A generating function for squares of Legendre polynomials Mark van Hoeij, Duco van Straten, Wadim Zudilin

Legendre polynomial:

$$
P_{n}(y)=\frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} y^{n}}\left(\left(y^{2}-1\right)^{n}\right)=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}\left(\frac{y-1}{2}\right)^{k}
$$

Recurrence:

$$
(n+1) P_{n+1}(y)-(2 n+1) y P_{n}(y)+n P_{n-1}(y)=0
$$

Generating functions:

$$
\begin{gathered}
\sum_{n=0}^{\infty} P_{n}(y) z^{n}=\frac{1}{\sqrt{1-2 y z+z^{2}}} . \\
\sum_{n=0}^{\infty} P_{n}(y)^{2} z^{n}=\frac{1}{\sqrt{1-2 y^{2} z+z^{2}}} \cdot{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{4}, \frac{3}{4} \\
1
\end{array} \left\lvert\, \frac{4\left(1-y^{2}\right)^{2} z^{2}}{\left(1-2 y^{2} z+z^{2}\right)^{2}}\right.\right)
\end{gathered}
$$

Goal: explicit expressions for the twist

$$
F(y, z)=\sum_{n=0}^{\infty}\binom{2 n}{n} P_{n}(y)^{2} z^{n}
$$

Initial hope: Write $F(y, z)$ as a product involving ${ }_{2} F_{1}$ functions.

Reasons:

Experimental discoveries and conjectures by Zhi-Wei Sun, and the Barnes-Bailey identity:

$$
\mathrm{F}_{4}\left(\begin{array}{c|c}
a, b & x(1-y), y(1-x) \\
c_{1}, c_{2} & x(1){ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & x \\
c_{1} & x
\end{array}{ }_{2} F_{1}\left(\begin{array}{c|l}
a, b & y \\
c_{2} & y
\end{array}\right) .\right.
\end{array}\right.
$$

when $c_{1}+c_{2}=a+b+1$.

Equations for $F(y, z)$

$$
\begin{array}{r}
z\left(y^{2}-2 z-\frac{1}{2}\right) \frac{\partial^{2} F}{\partial y \partial z}+\frac{y}{2}\left(1-y^{2}\right) \frac{\partial^{2} F}{\partial y^{2}}-\left(y^{2}+z\right) \frac{\partial F}{\partial y}+y z \frac{\partial F}{\partial z}=0 \\
F+\left(2 z^{2}-\frac{z}{2}\right) \frac{\partial^{2} F}{\partial z^{2}}+\left(5 z-\frac{1}{2}\right) \frac{\partial F}{\partial z}+\left(y-\frac{1}{y}\right)\left(\left(z+\frac{1}{4}\right) \frac{\partial^{2} F}{\partial y \partial z}+\frac{1}{2} \frac{\partial F}{\partial y}\right)=0
\end{array}
$$

By eliminating derivatives with respect to y we get an order-4 linear differential equation $\mathrm{DE}_{z} \in \mathbb{Q}(y, z)[\mathrm{d} / \mathrm{d} z]$.

We can also construct DE_{z} by using Maple's gfun to compute a recurrence for $\binom{2 n}{n} P_{n}(y)^{2}$ and convert it to a differential equation.

Definition 1. Let $V(L)$ denote the solution space of L in a universal extension. The symmetric product $L_{1}(\Im) L_{2}$ is the lowest order differential equation with $y_{1} \cdot y_{2} \in V(L)$ for any $y_{1} \in V\left(L_{1}\right), y_{2} \in V\left(L_{2}\right)$.

If the initial hope is true then
(1) we expect $\mathrm{DE}_{z}=$ a symmetric product of order-2 equations (2) we expect those to be ${ }_{2} F_{1}$ solvable

Should be a 5 minute project because I have implementations for both!
$F(y, z)=\sum_{n=0}^{\infty}\binom{2 n}{n} P_{n}(y)^{2} z^{n}$ satisfies order-4 $\mathrm{DE}_{z} \in \mathbb{Q}(y, z)[\mathrm{d} / \mathrm{d} z]$.
My implementation finds:

$$
\mathrm{DE}_{z}=L_{+}^{z} \text { © } L_{-}^{z}
$$

where

$$
\begin{aligned}
L_{ \pm}^{z}:= & z(1-4 z)(1+4 z)^{2}\left((1+4 z)^{2}-16 y^{2} z\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} \\
& +\left(8 z\left(48 z^{2}+8 z-3\right) y^{2}+\left(1-32 z^{2}\right)(1+4 z)^{2}\right)(1+4 z) \frac{\mathrm{d}}{\mathrm{~d} z} \\
& +\left(64 z^{3}+80 z^{2}+4 z-1\right) y^{2}-3 z(1+4 z)^{3} \\
& \pm(1-8 z) y \sqrt{2(1-4 z)\left((1+4 z)^{2}-16 z y^{2}\right)} .
\end{aligned}
$$

Problem: The square root has degree 3 as a polynomial in z. The software for finding ${ }_{2} F_{1}$ solutions developed by my students and I is for rational function coefficients (genus 0).
\leadsto hours of adjusting software to make it work for genus 1
\sim and still no solution???

Why spend a lot of time adjusting/testing implementation to genus 1 ? Why expect a ${ }_{2} F_{1}$ solution?

OEIS: many sequences $a_{n} \in \mathbb{Z}$. Generating function: $\sum a_{n} x^{n}$.
If differential of order 2 , then closed form solutions are very common!

True so far:

If a_{n} in OEIS, $\sum a_{n} x^{n}$ positive radius of convergence, and differential equation order 2 , then ${ }_{2} F_{1}$ solvable.
Many order 2 arithmetic examples in OEIS. So far, all ${ }_{2} F_{1}$-solvable.
Bouw Möller: counter example with $a_{n} \in \mathbb{Z}\left[\frac{1}{2}, \sqrt{17}\right]$.
Differential equation: order 2, arithmetic, no ${ }_{2} F_{1}$ solution.
Are "naturally occurring" order 2 arithmetic differential equations always ${ }_{2} F_{1}$-solvable?

Idea: Instead of eliminating derivatives with respect to y, we can also eliminate derivatives with respect to z.
\leadsto a fourth order equation $\mathrm{DE}_{y} \in \mathbb{Q}(y, z)[\mathrm{d} / \mathrm{d} y]$.
Implementation finds $\mathrm{DE}_{y}=L_{+}^{y}$ (S) L_{-}^{y} where

$$
\begin{aligned}
L_{ \pm}^{y} & =2\left(1-y^{2}\right)\left(2 y^{2}-4 z-1\right)^{2}\left((1+4 z)^{2}-16 z y^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} \\
& +4 y\left(2 y^{2}-4 z-1\right)\left(32 z y^{4}-(1+4 z)\left((1+28 z) y^{2}-4 z(3+4 z)\right)\right) \frac{\mathrm{d}}{\mathrm{~d} y} \\
& +16\left(2 y^{2}-14 z-3\right) z y^{4}+(1+4 z)\left(1+32 z+80 z^{2}\right) y^{2}-(1+4 z)^{2}\left(1+4 z+8 z^{2}\right) \\
& \pm\left(2(1+8 z) y^{2}-4(1+4 z)(1-z)\right) y \sqrt{2(1-4 z)\left((1+4 z)^{2}-16 z y^{2}\right)} .
\end{aligned}
$$

This time we can rationalize the square root with a substitution. We chose:

$$
y=\left(x+\left(t^{2}-1\right)^{2}\right) \sqrt{z / x}, \quad z=\frac{1}{4\left(1-2 t^{2}\right)} .
$$

After some simplifications we get the following solution for DE_{y}

$$
\sqrt{x} \cdot F_{+}^{x} \cdot F_{-}^{x}
$$

where F_{+}^{x} satisfies:

$$
\begin{aligned}
& L_{+}^{x}=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\left(\frac{1}{x}-\frac{1}{x+(t+1)(t-1)^{3}}+\frac{2\left(x+t^{4}+2 t^{2}-1\right)}{x^{2}+\left(2 t^{4}+4 t^{2}-2\right) x+\left(t^{2}-1\right)^{4}}\right) \frac{\mathrm{d}}{\mathrm{~d} x} \\
& +\frac{4 x^{2}+\left(8 t^{4}-16 t^{3}-4 t^{2}+20 t-9\right) x+\left(4 t^{4}-8 t^{3}+12 t^{2}+4 t-5\right)(t+1)(t-1)^{3}}{16 x\left(x^{2}+\left(2 t^{4}+4 t^{2}-2\right) x+\left(t^{2}-1\right)^{4}\right)\left(x+(t+1)(t-1)^{3}\right)} .
\end{aligned}
$$

and where F_{-}^{x} is obtained from F_{+}^{x} by replacing t with $-t$.
Under $x \rightarrow 0$, the radius of convergence of $F(y, z)$ goes to 0 .
For a functional equality, use another singularity:

$$
x=-\left(1+\sqrt{2 t^{2}-1}\right)^{4}=-(1+1 /(2 \sqrt{-z}))^{4} .
$$

The next task is to solve L_{+}^{x} and find an explicit expression for F_{+}^{x}. \sim expressions for solutions $\sqrt{x} \cdot F_{+}^{x} \cdot F_{-}^{x}$ and $F(y, z)$ of DE_{y}.
Substituting rational numbers for t produces equations in $\mathbb{Q}(x)[\mathrm{d} / \mathrm{d} x]$. Then all our ${ }_{2} F_{1}$ programs are applicable.
A ${ }_{2} F_{1}$ type solution should now be found (if it exists).
No solution found???
$F(y, z) \in \mathbb{Z}[y]((z))$ so we expect equations obtained from it to be arithmetic:

Let a_{n} be the n 'th coefficient in the power series of F_{+}^{x}.
We expect: $\exists c \in \mathbb{Q}(t)-\{0\}$ with $a_{n} c^{n} \in \mathbb{Z}[t]$ for all n.
Indeed: take $c=2^{6}\left(t^{2}-1\right)^{4}$.

To our surprise $a_{n} c^{n}$ was even divisible by $\binom{2 n}{n}$.
Then $\sum a_{n} /\binom{2 n}{n} x^{n}$ satisfies an arithmetic equation as well!
Turns out to be algebraic.
First a Möbius transformation to reduce expression sizes:
Let $L^{m}=\left.L_{+}^{x}\right|_{x \mapsto m}$ where $m:=\frac{1}{64 x}-(t+1)(t-1)^{3}$.
The apparent singularity moved to $x=\infty$ after $x \mapsto m$.
Solving L^{m} is equivalent to solving L_{+}^{x}.
L^{m} has solution $x^{1 / 2} \sum u_{n} x^{n}$ with $u_{n} \in \mathbb{Z}[n]$ of degree $4 n$.

$$
\begin{aligned}
& (n+1)^{2} u_{n+1} \\
& -2^{2}\left(16\left(t^{4}-6 t^{3}-4 t^{2}+6 t-1\right)\left(n^{2}+n\right)+4 t^{4}-24 t^{3}-12 t^{2}+20 t-3\right) u_{n} \\
& -2^{11} t(t-1)^{3}(t+1)\left(8\left(t^{2}+2 t-1\right) n^{2}-2 t^{2}-6 t+3\right) u_{n-1} \\
& +2^{18} t^{2}(t-1)^{6}(t+1)^{2}(2 n+1)(2 n-3) u_{n-2}=0 \quad \text { and } \quad u(0)=1
\end{aligned}
$$

$u(n)$ is divisible by $\binom{2 n}{n}$. Take $\tilde{u}_{n}=u_{n} /\binom{2 n}{n}$ and $Z(x):=\sum \tilde{u}_{n} x^{n}$. Then

$$
\sum_{n=0}^{\infty} u_{n} x^{n}=\sum_{n=0}^{\infty}\binom{2 n}{n} \tilde{u}_{n} x^{n}=\frac{1}{\sqrt{1-4 x}} \star Z(x)
$$

where the Hadamard product \star is $\sum a_{n} x^{n} \star \sum b_{n} x^{n}=\sum a_{n} b_{n} x^{n}$ like in yesterday's talk.

By solving a differential equation for $Z(x)$ we get

$$
Z(x)=\frac{R_{-}^{1 / 8}+R_{+}^{1 / 8}}{2 \sqrt{S}}
$$

where

$$
\begin{aligned}
R_{ \pm}= & A \pm \sqrt{A^{2}-1} \\
S= & \left(1-16(t+1)(t-1)^{3} x\right)\left(1+2^{6}\left(t^{3}+t^{2}-t\right) x-2^{10}\left(t^{3}+t^{2}\right)(t-1)^{3} x^{2}\right) \\
A= & 1+2^{7}(2 t-1)^{2} x-2^{11}(t-1)^{3}(2 t-1)\left(2 t^{2}+5 t-1\right) x^{2} \\
& +2^{17} t(t-1)^{6}\left(2 t^{2}+2 t-1\right) x^{3}-2^{21}\left(t^{3}+t^{2}\right)(t-1)^{9} x^{4}
\end{aligned}
$$

In general

$$
\frac{1}{\sqrt{1-4 x}} \star Z(x)=\frac{1}{\pi} \int_{0}^{4 x} \frac{Z(\xi)}{\sqrt{\xi(4 x-\xi)}} \mathrm{d} \xi .
$$

The relation between x and $Z(x)$ has genus 0 , so it allows rational parametrization, however, if we allow a square root the parametrization becomes much shorter:

$$
\begin{aligned}
x & =\frac{\left(t^{2}-v^{2}\right)}{16 t\left(t v^{4}+(t+1)(t-1)^{2}\left(t^{2}-2 v^{2}-t\right)\right)}, \\
Z & =\frac{(t-1+v)\left(t v^{4}+(t+1)(t-1)^{2}\left(t^{2}-2 v^{2}-t\right)\right)}{v\left(v^{4}-2 t^{2} v^{2}+\left(t^{2}-1\right)^{2}\right)} \sqrt{\frac{v-t}{2 t\left(t^{2}+t v-1\right)}} .
\end{aligned}
$$

Substituting gives:

$$
\frac{\sqrt{2 t}}{\pi} \int \frac{(t-1+v) \mathrm{d} v}{\sqrt{\left(t^{2}+t v-1\right)(t+v)\left(v^{2}-t^{2}+16 t x\left(t v^{4}+(t+1)(t-1)^{2}\left(t^{2}-2 v^{2}-t\right)\right)\right)}} .
$$

A linear transformation moves two branchpoints to $v=0$ and $v=1$. Combining all the various transformations gives:

Theorem 1.

$$
F(y, z)=w I_{+}\left(4 z, w^{2}\right) I_{-}\left(4 z, w^{2}\right)
$$

where

$$
w=\sqrt{(1+4 z)^{2}-16 y^{2} z}+4 y \sqrt{-z}
$$

and $I_{ \pm}(u, x)=$

$$
\frac{1}{\pi} \int_{0}^{1} \frac{1-u v \pm v \sqrt{2 u^{2}-2 u}}{\sqrt{v(1-v)\left((1-v)\left(1-u^{2} v\right)(1+u v)^{2}+x v(1-u v)^{2}\right)}} \mathrm{d} v
$$

$I_{+}(u, x)$ is a period of a hyperelliptic curve and satisfies a second order linear differential equation.
That is highly unusual! (the expected order is $2 g=4$)

Our order-2 equation is arithmetic and yet the monodromy group is dense in $\mathrm{SL}_{2}(\mathbb{R})$.
\Longrightarrow It cannot be solved in terms of ${ }_{2} F_{1}$ hypergeometric functions.
Novel for an equation that "occurred naturally".

Our hyperelliptic curve $C^{u, x}$ is defined by the equation

$$
Y^{2}=H(x, u, v),
$$

where

$$
H=v(1-v)\left((1-v)\left(1-u^{2} v\right)(1+u v)^{2}+x v(1-u v)^{2}\right) .
$$

Monodromy calculation

Fix a u to reduce our 2-parameter family of curves to 1 parameter x.
Singular members: $x=0, x=\infty, x=u^{2}-6 u+1 \pm 4(1-u) \sqrt{-u}$.
Goal: compute the monodromy representation.
The monodromy acts on $H_{1}\left(C^{u, x}, \mathbb{Z}\right)$, so it can be given by 4×4 integer matrices, with product 1 .
In general, it is very likely for the monodromy to act irreducibly on \mathbb{C}^{4}.
\leadsto irreducible differential equation of $2 g=4$.
However, our equation L_{+}^{x} has order 2!
To understand this, we computed the monodromy matrices $\in \mathrm{Sp}_{4}(\mathbb{Z})$. They have two invariant subspaces defined over $\mathbb{Q}(\sqrt{2})$. (corresponding to our order-2 equations L_{+}^{x} and L_{-}^{x})
Implies real multiplication:

$$
\mathbb{Z}[\sqrt{2}] \subset \operatorname{End}\left(\operatorname{Jac}\left(C^{u, x}\right)\right)
$$

(this can be verified with a formula from Humbert).

To simplify the notation and computation, first fix the value $u=1 / 2$.
The corresponding singularities are

$$
x_{1}=-7 / 4+\sqrt{-2}, \quad x_{2}=0, \quad x_{3}=-7 / 4-\sqrt{-2}, \quad x_{4}=\infty
$$

We choose a base point, say

$$
x_{\mathrm{BP}}=1 .
$$

so that all the roots of $H(1,1 / 2, v)$ are real:
$v_{1}=-3-\sqrt{17}, \quad v_{2}=\frac{3-\sqrt{17}}{2}, \quad v_{3}=0, \quad v_{4}=1, \quad v_{5}=-3+\sqrt{17}, \quad v_{6}=\frac{3+\sqrt{17}}{2}$, and satisfy $v_{1}<v_{2}<\cdots<v_{6}$.

Figure 1. Our choice of homology basis on the curve $C^{1 / 2,1}$

Figure 2. Loops around the singularities for $u=1 / 2$.

Theorem 2. With the above choice of basis for $H_{1}\left(C^{1 / 2,1}, \mathbb{Z}\right)$ and generating paths $\ell_{i}, i=1,2,3,4$ for $\pi_{1}\left(\mathbb{C} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}, x_{B P}\right)$ we have:

$$
\begin{array}{cc}
M_{1}:=\left(\begin{array}{cccc}
2 & -1 & 1 & -1 \\
2 & 0 & 1 & -2 \\
2 & -1 & 2 & -2 \\
1 & -1 & 1 & 0
\end{array}\right), \quad M_{2}:=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right), \\
M_{3}:=\left(\begin{array}{cccc}
0 & -1 & 1 & 1 \\
2 & 2 & -1 & -2 \\
2 & 1 & 0 & -2 \\
-1 & -1 & 1 & 2
\end{array}\right), \quad M_{\infty}:=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-2 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right) .
\end{array}
$$

Theorem 3. The monodromy groups of the operators L_{x}^{+}is a dense subgroup of $\mathrm{SL}_{2}(\mathbb{R})$. In particular: no ${ }_{2} F_{1}$ solutions.

Figure 3. Looping along ℓ_{1}.

Figure 4. Looping along ℓ_{2}

Figure 5. Looping along ℓ_{3}.

Braid action Above we picked $u=1 / 2$. Now consider what happens when we change u :

Figure 6. Positioning after a u-move

Cubes of Legendre polynomials

Theorem 4. Let $p=1-x y^{3}+x^{2}\left(3 y^{2}-2\right) / 4$ and

$$
H=\frac{1}{\sqrt{p}} \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
\frac{1}{4}, \frac{3}{4} & \left.\frac{\left(y^{2}-1\right)^{3}\left(x^{2}-\frac{1}{4} x^{4}\right)}{p^{2}}\right) .
\end{array}\right.
$$

Then

$$
\sum_{n=0}^{\infty} P_{n}(y)^{3} z^{n}=\left.\frac{1}{\sqrt{1+z^{2}}}\left(H \star \frac{1}{\sqrt{1-4 x}}\right)\right|_{x=\frac{z}{1+z^{2}}}
$$

where the Hadamard product \star is with respect to variable x.

