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Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.
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Determinant vs. Permanent



Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.
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Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.
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The determinant polynomial

❑ Let Xn = [xi ,j ]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋 )
n∏

i=1
xi , 𝜋 (i ) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f ).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).
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‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i ) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f ).
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Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2 ), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].
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Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].
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Waring and border Waring rank



Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f ) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n ) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).
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Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.
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Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖 ) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y
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Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2, since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.
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Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.
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Border Complexity



Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f ) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖 ) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f ) ≤ Γ(f ). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].
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Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).
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De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f ) ≤ r} = {f ∈ SdCn | dc(f ) ≤ r}
C

= {f ∈ SdCn | dc(f ) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .
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GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!
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the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!
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GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2 )) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f ) ≤ r ⇐⇒ ℓr−deg(f ) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].
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De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.
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A few more complexity measures



Kumar’s complexity

❑ [Kumar’20, DGJIL’23] The Kumar’s complexity of f , denoted Kc(f ) is:

Kc(f ) := min

{
r : f = 𝛼

( r∏
i=1
(1 + ℓj ) − 1

)
, ℓj linear forms, 𝛼 ∈ C

}
.

❑ Kc(ℓd ) = d, since for 𝜔 := exp(2𝜋𝜄/d),

ℓd = (1 + 𝜔0ℓ) · · · (1 + 𝜔d−1ℓ) − 1 .

❑ Kc(f ) is not always finite. In fact, if f is homogeneous, then Kc(f ) is finite
⇐⇒ f = ℓd .

❑ The border Kumar’s complexity Kc(·) is defined analogously:

Kc(f ) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Kc(f𝜖 ) ≤ r

}
.
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Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f ) ≤ deg(f ) ·WR(f ) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
( n∏

i=1
(1 + 1

𝜖
xi ) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d ] ℓi , or WR(f ) ≤ Kc(f ) ≤ deg(f ) ·WR(f ).
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Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f ), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f ) is defined analogously:

CR(f ) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖 ) ≤ r

}
.

❑ Trivially CR(f ) ≤ WR(f ) (same in border).

❑ Exponential-gap between WR(f ) and CR(f ) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!
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Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f ), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f ). Similarly, we can define CRaff (f ).

❑ CRaff (f ) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k ]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f ) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f ) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?
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Some upper bounds and lower bounds on
border Chow rank



Some relations

Fix k ≥ 2 to be a constant.

Interesting to understand CRaff (f ) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f ) = k =⇒ dc(f ) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k ]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k ]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?
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De-bordering Σ[k ]Π [D]Σ circuits

Upper bound for CR [Dutta-Dwivedi-Saxena’21].

Let f ∈ SdCn, s.t. CR(f ) = s. Then,

dc(f ) ≤ (nds)exp(s) .

Corollary. For any constant k ≥ 1, Σ[k ]Π [D]Σ ⊆ VBP.
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Lifting classical lower bound in the border

❑ Can we separate Σ[k ]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)

requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k ]ΠΣ ≠ VBP.
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Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k ]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k ]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k ]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k )Σ!

❑ What does work (if at all!)?
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Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k ]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd ) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d ) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd ) = 2Ω(d ) Kumar’s proof establishes that Pd has a 2O (d ) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.
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Conclusion



Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k ]Π [d ]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?
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