## Rigorous computation of Poincaré maps

#### Daniel Wilczak

#### joint work with Tomasz Kapela and Piotr Zgliczyński

Certified and Symbolic-Numeric Computation May 26, 2023

#### Motivation:

#### Computer Assisted Proofs in Dynamics

- existence, stability and continuation of periodic orbits (POs)
- connecting orbits between POs (ODEs, PDEs)
- invariant tori around elliptic POs
- Iocal bifurcations of POs
- global bifurcations (homoclinic tangencies, Shilnikov orbits, Bykov cycles ...)
- symbolic dynamics (ODEs, PDEs)
- (non)uniformly hyperbolic, chaotic attractors (Tucker'2002)
- . . .

#### http://capd.ii.uj.edu.pl

Kapela, Mrozek, W, Zgliczyński, CAPD::DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems, CNSNS'2021

Kapela, W., Zgliczyński, Recent advances in rigorous computation of Poincaré maps, CNSNS'2022

## Local sections

## Definition

## $\Pi \subset \mathbb{R}^n$ is **Poincaré section** for x' = f(x) if

- Π is connected manifold of codim 1 and
- $f(x) \notin T_x \Pi$  for  $x \in \Pi$

## Local sections

## Definition

## $\Pi \subset \mathbb{R}^n$ is **Poincaré section** for x' = f(x) if

- Π is connected manifold of codim 1 and
- $f(x) \notin T_x \Pi$  for  $x \in \Pi$



## Practical description of Poincaré sections

## $\Pi = \Pi_{\alpha, \mathcal{C}} = \{ \boldsymbol{x} : \boldsymbol{\alpha}(\boldsymbol{x}) = \boldsymbol{0} \land \langle \nabla \alpha(\boldsymbol{x}); f(\boldsymbol{x}) \rangle \neq \boldsymbol{0} \land \boldsymbol{\mathcal{C}}(\boldsymbol{x}) \}$

## where

- $\alpha \colon \mathbb{R}^n \to \mathbb{R}$  smooth
- zero is a **regular value** of  $\alpha$
- C is a predicate (additional constrains)
  - crossing direction
  - odomain restriction
  - etc.

## Return time (or flow time to section)

 $\Pi$  - Poincaré sections for x' = f(x)

Definition Define  $t_{\Pi} : \mathbb{R}^n \to \mathbb{R}$ : •  $x \in \text{dom } t_{\Pi} \text{ iff } x(t) \in \Pi \text{ for some } t > 0$ • for  $x \in \text{dom } t_{\Pi} \text{ we set}$  $t_{\Pi}(x) = \inf \{t > 0 : x(t) \in \Pi\}$ 

## Return time (or flow time to section)

$$\Pi$$
 - Poincaré sections for  $x' = f(x)$ 

## Definition

Define  $t_{\Pi} : \mathbb{R}^n \to \mathbb{R}$ :

•  $x \in \operatorname{dom} t_{\Pi} \operatorname{iff} x(t) \in \Pi \text{ for some } t > 0$ 

**②** for *x* ∈ dom  $t_{\Box}$  we set

$$t_{\Pi}(x) = \inf \left\{ t > 0 : x(t) \in \Pi \right\}$$

## Return time (or flow time to section)

$$\Pi$$
 - Poincaré sections for  $x' = f(x)$ 

## Definition

Define  $t_{\Pi} : \mathbb{R}^n \to \mathbb{R}$ :

•  $x \in \operatorname{dom} t_{\Pi} \operatorname{iff} x(t) \in \Pi \text{ for some } t > 0$ 

**②** for *x* ∈ dom  $t_{\Box}$  we set

$$t_{\Pi}(x) = \inf \left\{ t > 0 : x(t) \in \Pi \right\}$$



## $\Pi_1,\Pi_2$ - sections

## Definition

Define Poincaré map:

$$\mathcal{P} := \mathcal{P}_{\Pi_1 \to \Pi_2} \colon \Pi_1 \to \Pi_2$$

by

$$\mathcal{P}(\boldsymbol{x}) = \boldsymbol{x}(t_{\Pi_2}(\boldsymbol{x}))$$

provided  $t_{\Pi_2}(x)$  exists.

 $t_{\mathcal{P}}$  – restriction of  $t_{\Pi_2}$  to  $\Pi_1$ 

#### Example (Rössler system)

$$x' = -(y + z),$$
  $y' = x + 0.2y,$   $z' = 0.2 + z(x - 5.7)$ 

#### Goal:

there is a compact, connected invariant set which has at least one periodic solution.



#### Example (Rössler system)

$$x' = -(y + z),$$
  $y' = x + 0.2y,$   $z' = 0.2 + z(x - 5.7)$ 

#### Goal:

there is a compact, connected invariant set which has at least one periodic solution.



#### Settings:

 $\begin{array}{ll} \Pi = \{(0,y,z): y,z \in \mathbb{R}, x' > 0\} & - & \text{Poincaré section} \\ P: \Pi \to \Pi & - & \text{Poincaré map} \end{array}$ 



Methodology: Show that there is a rectangle

$$W = [y_1, y_2] \times [z_1, z_2]$$

such that

 $P(W) \subset W.$ 

Then  $\mathcal{A} := \bigcap_{n>0} P^n(W)$  is a compact, connected invariant set.

#### Settings:

 $\begin{array}{ll} \Pi = \{(0,y,z): y,z \in \mathbb{R}, x' > 0\} & - & \text{Poincaré section} \\ P: \Pi \to \Pi & - & \text{Poincaré map} \end{array}$ 



Methodology: Show that there is a rectangle

$$W = [y_1, y_2] \times [z_1, z_2]$$

such that

$$P(W) \subset W.$$

Then  $\mathcal{A} := \bigcap_{n>0} P^n(W)$  is a compact, connected invariant set.

#### Data (from simulation):

$$W = [-10.7, -2.3] \times [0.028, 0.034]$$

#### **Computations:**

- subdivide  $W = \bigcup_{i=1}^{200} W_i$
- check that  $P(W_i) \subset W$  for  $i = 1, \ldots, 200$



```
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
int main() {
  IMap vf("var:x, v, z: fun: -(v+z), x+0.2*v, 0.2+z*(x-5.7);");
  IOdeSolver solver(vf, 20);
  ICoordinateSection section(3, 0); // section x=0, x'>0
  IPoincareMap pm(solver, section, poincare::MinusPlus);
 // Coordinates of the trapping region
  const double B = 0.028, T = 0.034, L = -10.7, R = -2.3;
  // Subdivide the rectangle uniformly in y coordinate
  const int N = 200;
 bool result = true;
  interval p = (interval(R) - interval(L)) / N;
  for (int i = 0; i < N and result; ++i) {</pre>
    IVector x ({0., L + interval(i,i+1)*p, interval(B, T)});
    COHOTripletonSet s(x);
    IVector u = pm(s);
    result = result and u[2]>B and u[2]<T and u[1]>L and u[1]<R;
    if(!result)
      std::cout << "Inclusion not satisfied:\n" << u << std::endl;</pre>
  ł
  std::cout << "Existence of attractor: " << result << std::endl;</pre>
  return 0;
```

}

## Topological tool for chaos

#### Theorem (Zgliczyński, Nonlinearity 1997)

Assume that N and M are disjoint and

$$N \stackrel{f}{\Longrightarrow} N \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} N.$$

Then

- for every {S<sub>i</sub>}<sub>i∈Z</sub> ∈ {N, M}<sup>Z</sup> there is a trajectory visiting N, M in that order
- periodic {S<sub>i</sub>} lead to periodic trajectories.



#### Theorem (Zgliczyński, Nonlinearity 1997)

Assume that N and M are disjoint and

$$N \stackrel{f}{\Longrightarrow} N \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} N.$$

Then

for every {S<sub>i</sub>}<sub>i∈ℤ</sub> ∈ {N, M}<sup>ℤ</sup> there is a trajectory visiting N, M in that order

periodic {S<sub>i</sub>} lead to periodic trajectories.



#### Theorem (Zgliczyński, Nonlinearity 1997)

Assume that N and M are disjoint and

$$N \stackrel{f}{\Longrightarrow} N \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} M \stackrel{f}{\Longrightarrow} N.$$

Then

- for every {S<sub>i</sub>}<sub>i∈ℤ</sub> ∈ {N, M}<sup>ℤ</sup> there is a trajectory visiting N, M in that order
- periodic {*S<sub>i</sub>*} lead to periodic trajectories.



$$W = [I_W, r_W] \times Z = [-10.7, -2.3] \times [0.028, 0.034]$$

$$M = [I_M, r_M] \times Z = [-8.4, -7.6] \times [0.028, 0.034]$$

$$N = [I_N, r_N] \times Z = [-5.7, -4.6] \times [0.028, 0.034].$$

**Note:** in the last example we checked  $P(W) \subset \operatorname{int} W$ . Therefore

$$P^2(W) \subset \operatorname{int} W \subset \mathbb{R} \times (0.028, 0.034)$$

\_emma (computer-assisted)

$$N \stackrel{P^2}{\Longrightarrow} N \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} N$$

Inequalities to check:

 $\pi_{y} P^{2}(I_{M} \times [0.028, 0.034]) < I_{M}$   $\pi_{y} P^{2}(r_{M} \times [0.028, 0.034]) > r_{N}$   $\pi_{y} P^{2}(I_{N} \times [0.028, 0.034]) > r_{N}$  $\pi_{y} P^{2}(r_{N} \times [0.028, 0.034]) < I_{M}$ 

$$W = [I_W, r_W] \times Z = [-10.7, -2.3] \times [0.028, 0.034]$$
  

$$M = [I_M, r_M] \times Z = [-8.4, -7.6] \times [0.028, 0.034]$$
  

$$N = [I_N, r_N] \times Z = [-5.7, -4.6] \times [0.028, 0.034].$$

**Note:** in the last example we checked  $P(W) \subset int W$ . Therefore

$$P^2(W) \subset \operatorname{int} W \subset \mathbb{R} \times (0.028, 0.034)$$

\_emma (computer-assisted)

$$N \stackrel{P^2}{\Longrightarrow} N \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} N$$

Inequalities to check:

 $\pi_{y} P^{2}(I_{M} \times [0.028, 0.034]) < I_{M}$   $\pi_{y} P^{2}(r_{M} \times [0.028, 0.034]) > r_{N}$   $\pi_{y} P^{2}(I_{N} \times [0.028, 0.034]) > r_{N}$  $\pi_{y} P^{2}(r_{N} \times [0.028, 0.034]) < I_{M}$ 

$$W = [I_W, r_W] \times Z = [-10.7, -2.3] \times [0.028, 0.034]$$
  

$$M = [I_M, r_M] \times Z = [-8.4, -7.6] \times [0.028, 0.034]$$
  

$$N = [I_N, r_N] \times Z = [-5.7, -4.6] \times [0.028, 0.034].$$

**Note:** in the last example we checked  $P(W) \subset \operatorname{int} W$ . Therefore

$$P^2(W) \subset \operatorname{int} W \subset \mathbb{R} \times (0.028, 0.034)$$

Lemma (computer-assisted)

$$N \stackrel{P^2}{\Longrightarrow} N \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} N$$

Inequalities to check:

 $\pi_{y} P^{2}(I_{M} \times [0.028, 0.034]) < I_{M}$   $\pi_{y} P^{2}(r_{M} \times [0.028, 0.034]) > r_{N}$   $\pi_{y} P^{2}(I_{N} \times [0.028, 0.034]) > r_{N}$  $\pi_{y} P^{2}(r_{N} \times [0.028, 0.034]) < I_{M}$ 

$$W = [I_W, r_W] \times Z = [-10.7, -2.3] \times [0.028, 0.034]$$
  

$$M = [I_M, r_M] \times Z = [-8.4, -7.6] \times [0.028, 0.034]$$
  

$$N = [I_N, r_N] \times Z = [-5.7, -4.6] \times [0.028, 0.034].$$

**Note:** in the last example we checked  $P(W) \subset \operatorname{int} W$ . Therefore

$$P^2(W) \subset \operatorname{int} W \subset \mathbb{R} \times (0.028, 0.034)$$

Lemma (computer-assisted)

$$N \stackrel{P^2}{\Longrightarrow} N \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} M \stackrel{P^2}{\Longrightarrow} N$$

Inequalities to check:

$$\begin{array}{lll} \pi_{Y} \mathcal{P}^{2}(I_{M} \times [0.028, 0.034]) &< I_{M} \\ \pi_{Y} \mathcal{P}^{2}(r_{M} \times [0.028, 0.034]) &> r_{N} \\ \pi_{Y} \mathcal{P}^{2}(I_{N} \times [0.028, 0.034]) &> r_{N} \\ \pi_{Y} \mathcal{P}^{2}(r_{N} \times [0.028, 0.034]) &< I_{M} \end{array}$$



#### **Rigorous enclosures returned by the routine**

```
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std:
int main() {
  IMap vf("var:x,y,z;fun:-(y+z),x+0.2*y,0.2+z*(x-5.7);");
  IOdeSolver solver(vf, 20);
  ICoordinateSection section(3, 0); // section x=0, x'>0
  IPoincareMap pm(solver, section, poincare::MinusPlus);
  // z-coordinate of the trapping region
  interval z(0.028,0.034);
  // Coordinates of M and N
  const double 1M=-8.4, rM=-7.6, 1N=-5.7, rN=-4.6;
  COHOTripletonSet LM( IVector({0., 1M, z}) );
  COHOTripletonSet RM( IVector({0.,rM,z}) );
  COHOTripletonSet LN( IVector({0.,lN,z}) );
  COHOTripletonSet RN( IVector({0.,rN,z}) );
  // Inequalities for the covering relations N=>N, N=>M, M=>M, M=>N.
  cout << "P<sup>2</sup>(LM) < lM: " << ( pm(LM,2)[1] < lM ) << endl;
  cout << "P^2(RM) > rN: " << ( pm(RM,2)[1] > rN ) << endl;
  cout << "P<sup>2</sup>(LN) > rN: " << ( pm(LN,2)[1] > rN ) << endl;
  cout << "P<sup>2</sup>(RN) < 1M: " << ( pm(RN,2)[1] < 1M ) << endl;
  return 0;
}
```

## **Primary goal:**

### Given:

- $y \in \Pi_2$ ,
- matrix A,
- *X* ⊂ Π<sub>1</sub>

enclose

$$A(\mathcal{P}_{\Pi_1 \to \Pi_2}(X) - y) \subset Y$$

#### Motivation (the simplest case):

- Π a hyperplane
- *y* ∈ Π<sub>2</sub>
- fix any matrix  $B = [B_1 \dots B_n]$ such that



 $\bigcirc$   $B_1$  is transverse to  $\Pi$  at  $\gamma$  $[a] \{B_2,\ldots,B_n\}$  span  $T_{\nu}\Pi$ 



П

#### Motivation (the simplest case):

- Π a hyperplane
- *y* ∈ Π<sub>2</sub>
- fix any matrix  $B = [B_1 \dots B_n]$ such that



 $\bigcirc$   $B_1$  is transverse to  $\Pi$  at  $\gamma$  $[a] \{B_2,\ldots,B_n\}$  span  $T_{\nu}\Pi$ 



Put  $A = B^{-1}$ ,  $Y = (Y_1, \dots, Y_n) = A(P(x) - v)$  $\mathcal{P}(X) \subset \mathbf{y} + B(0, Y_2, \ldots, Y_n)$ 

B<sub>1</sub> – controls direction of projection onto Π

•  $\{B_2, \ldots, B_n\}$  – control wrapping effect on section

## Poincaré map algorithm

#### **Desired properties:**

- avoid subdivisions when crossing section
- reduce wrapping effect that may occur when change representation of a set to coordinates on section



#### **Desired properties:**

- avoid subdivisions when crossing section
- reduce wrapping effect that may occur when change representation of a set to coordinates on section



#### **Desired properties:**

- avoid subdivisions when crossing section
- reduce wrapping effect that may occur when change representation of a set to coordinates on section



## **Enclosing Poincaré maps**

#### **Reduce sliding effect:**



## Very important:

# take into account internal representation of solutions in ODE solver



## Very important:

# take into account internal representation of solutions in ODE solver



# Abstract data structure: RepresentableSet Example:

 $X = x + Cr_0 + Qr$ 

### Abstract (type dependent) algorithm:

Algorithm: AFFINETRANSFORM

**Input:**  $X \subset \mathbb{R}^n$  - RepresentableSet **Input:**  $A : \mathbb{R}^n \to \mathbb{R}^m$  - linear map **Input:**  $y \in \mathbb{R}^n$  - vector **Output:** An enclosure of A(X - y)

#### Example:

 $(A(x - y + Cr_0 + Qr)) \cap (A(x - y) + (AC)r_0 + (AQ)r)$ 

# Abstract data structure: RepresentableSet Example:

 $X = x + Cr_0 + Qr$ 

Abstract (type dependent) algorithm:

Algorithm: AFFINETRANSFORM

**Input:**  $X \subset \mathbb{R}^n$  - RepresentableSet **Input:**  $A : \mathbb{R}^n \to \mathbb{R}^m$  - linear map **Input:**  $y \in \mathbb{R}^n$  - vector **Output:** An enclosure of A(X - y)

Example:

 $(A(x-y+Cr_0+Qr))\cap (A(x-y)+(AC)r_0+(AQ)r)$
# Abstract data structure: RepresentableSet Example:

$$X = x + Cr_0 + Qr$$

### Abstract (type dependent) algorithm:

Algorithm: AFFINETRANSFORM

**Input:**  $X \subset \mathbb{R}^n$  - RepresentableSet **Input:**  $A : \mathbb{R}^n \to \mathbb{R}^m$  - linear map **Input:**  $y \in \mathbb{R}^n$  - vector **Output:** An enclosure of A(X - y)

Example:

 $(A(x - y + Cr_0 + Qr)) \cap (A(x - y) + (AC)r_0 + (AQ)r)$ 

# Abstract data structure: RepresentableSet Example:

$$X = x + Cr_0 + Qr$$

### Abstract (type dependent) algorithm:

Algorithm: AFFINETRANSFORM

**Input:**  $X \subset \mathbb{R}^n$  - RepresentableSet **Input:**  $A : \mathbb{R}^n \to \mathbb{R}^m$  - linear map **Input:**  $y \in \mathbb{R}^n$  - vector **Output:** An enclosure of A(X - y)

### Example:

$$(A(x - y + Cr_0 + Qr)) \cap (A(x - y) + (AC)r_0 + (AQ)r)$$

### Abstract (type dependent) algorithm:

### Algorithm: EVAL

**Input:**  $X \subset \mathbb{R}^n$  - RepresentableSet **Input:**  $g : \mathbb{R}^n \to \mathbb{R}^m$  - smooth **Output:** Bound for g(X)

### Example:

Algorithm: EVAL

**Input:**  $x + Cr_0 + Qr \subset \mathbb{R}^n$  - doubleton **Input:**  $g : \mathbb{R}^n \to \mathbb{R}^m$  - smooth function **Output:** Bound for  $g(x + Cr_0 + Qr)$ 

 $oldsymbol{X} \leftarrow [x + Coldsymbol{r_0} + Qoldsymbol{r}]_l \ oldsymbol{M} \leftarrow [Dg] \left(oldsymbol{X}
ight) \ ext{return} \left[g
ight] \left(oldsymbol{X}
ight) \cap \left[[g
ight] (x) + (oldsymbol{M}C)oldsymbol{r_0} + (oldsymbol{M}Q)oldsymbol{r}]_l$ 

### Abstract (type dependent) algorithm:

Algorithm: EVAL

Input:  $X \subset \mathbb{R}^n$  - RepresentableSet Input:  $g : \mathbb{R}^n \to \mathbb{R}^m$  - smooth Output: Bound for g(X)

## Example:

Algorithm: EVAL

**Input:**  $x + Cr_0 + Qr \subset \mathbb{R}^n$  - doubleton **Input:**  $g : \mathbb{R}^n \to \mathbb{R}^m$  - smooth function **Output:** Bound for  $g(x + Cr_0 + Qr)$ 

$$oldsymbol{X} \leftarrow [x + Coldsymbol{r_0} + Qoldsymbol{r}]_l \ oldsymbol{M} \leftarrow [Dg](oldsymbol{X}) \ ext{return} [g](oldsymbol{X}) \cap [[g](x) + (oldsymbol{M}C)oldsymbol{r_0} + (oldsymbol{M}Q)oldsymbol{r}]_l$$

### **Refinement of return time**

### Algorithm: REFINERETURNTIME

**Input:**  $[t_1, t_2]$  an interval that encloses  $t_{\Pi}(X)$  **Input:**  $X_1$  RepresentableSet that encloses  $\varphi(t_1, X)$  **Input:**  $\alpha$  function that defines the section  $\Pi$  **Input:** f underlying vector field **Output:** Improved bound for  $t_{\Pi}(X)$ 

$$\begin{array}{l} t_0 \leftarrow (t_1 + t_2)/2 \\ X_0 \leftarrow \text{RepresentableSet that encloses } \varphi(t_0 - t_1, X_1) \\ g_0 \leftarrow \text{eval}(X_0, \alpha) \\ e \leftarrow \varphi([0, t_2 - t_1], X_1) \\ g \leftarrow \text{eval}(e, D\alpha(\cdot) \cdot f(\cdot)) \\ \text{return } [t_1, t_2] \cap (t_0 - g_0/g) \end{array}$$

# Refinement of return time - geometry of the algorithm



# Refinement of return time - geometry of the algorithm



Algorithm: COMPUTEPOINCAREMAP

**Input:**  $[t_1, t_2]$  an interval that encloses  $t_{\Pi}(X)$ **Input:**  $X_1$  RepresentableSet that encloses  $\varphi(t_1, X)$ **Input:** f a vector field **Input:** y a vector Input: A a linear map **Output:** An enclosure of  $A(\mathcal{P}(X) - \gamma)$  $\boldsymbol{e} \leftarrow \varphi([0, t_2 - t_1], X_1)$  $t_0 \leftarrow (t_1 + t_2)/2$  $\Delta t \leftarrow [t_1, t_2] - t_0$  $X_0 \leftarrow \text{RepresentableSet}$  that encloses  $\varphi(t_0 - t_1, X_1)$  $V_0 \leftarrow affineTransform(X_0, A, \gamma)$  $\mathbf{y} \leftarrow \operatorname{eval}(X_0, A \circ f) \cdot \Delta t$  $\Delta \mathbf{y} \leftarrow \frac{1}{2} \mathbf{A} \cdot [Df](\mathbf{e}) \cdot [f](\mathbf{e}) \cdot \Delta t^2$  $z \leftarrow (v_0 + v + \Delta v) \cap [A(e - v)]_i$ return z

#### **Correctness:**

Set  $T = [0, t_2 - t_1]$  and use Taylor expansion:

$$\mathcal{P}(X) \subset \varphi(T, X_1) = \varphi(\Delta t, X_0) \subset X_0 + f(X_0) \Delta t + \frac{1}{2} Df(\boldsymbol{e}) f(\boldsymbol{e}) \Delta t^2$$

This gives:

$$\begin{array}{rcl} \mathcal{A}(\mathcal{P}(X)-y) &\subset & \mathcal{A}(X_0-y)+\mathcal{A}f(X_0)\Delta t+\frac{1}{2}\mathcal{A}Df(\boldsymbol{e})f(\boldsymbol{e})\Delta t^2\\ &\subset & \boldsymbol{y_0}+\boldsymbol{y}+\boldsymbol{\Delta y}. \end{array}$$

#### **Recall:**

 $\begin{array}{l} \textbf{\textit{y}}_0 \leftarrow \texttt{affineTransform}(X_0, A, y) \\ \textbf{\textit{y}} \leftarrow \texttt{eval}(X_0, A \circ f) \cdot \boldsymbol{\Delta t} \\ \boldsymbol{\Delta y} \leftarrow \frac{1}{2} A \cdot [Df](\textbf{\textit{e}}) \cdot [f](\textbf{\textit{e}}) \cdot \boldsymbol{\Delta t}^2 \end{array}$ 

#### **Correctness:**

Set  $T = [0, t_2 - t_1]$  and use Taylor expansion:

$$\mathcal{P}(X) \subset \varphi(T, X_1) = \varphi(\Delta t, X_0) \subset X_0 + f(X_0) \Delta t + \frac{1}{2} Df(\boldsymbol{e}) f(\boldsymbol{e}) \Delta t^2$$

This gives:

$$\begin{array}{rcl} \mathcal{A}(\mathcal{P}(X)-y) & \subset & \mathcal{A}(X_0-y)+\mathcal{A}f(X_0)\Delta t+\frac{1}{2}\mathcal{A}Df(\boldsymbol{e})f(\boldsymbol{e})\Delta t^2\\ & \subset & \boldsymbol{y_0}+\boldsymbol{y}+\boldsymbol{\Delta y}. \end{array}$$

#### **Recall:**

 $egin{aligned} m{y}_0 &\leftarrow ext{affineTransform}(X_0, m{A}, m{y}) \ m{y} &\leftarrow ext{eval}(X_0, m{A} \circ f) \cdot m{\Delta t} \ m{\Delta y} &\leftarrow frac{1}{2} m{A} \cdot [Df](m{e}) \cdot [f](m{e}) \cdot m{\Delta t}^2 \end{aligned}$ 

#### **Correctness:**

Set  $T = [0, t_2 - t_1]$  and use Taylor expansion:

$$\mathcal{P}(X) \subset \varphi(T, X_1) = \varphi(\Delta t, X_0) \subset X_0 + f(X_0) \Delta t + \frac{1}{2} Df(\boldsymbol{e}) f(\boldsymbol{e}) \Delta t^2$$

This gives:

$$\begin{array}{rcl} \mathcal{A}(\mathcal{P}(X)-y) & \subset & \mathcal{A}(X_0-y)+\mathcal{A}f(X_0)\Delta t+\frac{1}{2}\mathcal{A}Df(\boldsymbol{e})f(\boldsymbol{e})\Delta t^2\\ & \subset & \boldsymbol{y_0}+\boldsymbol{y}+\boldsymbol{\Delta y}. \end{array}$$

#### **Recall:**

$$\begin{array}{l} \textbf{\textit{y}}_{0} \leftarrow \texttt{affineTransform}(\textbf{\textit{X}}_{0}, \textbf{\textit{A}}, \textbf{\textit{y}}) \\ \textbf{\textit{y}} \leftarrow \texttt{eval}(\textbf{\textit{X}}_{0}, \textbf{\textit{A}} \circ f) \cdot \boldsymbol{\Delta} t \\ \textbf{\textit{\Delta}} \textbf{\textit{y}} \leftarrow \frac{1}{2} \textbf{\textit{A}} \cdot [Df](\textbf{\textit{e}}) \cdot [f](\textbf{\textit{e}}) \cdot \boldsymbol{\Delta} t^{2} \end{array}$$









## $A(\mathcal{P}(X) - y) \subset y_0 + y + \Delta y$

 $\begin{array}{l} \textbf{y}_0 \leftarrow \texttt{affineTransform}(X_0, A, y) \\ \textbf{y} \leftarrow \texttt{eval}(X_0, A \circ f) \cdot \Delta t \\ \Delta \textbf{y} \leftarrow \frac{1}{2}A \cdot [Df](\textbf{e}) \cdot [f](\textbf{e}) \cdot \Delta t^2 \end{array}$ 

**Goal:** minimize  $diam(\mathbf{y}) \in O(diam(X_0)^2)$  or better

- Sections are fixed: play with coordinate system A to reduce sliding effect
  eval(Xo A o f) ≈ (1, 0, ..., 0) + small
- Sections are free to choose: set Π so that Δt is small



# $A(\mathcal{P}(X) - y) \subset y_0 + y + \Delta y$

 $\begin{array}{l} \textbf{y_0} \leftarrow \texttt{affineTransform}(X_0, A, y) \\ \textbf{y} \leftarrow \texttt{eval}(X_0, A \circ f) \cdot \Delta t \\ \Delta \textbf{y} \leftarrow \frac{1}{2}A \cdot [Df](\textbf{e}) \cdot [f](\textbf{e}) \cdot \Delta t^2 \end{array}$ 

### **Goal:** minimize $diam(\mathbf{y}) \in O(diam(X_0)^2)$ or better

- Sections are fixed: play with coordinate system A to reduce sliding effect eval(X<sub>0</sub>, A ∘ f) ≈ (1, 0, ..., 0) + small
- Output: Sections are free to choose: set Π so that Δt is small



# $A(\mathcal{P}(X) - y) \subset y_0 + y + \Delta y$

 $\begin{array}{l} \textbf{y}_{0} \leftarrow \text{affineTransform}(X_{0}, A, y) \\ \textbf{y} \leftarrow \text{eval}(X_{0}, A \circ f) \cdot \Delta t \\ \Delta \textbf{y} \leftarrow \frac{1}{2}A \cdot [Df](\textbf{e}) \cdot [f](\textbf{e}) \cdot \Delta t^{2} \end{array}$ 

**Goal:** minimize  $diam(\mathbf{y}) \in O(diam(X_0)^2)$  or better

Sections are fixed: play with coordinate system A to reduce sliding effect eval(X<sub>0</sub>, A ∘ f) ≈ (1, 0, ..., 0) + small

Sections are free to choose: set Π so that Δt is small



# $A(\mathcal{P}(X) - y) \subset y_0 + y + \Delta y$

 $\begin{array}{l} \textbf{y_0} \leftarrow \texttt{affineTransform}(X_0, A, y) \\ \textbf{y} \leftarrow \texttt{eval}(X_0, A \circ f) \cdot \Delta t \\ \Delta \textbf{y} \leftarrow \frac{1}{2}A \cdot [Df](\textbf{e}) \cdot [f](\textbf{e}) \cdot \Delta t^2 \end{array}$ 

**Goal:** minimize  $diam(\mathbf{y}) \in O(diam(X_0)^2)$  or better

- Sections are fixed: play with coordinate system A to reduce sliding effect eval(X₀, A ∘ f) ≈ (1, 0, ..., 0) + small
- Sections are free to choose: set Π so that Δt is small



### First strategy: reduction of sliding effect

#### Theorem

If  $y \in X_0 \cap \Pi$  and  $A = B^{-1}$ , where

$$\mathsf{B} = \left[ \begin{array}{c} f(y) \mid M \end{array} \right]$$

and columns in M span  $T_y \Pi$ . Then

$$m{y} + m{\Delta}m{y} \in (m{\Delta}m{t}, 0, 0, \ldots) + O\left(diam(X_0)^2\right)$$

Corollary:  $\Pi$  - hyperplane  $z = y_0 + y + \Delta y = (z_1, \dots, z_n)$ Then

$$\mathcal{P}(X) \subset (y + Bz) \cap \Pi = y + B(0, z_2, \dots, z_n)^T.$$

where

$$(0, \mathbf{z}_2, \ldots, \mathbf{z}_n) = (0, (\mathbf{y}_0)_2, \ldots, (\mathbf{y}_0)_n) + O\left(diam(X_0)^2\right),$$

### First strategy: reduction of sliding effect

#### Theorem

If 
$$y \in X_0 \cap \Pi$$
 and  $A = B^{-1}$ , where

$$\mathsf{B} = \left[ \begin{array}{c} f(y) \mid M \end{array} \right]$$

and columns in M span  $T_y \Pi$ . Then

$$m{y} + m{\Delta}m{y} \in (m{\Delta}m{t}, 0, 0, \ldots) + O\left(diam(X_0)^2\right)$$

#### **Corollary:**

 $\Pi$  - hyperplane  $oldsymbol{z} = oldsymbol{y}_0 + oldsymbol{y} + oldsymbol{\Delta} oldsymbol{y} = (oldsymbol{z}_1, \dots, oldsymbol{z}_n)$  Then

$$\mathcal{P}(X) \subset (y + Bz) \cap \Pi = y + B(0, z_2, \dots, z_n)^T.$$

where

$$(0, \mathbf{z_2}, \dots, \mathbf{z_n}) = (0, (\mathbf{y_0})_2, \dots, (\mathbf{y_0})_n) + O\left(diam(X_0)^2\right),$$

#### First strategy: reduction of sliding effect

$$\mathbf{y} \subset [Af(x_0) + A[Df](X_0)\Delta X_0]_I \Delta t$$
,  
where  $x_0 = \operatorname{mid}(X_0)$  and  $\Delta X_0 = X_0 - x_0$ . We have  
 $A[Df](X_0)\Delta X_0 \Delta t \in O\left(\operatorname{diam}(X_0)^2\right)$ 

because  $diam(\Delta t) \in O(diam(X_0))$ .

 $y \in X_0$  – convex:

 $Af(x_0)\Delta t \in (Af(y))\Delta t + [ADf(X_0)]_I(x_0 - y)\Delta t.$ 

A chosen so that Af(y) = (1, 0, 0, ...) and thus

$$[(Af(y))\Delta t]_I = (\Delta t, 0, 0 \ldots).$$

 $t_{\Pi}: \Pi_1 \to \mathbb{R}$  - return time

**Observation:** If

 $t_{\Pi} \approx \text{constant for } x \in U \subset \Pi$ 

then bounds for crossing time and  $\mathcal{P}$  should be tighter.

 $t_{\Pi}:\Pi_1 \to \mathbb{R}$  - return time

Observation: If

 $t_{\Pi} \approx \text{constant for } x \in U \subset \Pi$ 

then bounds for crossing time and  $\mathcal P$  should be tighter.



 $t_{\Pi}:\Pi_1 \to \mathbb{R}$  - return time

#### **Observation:** If

 $t_{\Pi} \approx \text{constant for } x \in U \subset \Pi$ 

then bounds for crossing time and  $\ensuremath{\mathcal{P}}$  should be tighter.



- f vector field
- $\varphi$  induced local flow
- $\Pi = \Pi_{\alpha}$  Poincaré section

#### Theorem

Assume

•  $\varphi(T, x_0) = x_0 \in \Pi$  for some minimal T > 0

λ = 1 is an eigenvalue of M := D<sub>x</sub>φ(T, x<sub>0</sub>) of multiplicity one.

#### Then

(ker  $Dt_{\Pi} = T_{x_0}\Pi$ )  $\Leftrightarrow$  ( $D\alpha(x_0)$  is a left eigenvector of M for  $\lambda = 1$ )

In such case,  $t_{\Pi}(x) = t_{\Pi}(x_0) + O(||x - x_0||^2)$  for  $x \in \Pi$ .

- f vector field
- $\varphi$  induced local flow
- $\Pi = \Pi_{\alpha}$  Poincaré section

### Theorem

Assume

- $\varphi(T, x_0) = x_0 \in \Pi$  for some minimal T > 0
- λ = 1 is an eigenvalue of M := D<sub>x</sub>φ(T, x<sub>0</sub>) of multiplicity one.

#### Then

(ker  $Dt_{\Pi} = T_{x_0}\Pi$ )  $\Leftrightarrow$  ( $D\alpha(x_0)$  is a left eigenvector of M for  $\lambda = 1$ )

In such case,  $t_{\Pi}(x) = t_{\Pi}(x_0) + O(||x - x_0||^2)$  for  $x \in \Pi$ .

- f vector field
- $\varphi$  induced local flow
- $\Pi = \Pi_{\alpha}$  Poincaré section

### Theorem

Assume

• 
$$\varphi(T, x_0) = x_0 \in \Pi$$
 for some minimal  $T > 0$ 

λ = 1 is an eigenvalue of M := D<sub>x</sub>φ(T, x<sub>0</sub>) of multiplicity one.

### Then

(ker  $Dt_{\Pi} = T_{x_0}\Pi$ )  $\Leftrightarrow$  ( $D\alpha(x_0)$  is a left eigenvector of M for  $\lambda = 1$ )

In such case,  $t_{\Pi}(x) = t_{\Pi}(x_0) + O(||x - x_0||^2)$  for  $x \in \Pi$ .

- f vector field
- $\varphi$  induced local flow
- $\Pi = \Pi_{\alpha}$  Poincaré section

### Theorem

Assume

• 
$$\varphi(T, x_0) = x_0 \in \Pi$$
 for some minimal  $T > 0$ 

λ = 1 is an eigenvalue of M := D<sub>x</sub>φ(T, x<sub>0</sub>) of multiplicity one.

### Then

(ker  $Dt_{\Pi} = T_{x_0}\Pi$ )  $\Leftrightarrow$  ( $D\alpha(x_0)$  is a left eigenvector of M for  $\lambda = 1$ )

In such case,  $t_{\Pi}(x) = t_{\Pi}(x_0) + O(\|x - x_0\|^2)$  for  $x \in \Pi$ .

**Case of fixed point:** assume  $P(x_0) = x_0$  $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

> $\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$  $\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$

If  $D\alpha(x_0)$  is left eigenvector for *M* for  $\lambda = 1$  then

 $D\alpha(x_0); f(x_0) \rangle Dt_{\Pi}(x_0) + D\alpha(x_0) \equiv 0$   $\downarrow$   $D\alpha(x_0) \text{ and } Dt_{\Pi}(x_0) \text{ are proportiona}$   $\downarrow$   $\ker Dt_{\Pi} = T_{x_0} \Pi$   $\downarrow$   $\frac{\partial t_{\Pi}}{\partial \nu}(x) = 0 \text{ for } v \in T_{x_0} \Pi$ 

Case of fixed point: assume  $P(x_0) = x_0$   $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

 $\alpha(\varphi(t_{\Pi}(x),x))\equiv 0$ 

 $\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$ 

If  $D\alpha(x_0)$  is left eigenvector for *M* for  $\lambda = 1$  then

 $D\alpha(x_0); f(x_0) \rangle Dt_{\Pi}(x_0) + D\alpha(x_0) \equiv 0$   $\downarrow$   $D\alpha(x_0) \text{ and } Dt_{\Pi}(x_0) \text{ are proportiona}$   $\downarrow$   $\ker Dt_{\Pi} = T_{x_0}\Pi$   $\downarrow$   $\frac{\partial t_{\Pi}}{\partial v}(x) = 0 \text{ for } v \in T_{x_0}\Pi$ 

**Case of fixed point:** assume  $P(x_0) = x_0$  $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

# $\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$ $\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$

**Case of fixed point:** assume  $P(x_0) = x_0$  $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

$$\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$$
  
$$\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$$

**Case of fixed point:** assume  $P(x_0) = x_0$  $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

$$\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$$
  
$$\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$$

**Case of fixed point:** assume  $P(x_0) = x_0$  $\alpha(x) = 0$  - defines section  $M := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x_0), x_0)$ 

$$\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$$
  
$$\langle D\alpha(x); f(x) \rangle Dt_{\Pi}(x) + D\alpha(x)M \equiv 0$$

# Example: van der Pol equation

### **Equation:**

$$x'' = 0.2x'(1-x^2) - x$$

**The section:**  $\Pi = \{y = 0\}$  (flowdir & normal)


### Example: van der Pol equation

#### **Equation:**

$$x'' = 0.2x'(1-x^2) - x$$

**The section:**  $\Pi = \{y = 0\}$  (flowdir & normal)



| $\delta = \frac{1}{2} \operatorname{diam}(\boldsymbol{u})$ | diameter of crossing time | $\pi_{x}\mathcal{P}(oldsymbol{u})-oldsymbol{x}_{0}$ |
|------------------------------------------------------------|---------------------------|-----------------------------------------------------|
| 10 <sup>-9</sup>                                           | 3.6 · 10 <sup>-10</sup>   | $[-2.83, 2.83] \cdot 10^{-10}$                      |
| 10 <sup>-8</sup>                                           | 3.6 · 10 <sup>-9</sup>    | [-2.83, 2.83] · 10 <sup>-9</sup>                    |
| 10 <sup>-7</sup>                                           | 3.6 · 10 <sup>-8</sup>    | [-2.83, 2.83] · 10 <sup>-8</sup>                    |
| 10 <sup>-6</sup>                                           | 3.6 · 10 <sup>-7</sup>    | [-2.83, 2.83] · 10 <sup>-7</sup>                    |
| 10 <sup>-5</sup>                                           | 3.6 · 10 <sup>-6</sup>    | [-2.83, 2.83] · 10 <sup>-6</sup>                    |
| 10 <sup>-4</sup>                                           | 3.61 · 10 <sup>-5</sup>   | [-2.83, 2.83] · 10 <sup>-5</sup>                    |
| 10 <sup>-3</sup>                                           | 3.64 · 10 <sup>-4</sup>   | [-2.84, 2.84] · 10 <sup>-4</sup>                    |
| 10 <sup>-2</sup>                                           | 3.97 · 10 <sup>-3</sup>   | [-2.93, 2.93] · 10 <sup>-3</sup>                    |
| 10 <sup>-1</sup>                                           | 1.18 · 10 <sup>-1</sup>   | $[-6.5, 6.12] \cdot 10^{-2}$                        |

### Example: van der Pol equation

#### **Equation:**

$$x'' = 0.2x'(1-x^2) - x$$

The section: minimizes crossing time diameter



### Example: van der Pol equation

#### **Equation:**

$$x'' = 0.2x'(1-x^2) - x$$

The section: minimizes crossing time diameter



| $\delta = \frac{1}{2} \operatorname{diam}(\boldsymbol{u})$ | diameter of crossing time | $\pi_{x_2} \mathcal{P}(\boldsymbol{u})$ |
|------------------------------------------------------------|---------------------------|-----------------------------------------|
| 10 <sup>-9</sup>                                           | $3.46 \cdot 10^{-14}$     | $[-2.83, 2.83] \cdot 10^{-10}$          |
| 10 <sup>-8</sup>                                           | $3.46 \cdot 10^{-14}$     | $[-2.83, 2.83] \cdot 10^{-9}$           |
| 10 <sup>-7</sup>                                           | $6.39 \cdot 10^{-14}$     | $[-2.83, 2.83] \cdot 10^{-8}$           |
| 10 <sup>-6</sup>                                           | 2.99 · 10 <sup>−12</sup>  | $[-2.83, 2.83] \cdot 10^{-7}$           |
| 10 <sup>-5</sup>                                           | 2.96 · 10 <sup>-10</sup>  | $[-2.83, 2.83] \cdot 10^{-6}$           |
| 10 <sup>-4</sup>                                           | 2.96 · 10 <sup>-8</sup>   | $[-2.83, 2.83] \cdot 10^{-5}$           |
| 10 <sup>-3</sup>                                           | 2.97 · 10 <sup>-6</sup>   | $[-2.83, 2.83] \cdot 10^{-4}$           |
| 10 <sup>-2</sup>                                           | 3.11 · 10 <sup>-4</sup>   | $[-2.89, 2.89] \cdot 10^{-3}$           |
| 10 <sup>-1</sup>                                           | 6.26 · 10 <sup>-2</sup>   | $[-4.66, 4.78] \cdot 10^{-2}$           |

#### **Experiments:**



#### **Experiments:**

#### Michelson system

$$x' = y$$
,  $y' = z$ ,  $z' = 0.8^2 - y - \frac{1}{2}x^2$ 

 $u_M \approx (0, 1.32825866108569290258, 0)$ 

 $\lambda_{M_1} \approx -21.57189303583905, \quad \lambda_{M_2} \approx -0.046356617768258279$ • Falkner-Skan equation

x' = y, y' = z,  $z' = 250(y^2 - 1) - xz$ 

 $\approx (0, 0.939712208779672476275, 0)$ 

 $\lambda_{FS_1} \approx -3.1255162015308575, \quad \lambda_{FS_2} \approx -0.31994714969329141.$  • Rössler system

 $x' = -y - w, \quad y' = x + ay + z, \quad z' = dy + cw, \quad w' = xw + b$  $u_{R_h} \approx (-29.841563300389689, 0, 15.047757539453583, 0.10059818458161384)$ a = 0.25, b = 3, c = -0.5, d = 0.05

 $\lambda_{R_{h1}} \approx -2.9753618617897111, \quad \lambda_{R_{h2}} \approx 1.11933293616997, \quad \lambda_{R_{h3}} \approx -2.10^{-18}$ • Rössler system

$$\begin{split} u_{R_{pd}} &\approx (-16.051468914417546, 0, 8.362179513564907, 0.18738588995067224) \\ a &= 0.25, \, b = 3, \, c = -0.397617541005413, \, d = 0.05 \\ &\lambda_{R_{pd1}} \approx 1.2039286263296654, \quad \lambda_{R_{pd2}} \approx -1, \quad \lambda_{R_{pd3}} \approx -6 \cdot 10^{-17} \end{split}$$

#### Settings:

- Section always linear x = 0 or y = 0
- $B_2, \ldots, B_n$  eigenvectors of DP(u)

#### Goal:

Compute  $\mathcal{P}(u + \frac{1}{2}s[-1, 1]B_2 + ... + \frac{1}{2}s[-1, 1]B_n)$  in coordinate system  $B_2, ..., B_n$  **B**<sub>1</sub>



П

#### Three strategies:

- cartessian : A = Id
- diag+normal  $A^{-1} = B = [B_1, ..., B_n], B_1$  normal to  $\Pi$
- diag+flowdir  $A^{-1} = B = [B_1, \dots, B_n], B_1$  flow direction

#### Settings:

- Section always linear x = 0 or y = 0
- $B_2, \ldots, B_n$  eigenvectors of DP(u)

#### Goal:

Compute  $\mathcal{P}(u + \frac{1}{2}s[-1, 1]B_2 + \ldots + \frac{1}{2}s[-1, 1]B_n)$  in coordinate system  $B_2, \ldots, B_n$   $B_1$ 



П

#### Three strategies:

- cartessian : A = Id
- diag+normal  $A^{-1} = B = [B_1, ..., B_n], B_1$  normal to  $\Pi$
- diag+flowdir  $A^{-1} = B = [B_1, \dots, B_n]$ ,  $B_1$  flow direction

#### Settings:

- Section always linear x = 0 or y = 0
- $B_2, \ldots, B_n$  eigenvectors of DP(u)

#### Goal:

Compute  $\mathcal{P}(u + \frac{1}{2}s[-1, 1]B_2 + \ldots + \frac{1}{2}s[-1, 1]B_n)$  in coordinate system  $B_2, \ldots, B_n$   $B_1$ 



П

#### Three strategies:

- cartessian : A = Id
- diag+normal  $A^{-1} = B = [B_1, ..., B_n], B_1$  normal to  $\Pi$
- diag+flowdir  $A^{-1} = B = [B_1, \ldots, B_n], B_1$  flow direction

#### Strategies:

- orthogonal
- CTO Crossing-Time Optimal Section
- max angle CTO





| log <sub>10</sub> s | diag+normal                                | diag+flowdir              | orthogonal          | СТО               | max angle CTO     |
|---------------------|--------------------------------------------|---------------------------|---------------------|-------------------|-------------------|
|                     | $\lambda_{M_1} \approx -21.57189303583905$ |                           |                     |                   |                   |
| -13                 | 22.288770093234                            | 21.571893035879           | 21.571893035877     | 21.571893035868   | 21.571893035886   |
| -12                 | 22.288770093715                            | 21.571893036244           | 21.571893036220     | 21.571893036127   | 21.571893036325   |
| -11                 | 22.288770098524                            | 21.571893039893           | 21.571893039664     | 21.571893038726   | 21.571893040654   |
| -10                 | 22.288770146617                            | 21.571893076394           | 21.571893074103     | 21.571893064721   | 21.571893083996   |
| -9                  | 22.288770627515                            | 21.571893441397           | 21.571893418486     | 21.571893324667   | 21.571893517420   |
| -8                  | 22.288775436860                            | 21.571897091434           | 21.571896862320     | 21.571895924126   | 21.571897851656   |
| -7                  | 22.288823530421                            | 21.571933591888           | 21.571931300742     | 21.571921918754   | 21.571941194109   |
| -6                  | 22.289304477585                            | 21.572298605637           | 21.572275692728     | 21.572181868412   | 21.572374627014   |
| -5                  | 22.294115104218                            | 21.575949664009           | 21.575720389491     | 21.574781702701   | 21.576709794306   |
| -4                  | 22.342338639296                            | 21.612552589485           | 21.610245257920     | 21.600813874537   | 21.620145477068   |
| -3                  | 22.836610909239                            | 21.988082379753           | 21.963506140123     | 21.864579188760   | 22.064023271359   |
| -2                  | 28.684735372216                            | 26.950444290822           | 26.572537443087     | 24.899391229219   | 27.640671971912   |
|                     |                                            | $\lambda_{M_2} \approx -$ | -0.0463566177682582 | 79                |                   |
| -13                 | 16.134915640465                            | 0.046356617787156         | 0.046356617784308   | 0.046356617774995 | 0.046356617788210 |
| -12                 | 16.134915640887                            | 0.046356617957266         | 0.046356617928783   | 0.046356617835662 | 0.046356617967803 |
| -11                 | 16.134915645110                            | 0.046356619658364         | 0.046356619373536   | 0.046356618442332 | 0.046356619763732 |
| -10                 | 16.134915687348                            | 0.046356636669347         | 0.046356633821066   | 0.046356624509024 | 0.046356637723029 |
| -9                  | 16.134916109700                            | 0.046356806779235         | 0.046356778296425   | 0.046356685175975 | 0.046356817316206 |
| -8                  | 16.134920333587                            | 0.046358507884187         | 0.046358223056044   | 0.046357291848356 | 0.046358613269082 |
| -7                  | 16.134962572563                            | 0.046375519540821         | 0.046372671255224   | 0.046363358859580 | 0.046376574908491 |
| -6                  | 16.135384972877                            | 0.046545696834452         | 0.046517213563835   | 0.046424057719320 | 0.046556402492512 |
| -5                  | 16.139610031950                            | 0.048253558313519         | 0.047968685063875   | 0.047033927584654 | 0.048375923353681 |
| -4                  | 16.181967982389                            | 0.065957180118245         | 0.063105333370683   | 0.053427383868315 | 0.067766038947423 |
| -3                  | 16.616844425767                            | 0.27530605365471          | 0.24486689683707    | 0.13335710379016  | 0.26868430398964  |
| -2                  | 21.778676674834                            | 3.3796717087139           | 2.8985584015404     | 1.1081551960197   | 3.5608490573157   |

## **Michelson system:** computed ratio $diam(z_i)/s$ for various choices o section.

| log <sub>10</sub> s                          | diag+normal      | diag+flowdir               | orthogonal          | СТО              | max angle CTO    |
|----------------------------------------------|------------------|----------------------------|---------------------|------------------|------------------|
| $\lambda_{FS_1} \approx -3.1255162015308699$ |                  |                            |                     |                  |                  |
| -13                                          | 3.2116142444263  | 3.1255162038258            | 3.1255162269739     | 3.1255162039846  | 3.1255162077022  |
| -12                                          | 3.2116142655580  | 3.1255162244797            | 3.1255164559613     | 3.1255162260679  | 3.1255162249376  |
| -11                                          | 3.2116144768748  | 3.1255164310196            | 3.1255187458357     | 3.1255164469009  | 3.1255164321661  |
| -10                                          | 3.2116165900434  | 3.1255184964189            | 3.1255416446378     | 3.1255186552321  | 3.1255185078836  |
| -9                                           | 3.2116377217797  | 3.1255391504587            | 3.1257706385001     | 3.1255407385979  | 3.1255392650706  |
| -8                                           | 3.2118490440011  | 3.1257456956048            | 3.1280611613276     | 3.1257615776825  | 3.1257468381526  |
| -7                                           | 3.2139627521408  | 3.1278116218805            | 3.1510249035516     | 3.1279705113076  | 3.1278226902171  |
| -6                                           | 3.2351484960973  | 3.1485184344710            | 3.3866083502860     | 3.1501142089676  | 3.1485933519525  |
| -5                                           | 3.4519428524253  | 3.3604105774357            | 20.073719793613     | 3.3770717466865  | 3.3575308921411  |
| -4                                           | 6.1918831644386  | 6.0382345907118            | 48.192050322691     | 6.2929366399838  | 5.5793036988113  |
|                                              |                  | $\lambda_{FS_2} \approx -$ | -0.3199471496932898 | 35               |                  |
| -13                                          | 0.58904797067828 | 0.31994714992826           | 0.31994715230733    | 0.31994714994447 | 0.31994715050329 |
| -12                                          | 0.58904797368178 | 0.31994715204298           | 0.31994717583371    | 0.31994715220505 | 0.31994715370896 |
| -11                                          | 0.58904800371685 | 0.31994717319017           | 0.31994741109760    | 0.31994717481089 | 0.31994718904359 |
| -10                                          | 0.58904830406741 | 0.31994738466211           | 0.31994976374250    | 0.31994740086931 | 0.31994754319639 |
| -9                                           | 0.58905130758169 | 0.31994949938640           | 0.31997329079895    | 0.31994966145907 | 0.31995108473517 |
| -8                                           | 0.58908134341692 | 0.31997064711589           | 0.32020862211667    | 0.31997226791244 | 0.31998650120326 |
| -7                                           | 0.58938177100241 | 0.32018217307783           | 0.32256802070380    | 0.32019838802569 | 0.32034077392439 |
| -6                                           | 0.59239298018272 | 0.32230230643042           | 0.34678075911647    | 0.32246515567799 | 0.32389432028560 |
| -5                                           | 0.62320851091933 | 0.34399811694236           | 6.3011376294349     | 0.34569814280737 | 0.36052693835901 |
| -4                                           | 1.0129131821593  | 0.61828066926388           | 14.959060502378     | 0.64422908261053 | 0.84497758478011 |

**Falkner-Skan system:** computed ratio  $diam(z_i)/s$  for various choices o section.

| log <sub>10</sub> <i>S</i>                     | diag+normal     | diag+flowdir                 | orthogonal         | СТО             | max angle CTO   |
|------------------------------------------------|-----------------|------------------------------|--------------------|-----------------|-----------------|
| $\lambda_{R_{b1}} \approx -2.9753618617896986$ |                 |                              |                    |                 |                 |
| -13                                            | 3.1269112296727 | 2.9753618617987              | 2.9753618617991    | 2.9753618617973 | 2.9753618617953 |
| -12                                            | 3.1269112296767 | 2.9753618618023              | 2.9753618618019    | 2.9753618618042 | 2.9753618618071 |
| -11                                            | 3.1269112299772 | 2.9753618620903              | 2.9753618620850    | 2.9753618620637 | 2.9753618620608 |
| -10                                            | 3.1269112327992 | 2.9753618647951              | 2.9753618647424    | 2.9753618645294 | 2.9753618645006 |
| -9                                             | 3.1269112610131 | 2.9753618918436              | 2.9753618913169    | 2.9753618891866 | 2.9753618888981 |
| -8                                             | 3.1269115432163 | 2.9753621623288              | 2.9753621570618    | 2.9753621357587 | 2.9753621328741 |
| -7                                             | 3.1269143652214 | 2.9753648671818              | 2.9753648145118    | 2.9753646014813 | 2.9753645726348 |
| -6                                             | 3.1269425854365 | 2.9753919158704              | 2.9753913891678    | 2.9753892588373 | 2.9753889703684 |
| -5                                             | 3.1272248040375 | 2.9756624185652              | 2.9756571512700    | 2.9756358454017 | 2.9756329603539 |
| -4                                             | 3.1300486358109 | 2.9783690272406              | 2.9783163272842    | 2.9781030120969 | 2.9780741257411 |
| -3                                             | 3.1551299308307 | 3.0024276270455              | 3.0019370205452    | 3.0053562752534 | 3.0006911559382 |
| -2                                             | 3.3312447246999 | 3.1612927762392              | 3.1579216074761    | 3.1824418580936 | 3.2139664668233 |
| -1                                             | 5.9748947614907 | 5.5919232064410              | 5.5499757238534    | 5.6828287198362 | 6.1202554505770 |
|                                                |                 | $\lambda_{R_{h2}} \approx 1$ | 1.1193329361699592 |                 |                 |
| -13                                            | 1.2750081236836 | 1.1193329361772              | 1.1193329361780    | 1.1193329361755 | 1.1193329361756 |
| -12                                            | 1.2750081236814 | 1.1193329361751              | 1.1193329361749    | 1.1193329361760 | 1.1193329361771 |
| -11                                            | 1.2750081238407 | 1.1193329363308              | 1.1193329363269    | 1.1193329362917 | 1.1193329363020 |
| -10                                            | 1.2750081253204 | 1.1193329377781              | 1.1193329377391    | 1.1193329373876 | 1.1193329374899 |
| -9                                             | 1.2750081401109 | 1.1193329522510              | 1.1193329518609    | 1.1193329483465 | 1.1193329493692 |
| -8                                             | 1.2750082880882 | 1.1193330969806              | 1.1193330930796    | 1.1193330579353 | 1.1193330681626 |
| -7                                             | 1.2750097678299 | 1.1193345442775              | 1.1193345052677    | 1.1193341538239 | 1.1193342560970 |
| -6                                             | 1.2750245653503 | 1.1193490173467              | 1.1193486272464    | 1.1193451127757 | 1.1193461355106 |
| -5                                             | 1.2751725508514 | 1.1194937580732              | 1.1194898568592    | 1.1194547088893 | 1.1194649366501 |
| -4                                             | 1.2766534361840 | 1.1209421693982              | 1.1209031360826    | 1.1205513299068 | 1.1206536486960 |
| -3                                             | 1.2904231607513 | 1.1343998401486              | 1.1340331850761    | 1.1369430453153 | 1.1333056956081 |
| -2                                             | 1.3698919414549 | 1.2014426463159              | 1.1996643242106    | 1.2152067812507 | 1.2538154992768 |
| -1                                             | 2.9997723907998 | 2.6705679634689              | 2.6493196773279    | 2.5783568485068 | 3.0211083048782 |

# **Rössler system (hyperbolic orbit):** computed ratio $diam(z_i)/s$ for various choices o section.

| log <sub>10</sub> s | diag+normal     | diag+flowdir                | orthogonal           | СТО             | max angle CTO   |
|---------------------|-----------------|-----------------------------|----------------------|-----------------|-----------------|
|                     |                 | $\lambda_{R_{pd1}} \approx$ | 1.203928626329668    | 5               |                 |
| -13                 | 1.3744854888330 | 1.2039286263323             | 1.2039286263322      | 1.2039286263322 | 1.2039286263316 |
| -12                 | 1.3744854888497 | 1.2039286263484             | 1.2039286263480      | 1.2039286263474 | 1.2039286263453 |
| -11                 | 1.3744854890396 | 1.2039286265322             | 1.2039286265287      | 1.2039286265228 | 1.2039286265000 |
| -10                 | 1.3744854909230 | 1.2039286283550             | 1.2039286283202      | 1.2039286282607 | 1.2039286280334 |
| -9                  | 1.3744855097563 | 1.2039286465824             | 1.2039286462353      | 1.2039286456404 | 1.2039286433675 |
| -8                  | 1.3744856980897 | 1.2039288288571             | 1.2039288253857      | 1.2039288194367 | 1.2039287967079 |
| -7                  | 1.3744875814245 | 1.2039306516056             | 1.2039306168909      | 1.2039305574015 | 1.2039303301127 |
| -6                  | 1.3745064136666 | 1.2039488792229             | 1.2039485320727      | 1.2039479371714 | 1.2039456642602 |
| -5                  | 1.3746947443819 | 1.2041311685904             | 1.2041276967474      | 1.2041217470111 | 1.2040990156302 |
| -4                  | 1.3764909757232 | 1.2058681783762             | 1.2058331605620      | 1.2057750473739 | 1.2056335194386 |
| -3                  | 1.3923461796892 | 1.2211702025606             | 1.2208174545532      | 1.2202191822506 | 1.2201485891365 |
| -2                  | 1.5245370044750 | 1.3482398006188             | 1.3444079718526      | 1.3378502373169 | 1.3452772133533 |
| -1                  | 3.3189752159528 | 3.0595461571246             | 2.9899841238967      | 2.8651359578762 | 2.5268610111985 |
|                     |                 | )                           | $R_{pd2} \approx -1$ |                 |                 |
| -13                 | 1.1486171722293 | 1.000000000020              | 1.000000000020       | 1.000000000019  | 1.000000000015  |
| -12                 | 1.1486171722484 | 1.000000000190              | 1.000000000186       | 1.000000000181  | 1.000000000159  |
| -11                 | 1.1486171724575 | 1.000000002049              | 1.0000000002015      | 1.0000000001971 | 1.000000001738  |
| -10                 | 1.1486171745303 | 1.000000020486              | 1.000000020146       | 1.000000019712  | 1.000000017376  |
| -9                  | 1.1486171952589 | 1.0000000204855             | 1.0000000201457      | 1.0000000197118 | 1.0000000173756 |
| -8                  | 1.1486174025442 | 1.0000002048552             | 1.0000002014574      | 1.0000001971178 | 1.0000001737558 |
| -7                  | 1.1486194753993 | 1.0000020485537             | 1.0000020145757      | 1.0000019711789 | 1.0000017375590 |
| -6                  | 1.1486402030893 | 1.0000204856702             | 1.0000201458870      | 1.0000197119133 | 1.0000173756918 |
| -5                  | 1.1488474901282 | 1.0002048700441             | 1.0002014718711      | 1.0001971314897 | 1.0001737670547 |
| -4                  | 1.1508203440202 | 1.0019607036312             | 1.0019263987058      | 1.0018836409982 | 1.0017386848276 |
| -3                  | 1.1681410842692 | 1.0174040964627             | 1.0170577983291      | 1.0165945694829 | 1.0165327959562 |
| -2                  | 1.3108850142655 | 1.1452467277951             | 1.1414685208050      | 1.1359979815714 | 1.1438008444065 |
| -1                  | 3.2096656391944 | 2.8618925282316             | 2.7920556484803      | 2.6772944104801 | 2.2936430842608 |

## **Rössler system (period-doubling orbit):** computed ratio $diam(z_i)/s$ for various choices o section.

## **Applications**

## **Kuramoto-Sivashinsky equations**

$$u_t = 2uu_x - u_{xx} - \nu u_{xxxx}$$

 $2\pi$ -periodic, odd

$$u(t,x) = -2\sum_{k=1}^{\infty} a_k(t)\sin(kx)$$

Infinite dimensional ODE

$$a'_{k} = k^{2}(1-\nu k^{2})a_{k}-k\left(\sum_{n=1}^{k-1}a_{n}a_{k-n}-2\sum_{n=1}^{\infty}a_{n}a_{n+k}\right)$$

## **Kuramoto-Sivashinsky equations**

$$u_t = 2uu_x - u_{xx} - \nu u_{xxxx}$$

## $2\pi$ -periodic, odd

$$u(t,x) = -2\sum_{k=1}^{\infty} a_k(t)\sin(kx)$$

Infinite dimensional ODE

$$a'_{k} = k^{2}(1-\nu k^{2})a_{k}-k\left(\sum_{n=1}^{k-1}a_{n}a_{k-n}-2\sum_{n=1}^{\infty}a_{n}a_{n+k}\right)$$

### Kuramoto-Sivashinsky equations

$$u_t = 2uu_x - u_{xx} - \nu u_{xxxx}$$

## $2\pi$ -periodic, odd

$$u(t,x) = -2\sum_{k=1}^{\infty} a_k(t)\sin(kx)$$

## Infinite dimensional ODE

$$a'_{k} = k^{2}(1-\nu k^{2})a_{k}-k\left(\sum_{n=1}^{k-1}a_{n}a_{k-n}-2\sum_{n=1}^{\infty}a_{n}a_{n+k}\right)$$

#### Proof of stable periodic orbit Result reproduced from Zgliczyński FoCM'2004



| Ui                                   | $P_i(u)$                                    | $\lambda_i$               |
|--------------------------------------|---------------------------------------------|---------------------------|
| $[-1,1] \cdot 10^{-5}$               | $[-5.45, 5.45] \cdot 10^{-6}$               | 0.5258                    |
| $[-1,1] \cdot 10^{-5}$               | [-9.85, 9.81] · 10 <sup>-7</sup>            | 0.0903                    |
| $[-1,1] \cdot 10^{-5}$               | [-5.86, 4.67] · 10 <sup>-9</sup>            | 3.5 · 10 <sup>−8</sup>    |
| $[-1,1] \cdot 10^{-5}$               | [-6.61, 4.32] · 10 <sup>-9</sup>            | 1.65 · 10 <sup>-8</sup>   |
| $[-1,1] \cdot 10^{-5}$               | [-8.02, 5.65] · 10 <sup>-9</sup>            | $-3.77 \cdot 10^{-9}$     |
| $[-1,1] \cdot 10^{-5}$               | [-6.62, 8.19] · 10 <sup>-9</sup>            | -4.01 · 10 <sup>-11</sup> |
| $[-1,1] \cdot 10^{-5}$               | [-7.30, 9.62] · 10 <sup>-9</sup>            | -8.94 · 10 <sup>-10</sup> |
| $[-1, 1] \cdot 10^{-5}$              | [-2.15, 1.53] · 10 <sup>-9</sup>            | $-6.69 \cdot 10^{-11}$    |
|                                      |                                             |                           |
| k > 23                               | k > 23                                      |                           |
| 10 <sup>-5</sup> (1.5) <sup>-k</sup> | 5.01 · 10 <sup>-8</sup> (1.5) <sup>-k</sup> |                           |





#### Data from the proof of blue fixed point

#### Theorem (PZ & DW, JDE '2020)

Fix  $\nu = 0.1212$ . There is an invariant set  $\mathcal{H}$  such that

- the system on  $\mathcal H$  is chaotic (symbolic dynamics)
- H possesses countable infinity of periodic orbits of arbitrary large principal periods



#### Theorem (PZ & DW 2021)

- there are a hyperbolic periodic orbit  $a^1, a^2 \subset \mathcal{H}$
- there is countable infinity of connecting orbits between a<sup>1</sup> and a<sup>2</sup> in H

## Thank you for your attention!