
Border rank, homogeneity and de-bordering paradigms in
GCT
Based on joint works with – Prateek Dwivedi (IITK), Gorav Jindal (MPI), Fulvio Gesmundo

(U. Saarland), Christian Ikenmeyer (U. Warwick), Vladimir Lysikov (U. Bochum), Nitin Saxena

(IITK).

Pranjal Dutta
National University of Singapore

26th September, 2023

RTCA @ Institut Henri Poincaré, Paris

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Unrelated questions?

❑ Can we write x1 · · · xn + y1 · · · yn =
∑s

i=1 ℓ
n
i , where ℓi are linear forms,

(i.e. ℓi = a1x1 + · · · + anxn)?

❑ Can we write x1 · · · xn + y1 · · · yn = det(A), where A is a matrix, with entries ℓi
affine linear forms (i.e. ℓi = a0 + a1x1 + · · · + anxn)?

❑ Can approximations on the RHS help above (think ℓi = ℓi (𝜀, x) and take
lim𝜀→0)?

❑ Can we solve 21000000 × 21000000 Sudoku efficiently?

❑ Content of the talk: They are intimately related!

❑ We study different measure on SdCn := C[x1, · · · , xn]d = set of d-degree
homogeneous polynomials.

1

Table of Contents

1. Determinant vs. Permanent

2. Waring and border Waring rank

3. Border Complexity

4. A few more complexity measures

5. Some upper bounds and lower bounds on border Chow rank

6. Conclusion

2

Determinant vs. Permanent

Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.

3

Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.

3

Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.

3

Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.

3

Basic goal

❑ P ≠ NP: One of the most fundamental open problem both in theoretical
computer science and mathematics. ← Inefficiency to solving Sudoku

❑ Besides the ‘intellectual barrier’, some barrier results are known, explaining
why we couldn’t’ solve it! E.g. 1994 Razborov-Rudich ‘natural proofs barrier’.

❑ Very few techniques are known that could potentially break this barrier.

3

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001).

We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

Inception of GCT

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the
natural-proof barrier.

➢ Algebraic complexity defines algebraic P ≠ NP, namely VBP ≠ VNP, or
the determinant vs permanent problem.

➢ GCT defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ GCT proposes to prove border complexity lower bounds using
representation theory, which is developed further in [GCT2,
Mulmuley-Sohoni’08].

➢ GCT captures ‘algebraic approximations’.

4

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

(−1)sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn + y1 · · · yn) = n, since

x1 · · · xn + y1 · · · yn = det

©­­­­­«
x1 y1 0 . . . 0
0 x2 y2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

yn 0 . . . 0 xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn). 5

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11].

Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. dc(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

6

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) .

In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].

(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VNP ⊈ VBP. Equivalently, dc(permn) = n𝜔 (1) . In other words,
if permn = detm (ℓ1, . . . , ℓm2), then m = n𝜔 (1) .

(1) Over F of characteristic ≠ 2, 2n − 1 ≥ m ≥ n2/2 [Mignon-Ressayre’04,
Cai-Chen-Li’10, Grenet’14].
(2) Over R, m ≥ (n − 1)2 + 1 [Yabe’15].

7

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].

8

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].

8

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].

8

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2

(i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].

8

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

❑ P/poly = NP/poly =⇒ PH = Σ2 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].

8

Waring and border Waring rank

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.

➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).

➢ [Carlini-Catalisano-Geramita 2012]
WR(xe1

1 · · · x
en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Waring rank

Waring Rank

Let h ∈ SdCn. Waring rank of h, WR(h), is the smallest r such that h can be written
as a sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ For any homogeneous polynomial h, WR(h) is finite.
➢ WR(·) is sub-additive: WR(f + g) ≤ WR(f) +WR(g).
➢ [Carlini-Catalisano-Geramita 2012]

WR(xe1
1 · · · x

en
n) = (e2 + 1) · · · (en + 1), where e1 := mini ei .

❑ The class VW is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded WR(fn).

9

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.

10

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)

= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

11

Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2, since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.

12

Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2, since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.

12

Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2,

since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.

12

Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2, since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.

12

Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ WR(x2y) = 2, since,

x2y = lim
𝜖→0

(
x + 𝜖y
(3𝜖)1/3

)3
−

(
x

(3𝜖)1/3

)3
.

❑ We do not understand the gap between the Waring rank and border Waring rank.

12

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Waring rank vs border Waring rank

❑ Question. Given P ∈ C[x], of degree D, such that WR(P) = k, for some
parameter k. What can we say about WR(P)?

❑ WR(P) ≤ 1/k ·
(d+k

k
)

[Blekherman-Teitler’15].

❑ When WR(P) ≤ 5, then WR(P) ≤ 4d [Landsberg-Teitler’10, Ballico’19].

Fixed-parameter debordering [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov,
2023]

Let P ∈ C[x], of degree D, such that WR(P) = k, for k < D. Then,

WR(P) ≤ 2
k
·
(
2k − 1
k − 1

)
· D .

Remarks. (1) When k = O(logD), WR(P) ≤ poly(D).

(2) We still don’t fully understand the equations.

13

Border Complexity

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f).

[f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Border complexity

❑ Let Γ be any sensible measure. It can be dc, pc,WR and so on.

Border complexity [Bürgisser 2004]
Let f ∈ C[x1, · · · , xn], and Γ is a complexity measure. Then, the border-Γ
complexity of f is:

Γ(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Γ(f𝜖) ≤ r

}
.

❑ lim𝜖→0 f𝜖 = f (coefficient-wise).

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Γ(f) ≤ Γ(f). [f𝜖 = f .]

❑ Important border rank: border tensor rank, related to border Waring rank!
Tensor is directly related to the matrix multiplication exponent 𝜔 [Bini 1980,
Coppersmith-Winograd 1990].

14

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

Algebraic approximation

❑ Let Γ = dc. If g has determinantal complexity s over F(𝜖), then one can assume
that the highest degree of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004,
2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ dc(h) ≤ exp(dc(h)).

❑ dc(h) ≤ dc(h) ≤ exp(dc(h)).

15

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

De-bordering

❑ For a class C, wrt Γ-complexity, one can define C, wrt Γ-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fn)n with
polynomially bounded dc(fn).

❑ [Kraft’85] Zariski closure and Euclidean closure coincide:

{f ∈ SdCn | dc(f) ≤ r} = {f ∈ SdCn | dc(f) ≤ r}
C

= {f ∈ SdCn | dc(f) ≤ r}
Zar

.

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VW,VNP, · · · }.

❑ Major open questions from [Mulmuley-Sohoni 2001, Bürgisser 2001,....]:

VBP ?
= VBP , VW ?

= VW , VNP ?
= VNP .

16

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier

: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC.

Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT, border complexity and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP. Equivalently, dc(permn) = n𝜔 (1) .

❑ To show dc(permn) > nc , for some c, it suffices to find a continuous function f
that vanishes on {h | dc(h) ≤ nc}, but not on permn.

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier : Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

❑ VNP ⊄ VBP takes us ‘closer’ to #P ≠ NC. Proving a somewhat related
formulation does imply NP ⊄ P/poly!

17

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

GCT’s disadvantages: Homogeneous vs. non-homogeneous

❑ Valiant’s determinant computation via entries with affine linear polynomial
(det(ℓ1, . . . , ℓn2)) introduces non-homogeneity.

❑ For using algebraic geometric tools, we require padding:

dc(f) ≤ r ⇐⇒ ℓr−deg(f) · f ∈ GLr2 ◦ detr .

❑ VNP ⊊ VBP question can be framed as:

GLr2 ◦ ℓr−npermn ⊆ GLr2 ◦ detr =⇒ r = n𝜔 (1) .

❑ Padding has issues pointed out in: [Kadish-Landsberg 2012],
[Ikenmeyer-Panova 2015], [Bürgisser-Ikenmeyer-Panova 2016], via their no-go
theorem, to study the inconsistency between representations of GLr2 ◦ detr and
GLr2 ◦ ℓr−npermn.

❑ It is possible to frame these questions without padding! [DGIJL’23].

18

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:

➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ VW ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π, where Σ[s]Π denotes s-sparse polynomials.

➢ Some more to come in the next slides...

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

19

A few more complexity measures

Kumar’s complexity

❑ [Kumar’20, DGJIL’23] The Kumar’s complexity of f , denoted Kc(f) is:

Kc(f) := min

{
r : f = 𝛼

(r∏
i=1
(1 + ℓj) − 1

)
, ℓj linear forms, 𝛼 ∈ C

}
.

❑ Kc(ℓd) = d, since for 𝜔 := exp(2𝜋𝜄/d),

ℓd = (1 + 𝜔0ℓ) · · · (1 + 𝜔d−1ℓ) − 1 .

❑ Kc(f) is not always finite. In fact, if f is homogeneous, then Kc(f) is finite
⇐⇒ f = ℓd .

❑ The border Kumar’s complexity Kc(·) is defined analogously:

Kc(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Kc(f𝜖) ≤ r

}
.

20

Kumar’s complexity

❑ [Kumar’20, DGJIL’23] The Kumar’s complexity of f , denoted Kc(f) is:

Kc(f) := min

{
r : f = 𝛼

(r∏
i=1
(1 + ℓj) − 1

)
, ℓj linear forms, 𝛼 ∈ C

}
.

❑ Kc(ℓd) = d, since for 𝜔 := exp(2𝜋𝜄/d),

ℓd = (1 + 𝜔0ℓ) · · · (1 + 𝜔d−1ℓ) − 1 .

❑ Kc(f) is not always finite. In fact, if f is homogeneous, then Kc(f) is finite
⇐⇒ f = ℓd .

❑ The border Kumar’s complexity Kc(·) is defined analogously:

Kc(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Kc(f𝜖) ≤ r

}
.

20

Kumar’s complexity

❑ [Kumar’20, DGJIL’23] The Kumar’s complexity of f , denoted Kc(f) is:

Kc(f) := min

{
r : f = 𝛼

(r∏
i=1
(1 + ℓj) − 1

)
, ℓj linear forms, 𝛼 ∈ C

}
.

❑ Kc(ℓd) = d, since for 𝜔 := exp(2𝜋𝜄/d),

ℓd = (1 + 𝜔0ℓ) · · · (1 + 𝜔d−1ℓ) − 1 .

❑ Kc(f) is not always finite. In fact, if f is homogeneous, then Kc(f) is finite
⇐⇒ f = ℓd .

❑ The border Kumar’s complexity Kc(·) is defined analogously:

Kc(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Kc(f𝜖) ≤ r

}
.

20

Kumar’s complexity

❑ [Kumar’20, DGJIL’23] The Kumar’s complexity of f , denoted Kc(f) is:

Kc(f) := min

{
r : f = 𝛼

(r∏
i=1
(1 + ℓj) − 1

)
, ℓj linear forms, 𝛼 ∈ C

}
.

❑ Kc(ℓd) = d, since for 𝜔 := exp(2𝜋𝜄/d),

ℓd = (1 + 𝜔0ℓ) · · · (1 + 𝜔d−1ℓ) − 1 .

❑ Kc(f) is not always finite. In fact, if f is homogeneous, then Kc(f) is finite
⇐⇒ f = ℓd .

❑ The border Kumar’s complexity Kc(·) is defined analogously:

Kc(f) = min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with Kc(f𝜖) ≤ r

}
.

20

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound?

Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Kumar’s result and its converse

Universality [Kumar 2020]

For any f ∈ SdCn, Kc(f) ≤ deg(f) ·WR(f) < ∞.

❑ How good is the bound? Really bad!

x1 · · · xn = lim
𝜖→0

𝜖n
(n∏

i=1
(1 + 1

𝜖
xi) − 1

)
.

❑ Kc(x1 · · · xn) = n, while WR(x1 · · · xn) = 2n−1.

❑ Interestingly, this is the only bad case.

Converse of Kumar [DGIJL’23]

For any f ∈ SdCn, either f =
∏

i∈[d] ℓi , or WR(f) ≤ Kc(f) ≤ deg(f) ·WR(f).

21

Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f) is defined analogously:

CR(f) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖) ≤ r

}
.

❑ Trivially CR(f) ≤ WR(f) (same in border).

❑ Exponential-gap between WR(f) and CR(f) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!

22

Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f) is defined analogously:

CR(f) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖) ≤ r

}
.

❑ Trivially CR(f) ≤ WR(f) (same in border).

❑ Exponential-gap between WR(f) and CR(f) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!

22

Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f) is defined analogously:

CR(f) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖) ≤ r

}
.

❑ Trivially CR(f) ≤ WR(f) (same in border).

❑ Exponential-gap between WR(f) and CR(f) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!

22

Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f) is defined analogously:

CR(f) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖) ≤ r

}
.

❑ Trivially CR(f) ≤ WR(f) (same in border).

❑ Exponential-gap between WR(f) and CR(f) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!

22

Chow rank and border Chow rank

Chow Rank

Let f ∈ SdCn. Chow rank of h, CR(f), is the smallest r such that h can be written as a
sum of d-product of linear forms ℓi , i.e. f =

∑r
i=1

∏d
j=1 ℓi ,j .

❑ Border Chow rank CR(f) is defined analogously:

CR(f) := min

{
r : f = lim

𝜖→0
f𝜖 , for a sequence f𝜖 with CR(f𝜖) ≤ r

}
.

❑ Trivially CR(f) ≤ WR(f) (same in border).

❑ Exponential-gap between WR(f) and CR(f) (same in border):
WR(x1 · · · xn + y1 · · · yn) = 2n, while CR(x1 · · · xn + y1 · · · yn) = 2!

22

Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f). Similarly, we can define CRaff (f).

❑ CRaff (f) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?

23

Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f). Similarly, we can define CRaff (f).

❑ CRaff (f) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?

23

Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f). Similarly, we can define CRaff (f).

❑ CRaff (f) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?

23

Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f). Similarly, we can define CRaff (f).

❑ CRaff (f) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?

23

Chow rank vs. Kumar’s complexity

❑ One can define the affine Chow rank CRaff (f), is when we allow affine linear
polynomials, i.e., f =

∑k
i=1

∏D
j=1 ℓij .

❑ Product fan-in D ≥ deg(f). Similarly, we can define CRaff (f).

❑ CRaff (f) = k, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as Σ[k]Π [D]Σ.

❑ [Kumar’20] For any f ∈ C[x1, . . . , xn], we have CRaff (f) ≤ 2, equivalently f has
Σ[2]Π [D]Σ-circuit [although D ≈ WR(f) can be large].

❑ How is CRaff and CRaff, or other measures related, when D is polynomially
bounded?

23

Some upper bounds and lower bounds on
border Chow rank

Some relations

Fix k ≥ 2 to be a constant.

Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

Some relations

Fix k ≥ 2 to be a constant. Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

Some relations

Fix k ≥ 2 to be a constant. Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

Some relations

Fix k ≥ 2 to be a constant. Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

Some relations

Fix k ≥ 2 to be a constant. Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

Some relations

Fix k ≥ 2 to be a constant. Interesting to understand CRaff (f) = k, since Σ[2]Π [D]Σ
is universal!

❑ [Folklore] CRaff (f) = k =⇒ dc(f) ≤ poly(k, d).

❑ detn cannot be computed by a Σ[k]Π [D]Σ-circuit, regardless of how large D is!

❑ When D = poly(n), then Σ[k]Π [D]Σ ⊊ VBP.

❑ Does this hold for border?

24

De-bordering Σ[k]Π [D]Σ circuits

Upper bound for CR [Dutta-Dwivedi-Saxena’21].

Let f ∈ SdCn, s.t. CR(f) = s. Then,

dc(f) ≤ (nds)exp(s) .

Corollary. For any constant k ≥ 1, Σ[k]Π [D]Σ ⊆ VBP.

25

De-bordering Σ[k]Π [D]Σ circuits

Upper bound for CR [Dutta-Dwivedi-Saxena’21].

Let f ∈ SdCn, s.t. CR(f) = s. Then,

dc(f) ≤ (nds)exp(s) .

Corollary. For any constant k ≥ 1, Σ[k]Π [D]Σ ⊆ VBP.

25

Lifting classical lower bound in the border

❑ Can we separate Σ[k]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)

requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k]ΠΣ ≠ VBP.

26

Lifting classical lower bound in the border

❑ Can we separate Σ[k]ΠΣ and VBP?

➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)
requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k]ΠΣ ≠ VBP.

26

Lifting classical lower bound in the border

❑ Can we separate Σ[k]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)

requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k]ΠΣ ≠ VBP.

26

Lifting classical lower bound in the border

❑ Can we separate Σ[k]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)

requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k]ΠΣ ≠ VBP.

26

Lifting classical lower bound in the border

❑ Can we separate Σ[k]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas’21] showed that IMMn,d with d = o(log n)

requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k]ΠΣ ≠ VBP.

26

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k]Π [D]Σ and VBP, when
D = poly(n)?

❑ Ambitious goal: Can we separate Σ[k]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k)Σ!

❑ What does work (if at all!)?

27

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Strong lower bounds

Hierarchy Theorem [Dutta-Saxena 2022]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]Π [n]Σ circuit such that if f is computed by
Σ[k]Π [D]Σ circuits, then D = 2Ω(n) .

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ CR(Pd) = 3.

❑ [DS’22] show that Pd requires D ≥ 2Ω(d) - product fan-in, to be computed by
Σ[2]Π [D]Σ circuits.

❑ Note: WR(Pd) = 2Ω(d) Kumar’s proof establishes that Pd has a 2O (d) product
fan-in Σ[2]ΠΣ circuits, showing optimality!

❑ Classical is about impossibility while in border, it is about optimality.

28

Conclusion

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

Some immediate questions

❑ Show that WR(P) ≤ k, then WR(P) ≤ poly(k, d).

❑ Find the explicit equations for WR(P) ≤ k.

❑ [Gurvits’08] Show that WR(detn) ≥ 2Ω(n) .

❑ We could only answer that Σ[k]Π [d]Σ ⊊ VBP, for constant k. What happens
for non-constant k?

Thank you! Questions?

29

	Determinant vs. Permanent
	Waring and border Waring rank
	Border Complexity
	A few more complexity measures
	Some upper bounds and lower bounds on border Chow rank
	Conclusion

