ValidSDP: Coq Proofs of Polynomial Positivity using Numerical Solvers and Floating-Point Computations

Érik Martin-Dorel¹ <u>Pierre Roux</u>²

¹IRIT, Université Paul Sabatier, Toulouse, France

²ONERA, Toulouse, France

May 25th, 2023

Certified and Symbolic-Numeric Computation, Lyon

Motivation

- Polynomial inequalities in the real field are decidable (Tarski)
- But exact algo. expensive

Motivation

- Polynomial inequalities in the real field are decidable (Tarski)
- But exact algo. expensive
- \Rightarrow Use incomplete numerical methods
 - off-the-shelf optimization solvers
 - a posteriori validation with exact rational arithmetic: state of the art (simple but costly)

Motivation

- Polynomial inequalities in the real field are decidable (Tarski)
- But exact algo. expensive
- \Rightarrow Use incomplete numerical methods
 - off-the-shelf optimization solvers
 - a posteriori validation with exact rational arithmetic: state of the art (simple but costly)
 - a posteriori validation with floating-point arithmetic (more efficient but non trivial)
 - \Rightarrow We'd like formal proofs

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials q_1, \ldots, q_m s.t.

$$p=\sum_i q_i^2.$$

lf *p* SOS then $p \ge 0$

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials q_1, \ldots, q_m s.t.

$$p=\sum_i q_i^2.$$

$$p = z' Q z.$$

 \Rightarrow SOS can be encoded as semi-definite programming (SDP).

SOS: Example

Example

s
$$p(x,y) := 2x^4 + 2x^3y - x^2y^2 + 5y^4$$
 SOS ?

$$p(x,y) = \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}$$

that is

 $p(x,y) = q_{11}x^4 + 2q_{13}x^3y + 2q_{23}xy^3 + (2q_{12} + q_{33})x^2y^2 + q_{22}y^4$

SOS: Example

Example

Is
$$p(x, y) := 2x^4 + 2x^3y - x^2y^2 + 5y^4$$
 SOS ?

$$p(x, y) = \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}$$

that is

 $p(x, y) = q_{11}x^4 + 2q_{13}x^3y + 2q_{23}xy^3 + (2q_{12} + q_{33})x^2y^2 + q_{22}y^4$ hence $q_{11} = 2$, $2q_{13} = 2$, $2q_{23} = 0$, $2q_{12} + q_{33} = -1$, $q_{22} = 5$.

SOS: Example

Example

Is
$$p(x, y) := 2x^4 + 2x^3y - x^2y^2 + 5y^4$$
 SOS ?

$$p(x, y) = \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \end{bmatrix}$$

that is

F

 $p(x, y) = q_{11}x^4 + 2q_{13}x^3y + 2q_{23}xy^3 + (2q_{12} + q_{33})x^2y^2 + q_{22}y^4$ hence $q_{11} = 2$, $2q_{13} = 2$, $2q_{23} = 0$, $2q_{12} + q_{33} = -1$, $q_{22} = 5$.

or instance
$$\begin{bmatrix} 2 & -3 & 1 \\ -3 & 5 & 0 \\ 1 & 0 & 5 \end{bmatrix} = L^T L \qquad L = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

hence $p(x,y) = \frac{1}{2} \left(2x^2 - 3y^2 + xy \right)^2 + \frac{1}{2} \left(y^2 + 3xy \right)^2$.

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

SOS: Using approximate SDP solvers

Result Q from SDP solver will only satisfy equality constraints up to some error δ

$$p = z^T Q z + z^T E z, \qquad \forall i j, |E_{i,j}| \le \delta.$$

SOS: Using approximate SDP solvers

Result Q from SDP solver will only satisfy equality constraints up to some error δ

 $p = z^T Q z + z^T E z, \qquad \forall i j, |E_{i,j}| \le \delta.$

If $Q + E \succeq 0$ then $p = z^T (Q + E) z$ is SOS.

SOS: Using approximate SDP solvers

Result Q from SDP solver will only satisfy equality constraints up to some error δ

 $p = z^T Q z + z^T E z, \qquad \forall i j, |E_{i,j}| \le \delta.$

If $Q + E \succeq 0$ then $p = z^T (Q + E) z$ is SOS.

• Hence the validation method: given $p \simeq z^T Q z$

- 1. Bound difference δ between coefficients of p and $z^T Q z$.
- 2. If $Q s \delta I \succeq 0$ (s := size of Q), then p is proved SOS.
- 1 can be done with interval arithmetic and 2 with a Cholesky decomposition (Θ(s³) flops).
- \Rightarrow Efficient validation method using just floats.

Cholesky Decomposition

▶ To prove that $a \in \mathbb{R}$ is non negative, we can exhibit *r* such that $a = r^2$ (typically $r = \sqrt{a}$).

Cholesky Decomposition

To prove that a ∈ ℝ is non negative, we can exhibit r such that a = r² (typically r = √a).

► To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T (R^T R) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).

Cholesky Decomposition

To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).

► To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T (R^T R) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).

The Cholesky decomposition computes such a matrix R: R := 0: for *j* from 1 to *n* do for *i* from 1 to j - 1 do $R_{i,j} := \left(A_{i,j} - \sum_{k=1}^{i-1} R_{k,i} R_{k,j}\right) / R_{i,i};$ od $R_{j,j} := \sqrt{M_{j,j} - \sum_{k=1}^{j-1} R_{k,j}^2};$ od

▶ If it succeeds (no $\sqrt{}$ of negative or div. by 0) then $A \succeq 0$.

Cholesky Decomposition (end)

With rounding errors $A \neq R^T R$, Cholesky can succeed while $A \succeq 0$.

Cholesky Decomposition (end)

With rounding errors $A \neq R^T R$, Cholesky can succeed while $A \succeq 0$.

But error is bounded and for some (tiny) $c \in \mathbb{R}$: if Cholesky succeeds on A then $A + c I \succeq 0$.

Hence:

Theorem

If floating-point Cholesky succeeds on A - c I then $A \succeq 0$ holds for any $c \ge \frac{(s+1)\varepsilon}{1-(s+1)\varepsilon} \operatorname{tr}(A) + 4s \left(2(s+1) + \max_i(A_{i,i})\right) \eta$ (ε and η relative and absolute precision of floating-point format).

Proved in Coq (paper proof: 6 pages, Coq: 5.1 kloc)

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

Outline of the formalization

- 1. Effective multivariate polynomials
 - CoqEAL [Cano, Cohen, Dénès, Mörtberg, Rouhling, Siles]
 - → uses SSReflect and MathComp [Gonthier et al.]
 - proof: MathComp Multinomials [Strub]
 - implem.: FMapAVL from Coq stdlib
 - coefficients: Q as bigQ from Coq stdlib

Outline of the formalization

- 1. Effective multivariate polynomials
 - CoqEAL [Cano, Cohen, Dénès, Mörtberg, Rouhling, Siles]
 - → uses SSReflect and MathComp [Gonthier et al.]
 - proof: MathComp Multinomials [Strub]
 - implem.: FMapAVL from Coq stdlib
 - coefficients: Q as bigQ from Coq stdlib
- 2. Effective check for positive definite matrices
 - CoqEAL
 - proof: MathComp matrices
 - implem.: lists of lists, CoqEAL
 - coefficients: floating-point from CoqInterval [Melquiond] or hardware floats (c.f., Érik tomorrow)

Outline of the formalization

- 1. Effective multivariate polynomials
 - CoqEAL [Cano, Cohen, Dénès, Mörtberg, Rouhling, Siles]
 - → uses SSReflect and MathComp [Gonthier et al.]
 - proof: MathComp Multinomials [Strub]
 - implem.: FMapAVL from Coq stdlib
 - coefficients: Q as bigQ from Coq stdlib
- 2. Effective check for positive definite matrices
 - CoqEAL
 - proof: MathComp matrices
 - implem.: lists of lists, CoqEAL
 - coefficients: floating-point from CoqInterval [Melquiond] or hardware floats (c.f., Érik tomorrow)
- 3. Reflexive tactic
 - OCaml code as a wrapper for SDP solvers
 - Some Ltac2 code

The validsdp tactic – the big picture

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

Benchmark	<s (<="" th=""><th>1/2</th><th>2)</th><th>. ried); aux</th><th>-11 red) ertify</th><th>ried</th><th>Inste</th><th>in (i</th><th>Lie</th><th>ntl</th></s>	1/2	2)	. ried); aux	-11 red) ertify	ried	Inste	in (i	Lie	ntl
Problem	n	d	OSDr ve	(not veri	NL Cerver	ValidSDP	15 Berry	NLCertify	HOLITAYION	
adaptativeLV	4	4	0.75	2.67	1.12	5.16	14.93	2.61	12.31	
butcher	6	4	1.58		1.05	9.40	48.44	8.36	15.62	
caprasse	4	4	0.41	1.82	0.88	5.19	25.89	2.63	17.68	
heart	8	4	3.18	268.75	_	16.67	131.13	—	26.15	
magnetism	7	2	1.11	2.04	1.64	5.18	245.52	14.50	16.07	
reaction	3	2	0.81	1.56	0.24	4.33	11.48	1.96	12.41	
schwefel	3	4	0.95	2.45	2.76	3.70	14.72	56.13	17.46	
fs260	6	4	1.25	_	_	5.99	_	_		
fs461	6	4	0.70	11.18	0.87	5.18	621.06	7.46	22.70	
fs491	6	4	0.54	21.81	_	5.38	—	—		
fs745	6	4	0.98	11.74	0.94	5.55	623.17	6.90	22.48	
fs752	6	2	0.35	1.81	0.90	3.80	54.52	7.88	13.34	
fs8	6	2	0.43	1.53	1.48	3.93	52.63	6.62	13.40	
fs859	6	8	—	—	—	—	—	—	—	
fs860	6	4	1.21	10.53	1.11	6.08	73.65	7.34	14.28	
fs861	6	4	1.09	10.48	1.20	5.15	69.74	7.87	14.28	
fs862	6	4	1.27	79.25	1.25	5.37	73.54	7.58	14.14	
fs863	6	2	0.94	1.50	—	3.85	—	—	13.85	
fs864	6	2	0.56	2.05	—	4.05	—	—	13.28	
fs865	6	2	0.76	2.11	_	3.68	_	_	13.76	
fs867	6	2	0.21	2.09	1.74	4.22	_	8.04	—	

Times in s with 900 s timeout

Benchmarks (2/2) SDP verified verified SCP verified SDP verified SCP verified SCP verified SCP verified SCP verified ve

			0, 10	Not	Nº t VO	1105215	10	(Cell	HONOR
Problem	n	d	(no	(no	(no	Jan by	4	L	133
fs868	6	4	0.94			6.05	—	—	
fs884	6	4	—	—	—	—	—	—	
fs890	6	4	—	7.78		—	—	—	
ex4_d4	2	12	_	—	—	—	—	—	
ex4_d6	2	18	—	—	—	—	—	—	
ex4_d8	2	24	16.99	—		82.89	—	—	
ex4_d10	2	30	—	—	—	—	—	—	
ex5_d4	3	8	1.67	_	—	13.63	—	—	
ex5_d6	3	12	16.10	—	—	66.82	—	—	
ex5_d8	3	16	203.06	—	—	353.70	—	—	
ex5_d10	3	20	—	—	—	—	—	—	
ex6_d4	4	8	16.82	_	—	44.99	—	—	
ex6_d6	4	12	—	—	—	—	—	—	
ex7_d4	2	12	—	—	—	—	—	—	
ex7_d6	2	18	1.50	—	—	26.78	—	—	
ex7_d8	2	24	15.38	—	_	83.47	—	_	
ex7_d10	2	30	—	—	_	_	—	_	
ex8_d4	2	8	0.87	15.72	—	7.52	—	—	
ex8_d6	2	12	_	_	—	—	—	—	
ex8_d8	2	16	_	_	_	_	_	—	_
ex8_d10	2	20	_	_	_	_	_	—	_

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

Conclusion

- Context: formal proof of multivariate polynomial positivity
- A Coq reflexive tactic
 - Input: polynomial goals with real variables and rational coefs
 - Use off-the-shelf SDP solvers as untrusted oracles
 - Numerical approach with formal floating-point arithmetic
 - Algorithm involving matrices (Cholesky)

Questions

https://github.com/validsdp/validsdp

SDP solvers only yield approximate solutions due to

inexact termination

SDP solvers only yield approximate solutions due to

- inexact termination
- failure of strict feasibility

strictly feasible

SDP solvers only yield approximate solutions due to

- inexact termination
- failure of strict feasibility

not strictly feasible

SDP solvers only yield approximate solutions due to

- inexact termination
- failure of strict feasibility
- ill conditioning

SDP solvers only yield approximate solutions due to

- inexact termination
- failure of strict feasibility
- ill conditioning
- floating-point rounding errors

SDP solvers only yield approximate solutions due to

- inexact termination
- failure of strict feasibility
- ill conditioning
- floating-point rounding errors

State of the art [Harrison, Peyrl and Parrilo, Monniaux and Corbineau, Kaltofen et al., Magron et al.]

- round to exact rational solution (heuristic)
- proofs in rational arithmetic (expensive).

Incompleteness: Empty Interior SDP Problems

If the interior of the feasibility set of the problem is empty (i.e., no feasible Q s.t. every Q' in a small neighborhood is feasible) previous method almost never works.

Positivstellensatz

We want to prove that

$$p_1(x_1,\ldots,x_n) \geq 0 \wedge \ldots \wedge p_m(x_1,\ldots,x_n) \geq 0$$

is not satisfiable.

Positivstellensatz

We want to prove that

$$p_1(x_1,\ldots,x_n) \geq 0 \wedge \ldots \wedge p_m(x_1,\ldots,x_n) \geq 0$$

is not satisfiable.

Sufficient condition: there exist $r_i \in \mathbb{R}[x]$ s.t.

$$-\sum_i r_i p_i > 0$$
 and $\forall i, r_i \ge 0$

Positivstellensatz

We want to prove that

$$p_1(x_1,\ldots,x_n) \geq 0 \wedge \ldots \wedge p_m(x_1,\ldots,x_n) \geq 0$$

is not satisfiable.

Sufficient condition: there exist $r_i \in \mathbb{R}[x]$ s.t.

$$-\sum_i r_i p_i > 0$$
 and $\forall i, r_i \ge 0$

equivalence under hypotheses (Putinar's Positivstellensatz)
 no practical bound on degrees of r_i ⇒ will be arbitrarily fixed