degree *D*, such that $\overline{WR}(P) = k$, for some parameter *k*. What can we say about WR(P)?
- □ WR(P) ≤ $1/k \cdot {\binom{d+k}{k}}$ [Blekherman-Teitler'15].
- □ When $\overline{WR}(P) \le 5$, then $WR(P) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov, 2023]

Let $P \in \mathbb{C}[\mathbf{x}]$, of degree D, such that $\overline{WR}(P) = k$, for k < D. Then,

$$WR(P) \leq \frac{2}{k} \cdot {\binom{2k-1}{k-1}} \cdot D$$

Remarks. (1) When $k = O(\log D)$, $WR(P) \le poly(D)$.

(2) We still don't fully understand the equations.

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 $\Box \lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise).}$

$$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 $\Box \lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise).}$

$$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$

$\Box \ \overline{\Gamma}(f) \leq \Gamma(f).$

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 $\Box \lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise).}$

$$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$

 $\Box \ \overline{\Gamma}(f) \leq \Gamma(f). \ [f_{\epsilon} = f.]$

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 \Box lim_{$\epsilon \to 0$} $f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$

$\Box \ \overline{\Gamma}(f) \leq \Gamma(f). \ [f_{\epsilon} = f.]$

 Important border rank: border tensor rank, related to border Waring rank! Tensor is *directly* related to the matrix multiplication exponent ω [Bini 1980, Coppersmith-Winograd 1990].

 \Box Let Γ be any sensible measure. It can be dc, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma(f_{\epsilon}) \leq r\right\}.$$

 \Box lim_{$\epsilon \to 0$} $f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$

$\Box \ \overline{\Gamma}(f) \leq \Gamma(f). \ [f_{\epsilon} = f.]$

 Important border rank: border tensor rank, related to border Waring rank! Tensor is *directly* related to the matrix multiplication exponent ω [Bini 1980, Coppersmith-Winograd 1990]. □ Let $\Gamma = dc$. If *g* has determinantal complexity *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

- □ Let $\Gamma = dc$. If *g* has determinantal complexity *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

- □ Let $\Gamma = dc$. If *g* has determinantal complexity *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

- □ Let $\Gamma = dc$. If *g* has determinantal complexity *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

≻ Pick M + 1 many distinct values from F randomly and interpolate;
 > dc(h) ≤ exp(dc(h)).

- □ Let $\Gamma = dc$. If *g* has determinantal complexity *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

≻ Pick M + 1 many distinct values from F randomly and interpolate;
 > dc(h) ≤ exp(dc(h)).

 $\Box \ \overline{\operatorname{dc}}(h) \leq \operatorname{dc}(h) \leq \exp(\overline{\operatorname{dc}}(h)).$

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class \overline{VBP} is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{dc}(f_n)$.

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class \overline{VBP} is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{dc}(f_n)$.

□ [Kraft'85] Zariski closure and Euclidean closure coincide:

 $\{f \in S^{d} \mathbb{C}^{n} \mid \overline{\mathrm{dc}}(f) \leq r\} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathbb{C}} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathrm{Zar}}.$

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.

□ [Kraft'85] Zariski closure and Euclidean closure coincide:

 $\{f \in S^{d} \mathbb{C}^{n} \mid \overline{\mathrm{dc}}(f) \leq r\} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathbb{C}} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathrm{Zar}}.$

□ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.

□ [Kraft'85] Zariski closure and Euclidean closure coincide:

 $\{f \in S^{d} \mathbb{C}^{n} \mid \overline{\mathrm{dc}}(f) \leq r\} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathbb{C}} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathrm{Zar}}.$

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?
- □ Take $C \in \{VBP, VW, VNP, \cdots\}$.

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.

□ [Kraft'85] Zariski closure and Euclidean closure coincide:

 $\{f \in S^{d} \mathbb{C}^{n} \mid \overline{\mathrm{dc}}(f) \leq r\} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathbb{C}} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathrm{Zar}}.$

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?
- □ Take $C \in \{VBP, VW, VNP, \cdots\}$.
- □ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

□ For a class *C*, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.

□ [Kraft'85] Zariski closure and Euclidean closure coincide:

 $\{f \in S^{d} \mathbb{C}^{n} \mid \overline{\mathrm{dc}}(f) \leq r\} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathbb{C}} = \overline{\{f \in S^{d} \mathbb{C}^{n} \mid \mathrm{dc}(f) \leq r\}}^{\mathrm{Zar}}.$

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?
- □ Take $C \in \{VBP, VW, VNP, \cdots\}$.

□ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

$$\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$$
, $\overline{\mathsf{VW}} \stackrel{?}{=} \mathsf{VW}$, $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$

VNP $\not\subset$ VBP. Equivalently, $\overline{dc}(perm_n) = n^{\omega(1)}$.

VNP $\not\subset$ VBP. Equivalently, $\overline{dc}(perm_n) = n^{\omega(1)}$.

□ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.

VNP $\not\subset \overline{\text{VBP}}$. Equivalently, $\overline{\text{dc}}(\text{perm}_n) = n^{\omega(1)}$.

- □ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.
- □ Both det and perm have 'nice' symmetries.

VNP $\not\subset \overline{\text{VBP}}$. Equivalently, $\overline{\text{dc}}(\text{perm}_n) = n^{\omega(1)}$.

- □ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.
- □ Both det and perm have 'nice' symmetries.
- □ Symmetry-characterization avoids the Razborov–Rudich barrier

VNP $\not\subset$ VBP. Equivalently, $\overline{dc}(\text{perm}_n) = n^{\omega(1)}$.

- □ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.
- □ Both det and perm have 'nice' symmetries.
- □ Symmetry-characterization **avoids** the Razborov–Rudich barrier : *Very few* functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not\subset$ VBP. Equivalently, $\overline{dc}(\text{perm}_n) = n^{\omega(1)}$.

- □ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.
- □ Both det and perm have 'nice' symmetries.
- □ Symmetry-characterization **avoids** the Razborov–Rudich barrier : *Very few* functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!
- □ VNP $\not\subset$ VBP takes us 'closer' to $\#P \neq$ NC.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not\subset$ VBP. Equivalently, $\overline{dc}(\text{perm}_n) = n^{\omega(1)}$.

- □ To show $\overline{dc}(perm_n) > n^c$, for some *c*, it suffices to find a *continuous* function *f* that vanishes on $\{h \mid \overline{dc}(h) \le n^c\}$, but not on perm_n.
- □ Both det and perm have 'nice' symmetries.
- □ Symmetry-characterization **avoids** the Razborov–Rudich barrier : *Very few* functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!
- □ VNP $\not\subset$ VBP takes us 'closer' to $\#P \neq$ NC. Proving a somewhat *related* formulation **does imply** NP $\not\subset$ P/poly!

□ Valiant's determinant computation via entries with *affine linear polynomial* $(\det(\ell_1, \ldots, \ell_{n^2}))$ introduces *non-homogeneity*.

□ Valiant's determinant computation via entries with *affine linear polynomial* $(\det(\ell_1, \ldots, \ell_{n^2}))$ introduces *non-homogeneity*.

□ For using algebraic geometric tools, we require *padding*:

 $\overline{\mathsf{dc}}(f) \leq r \iff \ell^{r-\mathsf{deg}(f)} \cdot f \in \overline{\mathsf{GL}_{r^2} \circ \mathsf{det}_r} \; .$

□ Valiant's determinant computation via entries with *affine linear polynomial* $(\det(\ell_1, \ldots, \ell_{p^2}))$ introduces *non-homogeneity*.

□ For using algebraic geometric tools, we require *padding*:

 $\overline{\mathsf{dc}}(f) \leq r \iff \ell^{r-\mathsf{deg}(f)} \cdot f \in \overline{\mathsf{GL}_{r^2} \circ \mathsf{det}_r} \; .$

□ VNP \subsetneq VBP question can be framed as:

 $\overline{\operatorname{GL}_{r^2} \circ \ell^{r-n} \operatorname{perm}_n} \subseteq \overline{\operatorname{GL}_{r^2} \circ \operatorname{det}_r} \implies r = n^{\omega(1)}.$

□ Valiant's determinant computation via entries with *affine linear polynomial* $(\det(\ell_1, \ldots, \ell_{p^2}))$ introduces *non-homogeneity*.

□ For using algebraic geometric tools, we require *padding*:

 $\overline{\mathsf{dc}}(f) \leq r \iff \ell^{r-\mathsf{deg}(f)} \cdot f \in \overline{\mathsf{GL}_{r^2} \circ \mathsf{det}_r} \; .$

□ VNP \subseteq VBP question can be framed as:

$$\overline{\operatorname{GL}_{r^2} \circ \ell^{r-n} \operatorname{perm}_n} \subseteq \overline{\operatorname{GL}_{r^2} \circ \operatorname{det}_r} \implies r = n^{\omega(1)}.$$

□ Padding has issues pointed out in: [Kadish-Landsberg 2012], [Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their *no-go* theorem, to study the *inconsistency* between representations of $\overline{\operatorname{GL}}_{r^2} \circ \operatorname{det}_r$ and $\overline{\operatorname{GL}}_{r^2} \circ \operatorname{det}_r$.

□ Valiant's determinant computation via entries with *affine linear polynomial* $(\det(\ell_1, \ldots, \ell_{p^2}))$ introduces *non-homogeneity*.

□ For using algebraic geometric tools, we require *padding*:

$$\overline{\mathsf{dc}}(f) \leq r \iff \ell^{r-\mathsf{deg}(f)} \cdot f \in \overline{\mathsf{GL}_{r^2} \circ \mathsf{det}_r} \; .$$

□ VNP \subseteq VBP question can be framed as:

$$\overline{\operatorname{GL}_{r^2} \circ \ell^{r-n} \operatorname{perm}_n} \subseteq \overline{\operatorname{GL}_{r^2} \circ \operatorname{det}_r} \implies r = n^{\omega(1)}.$$

□ Padding has issues pointed out in: [Kadish-Landsberg 2012], [Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their *no-go* theorem, to study the *inconsistency* between representations of $\overline{\operatorname{GL}}_{r^2} \circ \operatorname{det}_r$ and $\overline{\operatorname{GL}}_{r^2} \circ \operatorname{det}_r$.

□ It is possible to frame these questions without *padding*! [DGIJL'23].

 \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].

- □ A few known de-bordering results:
 - $\gg \overline{VBP_{non-com}} = VBP_{non-com}$, in the noncommutative world [Nisan 1991].
 - \succ VW \subsetneq VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

- □ A few known de-bordering results:
 - \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
 - \succ VW \subsetneq VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
 - > $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$, where $\Sigma^{[s]}\Pi$ denotes *s*-sparse polynomials.

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ VW \subsetneq VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
- > $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$, where $\Sigma^{[s]}\Pi$ denotes *s*-sparse polynomials.
- ➤ Some more to come in the next slides...

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ VW \subsetneq VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
- > $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$, where $\Sigma^{[s]}\Pi$ denotes *s*-sparse polynomials.
- ➤ Some more to come in the next slides...
- □ Upper bounds and lower bounds are *dual* to each other.

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ VW \subsetneq VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
- > $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$, where $\Sigma^{[s]}\Pi$ denotes *s*-sparse polynomials.
- ➤ Some more to come in the next slides...
- □ Upper bounds and lower bounds are *dual* to each other.
- □ Further potential applications in identity testing and understanding its 'robustness'.

A few more complexity measures

 \Box [Kumar'20, DGJIL'23] The Kumar's complexity of f, denoted Kc(f) is:

$$\mathsf{Kc}(f) := \min\left\{r : f = \alpha\left(\prod_{i=1}^{r} (1+\ell_i) - 1\right), \ell_i \text{ linear forms, } \alpha \in \mathbb{C}\right\}.$$

Given Schuld Representation [Kumar's complexity of f, denoted Kc(f) is:

$$\mathsf{Kc}(f) := \min\left\{r : f = \alpha\left(\prod_{i=1}^{r} (1+\ell_i) - 1\right), \ell_i \text{ linear forms, } \alpha \in \mathbb{C}\right\}.$$

 \Box Kc(ℓ^d) = d, since for $\omega := \exp(2\pi\iota/d)$,

$$\ell^d = (1 + \omega^0 \ell) \cdots (1 + \omega^{d-1} \ell) - 1$$
.

 \Box [Kumar'20, DGJIL'23] The Kumar's complexity of f, denoted Kc(f) is:

$$\mathsf{Kc}(f) := \min\left\{r : f = \alpha\left(\prod_{i=1}^{r} (1+\ell_i) - 1\right), \ell_i \text{ linear forms, } \alpha \in \mathbb{C}\right\}.$$

 $\Box \operatorname{Kc}(\ell^d) = d, \text{ since for } \omega := \exp(2\pi\iota/d),$

$$\ell^d = (1 + \omega^0 \ell) \cdots (1 + \omega^{d-1} \ell) - 1$$
.

□ Kc(*f*) is not always finite. In fact, if *f* is homogeneous, then Kc(*f*) is finite $\iff f = \ell^d$.

 \Box [Kumar'20, DGJIL'23] The Kumar's complexity of f, denoted Kc(f) is:

$$\mathsf{Kc}(f) := \min\left\{r : f = \alpha\left(\prod_{i=1}^{r} (1+\ell_i) - 1\right), \ell_i \text{ linear forms, } \alpha \in \mathbb{C}\right\}.$$

 \Box Kc(ℓ^d) = d, since for $\omega := \exp(2\pi\iota/d)$,

$$\ell^d = (1 + \omega^0 \ell) \cdots (1 + \omega^{d-1} \ell) - 1 \; .$$

□ Kc(*f*) is not always finite. In fact, if *f* is homogeneous, then Kc(*f*) is finite $\iff f = \ell^d$.

□ The *border Kumar's complexity* $\overline{\mathsf{Kc}}(\cdot)$ is defined analogously:

$$\overline{\mathsf{Kc}}(f) = \min\left\{r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{Kc}(f_{\epsilon}) \leq r\right\}.$$

For any $f \in S^{d}\mathbb{C}^{n}$, $\overline{\mathsf{Kc}}(f) \leq \mathsf{deg}(f) \cdot \mathsf{WR}(f) < \infty$.

For any $f \in S^{d}\mathbb{C}^{n}$, $\overline{\mathsf{Kc}}(f) \leq \mathsf{deg}(f) \cdot \mathsf{WR}(f) < \infty$.

 \Box How good is the bound?

For any $f \in S^d \mathbb{C}^n$, $\overline{\mathsf{Kc}}(f) \leq \mathsf{deg}(f) \cdot \mathsf{WR}(f) < \infty$.

□ How good is the bound? *Really bad!*

For any $f \in S^{d}\mathbb{C}^{n}$, $\overline{\mathsf{Kc}}(f) \leq \mathsf{deg}(f) \cdot \mathsf{WR}(f) < \infty$.

□ How good is the bound? *Really bad!*

$$x_1 \cdots x_n = \lim_{\epsilon \to 0} \epsilon^n \left(\prod_{i=1}^n \left(1 + \frac{1}{\epsilon} x_i \right) - 1 \right)$$

For any $f \in S^{d} \mathbb{C}^{n}$, $\overline{\mathrm{Kc}}(f) \leq \mathrm{deg}(f) \cdot \mathrm{WR}(f) < \infty$.

□ How good is the bound? *Really bad!*

$$x_1 \cdots x_n = \lim_{\epsilon \to 0} \epsilon^n \left(\prod_{i=1}^n \left(1 + \frac{1}{\epsilon} x_i \right) - 1 \right)$$

 $\Box \ \overline{\mathsf{Kc}}(x_1 \cdots x_n) = n, \text{ while } \mathsf{WR}(x_1 \cdots x_n) = 2^{n-1}.$

For any $f \in S^{d} \mathbb{C}^{n}$, $\overline{\mathrm{Kc}}(f) \leq \mathrm{deg}(f) \cdot \mathrm{WR}(f) < \infty$.

□ How good is the bound? *Really bad!*

$$x_1 \cdots x_n = \lim_{\epsilon \to 0} \epsilon^n \left(\prod_{i=1}^n \left(1 + \frac{1}{\epsilon} x_i \right) - 1 \right)$$

 $\Box \ \overline{\mathsf{Kc}}(x_1 \cdots x_n) = n, \text{ while } \mathsf{WR}(x_1 \cdots x_n) = 2^{n-1}.$

 \Box Interestingly, this is the *only* bad case.

For any $f \in S^{d} \mathbb{C}^{n}$, $\overline{\mathrm{Kc}}(f) \leq \mathrm{deg}(f) \cdot \mathrm{WR}(f) < \infty$.

□ How good is the bound? *Really bad!*

$$x_1 \cdots x_n = \lim_{\epsilon \to 0} \epsilon^n \left(\prod_{i=1}^n \left(1 + \frac{1}{\epsilon} x_i \right) - 1 \right)$$

 $\Box \ \overline{\mathsf{Kc}}(x_1 \cdots x_n) = n, \text{ while } \mathsf{WR}(x_1 \cdots x_n) = 2^{n-1}.$

 \Box Interestingly, this is the *only* bad case.

Converse of Kumar [DGIJL'23]

For any $f \in S^d \mathbb{C}^n$, either $f = \prod_{i \in [d]} \ell_i$, or $\overline{WR}(f) \leq \overline{Kc}(f) \leq \deg(f) \cdot \overline{WR}(f)$.

Let $f \in S^d \mathbb{C}^n$. Chow rank of h, CR(f), is the smallest r such that h can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^r \prod_{j=1}^d \ell_{i,j}$.

Let $f \in S^d \mathbb{C}^n$. Chow rank of h, CR(f), is the smallest r such that h can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^r \prod_{j=1}^d \ell_{i,j}$.

 \Box Border Chow rank $\overline{CR}(f)$ is defined analogously:

$$\overline{\mathsf{CR}}(f) := \min \left\{ r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \leq r \right\}.$$

Let $f \in S^d \mathbb{C}^n$. Chow rank of h, CR(f), is the smallest r such that h can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^r \prod_{j=1}^d \ell_{i,j}$.

 \Box Border Chow rank $\overline{CR}(f)$ is defined analogously:

$$\overline{\mathsf{CR}}(f) := \min \left\{ r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \leq r \right\}.$$

□ Trivially $CR(f) \leq WR(f)$ (same in border).

Let $f \in S^d \mathbb{C}^n$. Chow rank of h, CR(f), is the smallest r such that h can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^r \prod_{j=1}^d \ell_{i,j}$.

 \Box Border Chow rank $\overline{CR}(f)$ is defined analogously:

$$\overline{\operatorname{CR}}(f) := \min \left\{ r : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \operatorname{CR}(f_{\epsilon}) \leq r \right\}.$$

□ Trivially $CR(f) \leq WR(f)$ (same in border).

□ Exponential-gap between WR(*f*) and CR(*f*) (same in border): WR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2^{*n*}, while CR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2! □ One can define the *affine Chow rank* $CR^{aff}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^{k} \prod_{j=1}^{D} \ell_{ij}$.

□ One can define the *affine Chow rank* $CR^{aff}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^{k} \prod_{j=1}^{D} \ell_{ij}$.

□ Product fan-in $D \ge \deg(f)$. Similarly, we can define $\overline{CR^{aff}}(f)$.

- □ One can define the *affine Chow rank* $CR^{aff}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^{k} \prod_{j=1}^{D} \ell_{ij}$.
- □ Product fan-in $D \ge \deg(f)$. Similarly, we can define $\overline{CR^{aff}}(f)$.
- □ $CR^{aff}(f) = k$, is interchangeable with *f* having a *depth-3 circuit* with top fan-in *k*, denoted as $\Sigma^{[k]}\Pi^{[D]}\Sigma$.

- □ One can define the *affine Chow rank* $CR^{aff}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^{k} \prod_{j=1}^{D} \ell_{ij}$.
- □ Product fan-in $D \ge \deg(f)$. Similarly, we can define $\overline{CR^{aff}}(f)$.
- □ $CR^{aff}(f) = k$, is interchangeable with *f* having a *depth-3 circuit* with top fan-in *k*, denoted as $\Sigma^{[k]}\Pi^{[D]}\Sigma$.
- □ [Kumar'20] For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathbb{CR}^{\operatorname{aff}}(f) \leq 2$, equivalently f has $\Sigma^{[2]}\Pi^{[D]}\Sigma$ -circuit [although $D \approx WR(f)$ can be large].

- □ One can define the *affine Chow rank* $CR^{aff}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^{k} \prod_{j=1}^{D} \ell_{ij}$.
- □ Product fan-in $D \ge \deg(f)$. Similarly, we can define $\overline{CR^{aff}(f)}$.
- □ $CR^{aff}(f) = k$, is interchangeable with *f* having a *depth-3 circuit* with top fan-in *k*, denoted as $\Sigma^{[k]}\Pi^{[D]}\Sigma$.
- □ [Kumar'20] For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\overline{CR^{aff}}(f) \le 2$, equivalently f has $\Sigma^{[2]}\Pi^{[D]}\Sigma$ -circuit [although $D \approx WR(f)$ can be large].

 \Box How is CR^{aff} and CR^{aff}, or other measures related, when *D* is polynomially bounded?

Some upper bounds and lower bounds on border Chow rank

Fix $k \ge 2$ to be a constant.

□ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.

□ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.

 \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi^{[D]}\Sigma$ -circuit, regardless of how large D is!

□ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.

 \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi^{[D]}\Sigma$ -circuit, regardless of how large D is!

□ When D = poly(n), then $\Sigma^{[k]}\Pi^{[D]}\Sigma \subsetneq VBP$.

□ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.

 \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi^{[D]}\Sigma$ -circuit, regardless of how large D is!

- □ When D = poly(n), then $\Sigma^{[k]}\Pi^{[D]}\Sigma \subsetneq VBP$.
- □ Does this hold for border?

Upper bound for CR [Dutta-Dwivedi-Saxena'21].

Let $f \in S^d \mathbb{C}^n$, s.t. $\overline{CR}(f) = s$. Then,

 $\mathsf{dc}(f) \leq (\mathsf{nds})^{\mathsf{exp}(s)} \; .$

Upper bound for \overline{CR} [Dutta-Dwivedi-Saxena'21]. Let $f \in S^d \mathbb{C}^n$, s.t. $\overline{CR}(f) = s$. Then, $dc(f) \leq (nds)^{exp(s)}$.

Corollary. For any constant $k \ge 1$, $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma} \subseteq \mathsf{VBP}$.

 \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas'21] showed that $\mathsf{IMM}_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas'21] showed that $\mathsf{IMM}_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - > Rank-based lower bounds can be lifted in the border!

- \Box Can we separate $\Sigma^{[k]}\Pi\Sigma$ and VBP?
 - > [Limaye-Srinivasan-Tavenas'21] showed that $IMM_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - Rank-based lower bounds can be lifted in the border!
 - > Since, $\mathsf{IMM}_{n,d} \in \mathsf{VBP}, \overline{\Sigma^{[k]} \Pi \Sigma} \neq \mathsf{VBP}.$

Looking for finer lower bounds

□ Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ and VBP, when D = poly(n)?

□ Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ and VBP, when D = poly(n)?

□ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

- □ Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ and VBP, when D = poly(n)?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!

- □ Can we show an *exponential* gap between $\Sigma^{[k]}\Pi^{[D]}\Sigma$ and VBP, when D = poly(n)?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

- □ Can we show an *exponential* gap between $\Sigma^{[k]}\Pi^{[D]}\Sigma$ and VBP, when D = poly(n)?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underbrace{y_{k+1} \text{ does not work anymore since,}}_{x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma!$

- □ Can we show an *exponential* gap between $\Sigma^{[k]}\Pi^{[D]}\Sigma$ and VBP, when D = poly(n)?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underbrace{y_{k+1} \text{ does not work anymore since,}}_{x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma^!$
- □ What does work (if at all!)?

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

 $\Box \ \mathsf{CR}(P_d) = 3.$

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- $\Box \ \mathsf{CR}(P_d) = 3.$
- $\Box \quad [DS'22] \text{ show that } P_d \text{ requires } D \ge 2^{\Omega(d)} \text{- product fan-in, to be computed by} \\ \Sigma^{[2]}\Pi^{[D]}\Sigma \text{ circuits.}$

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

 $\Box \ \mathsf{CR}(P_d) = 3.$

- $\Box \quad [DS'22] \text{ show that } P_d \text{ requires } D \ge 2^{\Omega(d)} \text{- product fan-in, to be computed by} \\ \overline{\Sigma^{[2]}\Pi^{[D]}\Sigma} \text{ circuits.}$
- □ Note: $\frac{\text{WR}(P_d)}{\Sigma^{[2]}\Pi\Sigma} = 2^{\Omega(d)}$ Kumar's proof establishes that P_d has a $2^{O(d)}$ product fan-in $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits, showing *optimality*!

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi^{[n]}\Sigma}$ circuit such that if *f* is computed by $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma}$ circuits, then $D = 2^{\Omega(n)}$.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

 $\square \ \mathsf{CR}(P_d) = 3.$

- $\Box \quad [DS'22] \text{ show that } P_d \text{ requires } D \ge 2^{\Omega(d)} \text{- product fan-in, to be computed by} \\ \overline{\Sigma^{[2]}\Pi^{[D]}\Sigma} \text{ circuits.}$
- □ Note: $\frac{\text{WR}(P_d)}{\Sigma^{[2]}\Pi\Sigma} = 2^{\Omega(d)}$ Kumar's proof establishes that P_d has a $2^{O(d)}$ product fan-in $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits, showing *optimality*!
- □ Classical is about *impossibility* while in border, it is about *optimality*.

Conclusion

Some immediate questions

□ Show that $\overline{WR}(P) \le k$, then $WR(P) \le poly(k, d)$.

- □ Show that $\overline{\mathsf{WR}}(P) \leq k$, then $\mathsf{WR}(P) \leq \mathsf{poly}(k, d)$.
- □ Find the explicit equations for $\overline{WR}(P) \le k$.

- □ Show that $\overline{WR}(P) \le k$, then $WR(P) \le poly(k, d)$.
- □ Find the explicit equations for $\overline{WR}(P) \le k$.
- □ [Gurvits'08] Show that $WR(det_n) \ge 2^{\Omega(n)}$.

- □ Show that $\overline{WR}(P) \le k$, then $WR(P) \le poly(k, d)$.
- □ Find the explicit equations for $\overline{WR}(P) \le k$.
- □ [Gurvits'08] Show that $WR(det_n) \ge 2^{\Omega(n)}$.
- □ We could only answer that $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \subsetneq \text{VBP}$, for *constant k*. What happens for non-constant *k*?

- □ Show that $\overline{WR}(P) \le k$, then $WR(P) \le poly(k, d)$.
- □ Find the explicit equations for $\overline{WR}(P) \le k$.
- □ [Gurvits'08] Show that $WR(det_n) \ge 2^{\Omega(n)}$.
- □ We could only answer that $\Sigma^{[k]}\Pi^{[d]}\Sigma \subseteq VBP$, for *constant k*. What happens for non-constant *k*?

Thank you! Questions?