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Goal: explicit expressions for the twist
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Initial hope: Write F (y, z) as a product involving 2F1 functions.

Reasons:

Experimental discoveries and conjectures by Zhi-Wei Sun, and the
Barnes–Bailey identity:
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Equations for F (y, z)
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By eliminating derivatives with respect to y we get an order-4 linear
differential equation DEz ∈ Q(y, z)[d/dz].

We can also construct DEz by using Maple’s gfun to compute a re-
currence for

(
2n
n

)
Pn(y)2 and convert it to a differential equation.



Definition 1. Let V (L) denote the solution space of L in a universal
extension. The symmetric product L1sL2 is the lowest order differ-
ential equation with y1 · y2 ∈ V (L) for any y1 ∈ V (L1), y2 ∈ V (L2).

If the initial hope is true then

(1) we expect DEz = a symmetric product of order-2 equations
(2) we expect those to be 2F1 solvable

Should be a 5 minute project because I have implementations for both!
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∑∞

n=0

(
2n
n

)
Pn(y)2zn satisfies order-4 DEz ∈ Q(y, z)[d/dz].

My implementation finds:

DEz = Lz
+sLz

−

where
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Problem: The square root has degree 3 as a polynomial in z.

The software for finding 2F1 solutions developed by my students and I
is for rational function coefficients (genus 0).

; hours of adjusting software to make it work for genus 1

; and still no solution???

Why spend a lot of time adjusting/testing implementation to genus 1?

Why expect a 2F1 solution?



OEIS: many sequences an ∈ Z. Generating function:
∑
anx

n.

If differential of order 2, then closed form solutions are very common!

True so far:
If an in OEIS,

∑
anx

n positive radius of convergence, and differential
equation order 2, then 2F1 solvable.

Many order 2 arithmetic examples in OEIS. So far, all 2F1-solvable.

Bouw Möller: counter example with an ∈ Z[12 ,
√

17].
Differential equation: order 2, arithmetic, no 2F1 solution.

Are “naturally occurring” order 2 arithmetic differential equations
always 2F1-solvable?



Idea: Instead of eliminating derivatives with respect to y, we can also
eliminate derivatives with respect to z.

; a fourth order equation DEy ∈ Q(y, z)[d/dy].

Implementation finds DEy = Ly
+sLy

− where
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This time we can rationalize the square root with a substitution. We
chose:
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After some simplifications we get the following solution for DEy
√
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and where F x
− is obtained from F x

+ by replacing t with −t.

Under x→ 0, the radius of convergence of F (y, z) goes to 0.
For a functional equality, use another singularity:

x = −(1 +
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The next task is to solve Lx
+ and find an explicit expression for F x

+.
; expressions for solutions

√
x · F x

+ · F x
− and F (y, z) of DEy.

Substituting rational numbers for t produces equations in Q(x)[d/dx].
Then all our 2F1 programs are applicable.
A 2F1 type solution should now be found (if it exists).

No solution found???

F (y, z) ∈ Z[y]((z)) so we expect equations obtained from it to be
arithmetic:

Let an be the n’th coefficient in the power series of F x
+.

We expect: ∃ c ∈ Q(t)− {0} with anc
n ∈ Z[t] for all n.

Indeed: take c = 26(t2 − 1)4.



To our surprise anc
n was even divisible by
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)
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Turns out to be algebraic.

First a Möbius transformation to reduce expression sizes:

Let Lm = Lx
+
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The apparent singularity moved to x =∞ after x 7→ m.
Solving Lm is equivalent to solving Lx

+.

Lm has solution x1/2
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+ 218t2(t− 1)6(t+ 1)2(2n+ 1)(2n− 3)un−2 = 0 and u(0) = 1.
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like in yesterday’s talk.

By solving a differential equation for Z(x) we get
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R
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R±= A±
√
A2 − 1

S = (1− 16(t+ 1)(t− 1)3x)(1 + 26(t3 + t2 − t)x− 210(t3 + t2)(t− 1)3x2)

A = 1 + 27(2t− 1)2x− 211(t− 1)3(2t− 1)(2t2 + 5t− 1)x2

+ 217t(t− 1)6(2t2 + 2t− 1)x3 − 221(t3 + t2)(t− 1)9x4.



In general

1√
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∫ 4x

0

Z(ξ)√
ξ(4x− ξ)

dξ.

The relation between x and Z(x) has genus 0, so it allows rational
parametrization, however, if we allow a square root the parametriza-
tion becomes much shorter:

x =
(t2 − v2)

16t(tv4 + (t+ 1)(t− 1)2(t2 − 2v2 − t))
,

Z =
(t− 1 + v)(tv4 + (t+ 1)(t− 1)2(t2 − 2v2 − t))

v(v4 − 2t2v2 + (t2 − 1)2)

√
v − t

2t(t2 + tv − 1)
.

Substituting gives:
√

2t

π

∫
(t− 1 + v) dv√

(t2 + tv − 1)(t+ v)(v2 − t2 + 16tx(tv4 + (t+ 1)(t− 1)2(t2 − 2v2 − t)))
.



A linear transformation moves two branchpoints to v = 0 and v = 1.
Combining all the various transformations gives:

Theorem 1.
F (y, z) = w I+(4z, w2)I−(4z, w2)

where
w =

√
(1 + 4z)2 − 16y2z + 4y

√
−z

and I±(u, x) =
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1− uv ± v
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2u2 − 2u√
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(
(1− v)(1− u2v)(1 + uv)2 + x v(1− uv)2

) dv .

I+(u, x) is a period of a hyperelliptic curve and satisfies a second order
linear differential equation.
That is highly unusual! (the expected order is 2g = 4)



Our order-2 equation is arithmetic and yet the monodromy group is
dense in SL2(R).

=⇒ It cannot be solved in terms of 2F1 hypergeometric functions.
Novel for an equation that “occurred naturally”.

Our hyperelliptic curve Cu,x is defined by the equation

Y 2 = H(x, u, v),

where

H = v (1− v)
(
(1− v)(1− u2v)(1 + uv)2 + xv(1− uv)2

)
.



Monodromy calculation
Fix a u to reduce our 2-parameter family of curves to 1 parameter x.

Singular members: x = 0, x =∞, x = u2 − 6u+ 1± 4(1− u)
√
−u.

Goal: compute the monodromy representation.

The monodromy acts on H1(C
u,x,Z), so it can be given by 4×4 integer

matrices, with product 1.
In general, it is very likely for the monodromy to act irreducibly on C4.
; irreducible differential equation of 2g = 4.

However, our equation Lx
+ has order 2!

To understand this, we computed the monodromy matrices ∈ Sp4(Z).
They have two invariant subspaces defined over Q(

√
2).

(corresponding to our order-2 equations Lx
+ and Lx

−)

Implies real multiplication:

Z[
√

2] ⊂ End(Jac(Cu,x))

(this can be verified with a formula from Humbert).



To simplify the notation and computation, first fix the value u = 1/2.
The corresponding singularities are

x1 = −7/4 +
√
−2, x2 = 0, x3 = −7/4−

√
−2, x4 =∞

We choose a base point, say

xBP = 1.

so that all the roots of H(1, 1/2, v) are real:

v1 = −3−
√

17, v2 =
3−
√

17

2
, v3 = 0, v4 = 1, v5 = −3+

√
17, v6 =

3 +
√

17

2
,

and satisfy v1 < v2 < · · · < v6.
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Figure 1. Our choice of homology basis on the curve C1/2,1
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Figure 2. Loops around the singularities for u = 1/2.



Theorem 2. With the above choice of basis for H1(C
1/2,1,Z) and gen-

erating paths `i, i = 1, 2, 3, 4 for π1(C \ {x1, x2, x3}, xBP) we have:

M1 :=


2 −1 1 −1
2 0 1 −2
2 −1 2 −2
1 −1 1 0

 , M2 :=


1 −1 0 0
0 1 0 0
0 0 1 −2
0 0 0 1

 ,

M3 :=


0 −1 1 1
2 2 −1 −2
2 1 0 −2
−1 −1 1 2

 , M∞ :=


−1 0 0 0
−2 −1 0 0
0 0 −1 0
0 0 −1 −1

 .

Theorem 3. The monodromy groups of the operators L+
x is a dense

subgroup of SL2(R). In particular: no 2F1 solutions.
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Figure 3. Looping along `1.
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Braid action Above we picked u = 1/2. Now consider what happens
when we change u:
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Figure 6. Positioning after a u-move



Cubes of Legendre polynomials

Theorem 4. Let p = 1− xy3 + x2(3y2 − 2)/4 and
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where the Hadamard product ? is with respect to variable x.


