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Motivation

I Polynomial inequalities in the real field are decidable (Tarski)
I But exact algo. expensive

⇒ Use incomplete numerical methods
I off-the-shelf optimization solvers
I a posteriori validation with exact rational arithmetic:

state of the art (simple but costly)
I a posteriori validation with floating-point arithmetic

(more efficient but non trivial)
⇒ We’d like formal proofs

2 / 20



Motivation

I Polynomial inequalities in the real field are decidable (Tarski)
I But exact algo. expensive
⇒ Use incomplete numerical methods

I off-the-shelf optimization solvers
I a posteriori validation with exact rational arithmetic:

state of the art (simple but costly)

I a posteriori validation with floating-point arithmetic
(more efficient but non trivial)

⇒ We’d like formal proofs

2 / 20



Motivation

I Polynomial inequalities in the real field are decidable (Tarski)
I But exact algo. expensive
⇒ Use incomplete numerical methods

I off-the-shelf optimization solvers
I a posteriori validation with exact rational arithmetic:

state of the art (simple but costly)
I a posteriori validation with floating-point arithmetic

(more efficient but non trivial)
⇒ We’d like formal proofs

2 / 20



Sum of Squares (SOS) Polynomials

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

3 / 20



Sum of Squares (SOS) Polynomials

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

4 / 20



Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i
q2

i .

I If p SOS then p ≥ 0

I p SOS iff there exist z :=
[
1, x0, x1, x0x1, . . . , xd

n

]
and Q � 0 (i.e., for all x , xT Qx ≥ 0) s.t.

p = zT Q z .

⇒ SOS can be encoded as semi-definite programming (SDP).
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SOS: Example

Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

For instance
Q =

 2 −3 1
−3 5 0
1 0 5

 = LT L L = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.
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SOS: Using approximate SDP solvers

Result Q from SDP solver will only satisfy equality constraints
up to some error δ

p = zT Q z + zT E z , ∀i j , |Ei ,j | ≤ δ.

If Q + E � 0 then p = zT (Q + E ) z is SOS.

I Hence the validation method: given p ' zT Q z
1. Bound difference δ between coefficients of p and zT Q z .
2. If Q − s δ I � 0 (s := size of Q), then p is proved SOS.

I 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (Θ(s3) flops).

⇒ Efficient validation method using just floats.
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Intuitively

{M | M � 0}

{Q + E }Q

p SOS

{Q + E }Q

cannot conclude

equality constraints

equality constraints
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Cholesky Decomposition
I To prove that a ∈ R is non negative,

we can exhibit r such that a = r2 (typically r =
√

a).

I To prove that a matrix A ∈ Rn×n is positive semi-definite
we can similarly expose R such that A = RT R
(since xT

(
RT R

)
x = (Rx)T (Rx) = ‖Rx‖22 ≥ 0).

I The Cholesky decomposition computes such a matrix R:
R := 0;
for j from 1 to n do

for i from 1 to j − 1 do

Ri,j :=
(

Ai,j −
i−1∑
k=1

Rk,iRk,j

)
/Ri,i ;

od

Rj,j :=

√√√√Mj,j −
j−1∑
k=1

Rk,j
2;

od
I If it succeeds (no √ of negative or div. by 0) then A � 0.
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Cholesky Decomposition (end)

With rounding errors A 6= RT R, Cholesky can succeed while A 6� 0.

But error is bounded and for some (tiny) c ∈ R:
if Cholesky succeeds on A then A + c I � 0.

Hence:
Theorem
If floating-point Cholesky succeeds on A− c I then A � 0

holds for any c ≥
(s + 1)ε

1− (s + 1)ε
tr(A) + 4s

(
2(s + 1) + max

i
(Ai,i )

)
η

(ε and η relative and absolute precision of floating-point format).

Proved in Coq (paper proof: 6 pages, Coq: 5.1 kloc)

11 / 20



Cholesky Decomposition (end)

With rounding errors A 6= RT R, Cholesky can succeed while A 6� 0.

But error is bounded and for some (tiny) c ∈ R:
if Cholesky succeeds on A then A + c I � 0.

Hence:
Theorem
If floating-point Cholesky succeeds on A− c I then A � 0

holds for any c ≥
(s + 1)ε

1− (s + 1)ε
tr(A) + 4s

(
2(s + 1) + max

i
(Ai,i )

)
η

(ε and η relative and absolute precision of floating-point format).

Proved in Coq (paper proof: 6 pages, Coq: 5.1 kloc)

11 / 20



Sum of Squares (SOS) Polynomials

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

12 / 20



Outline of the formalization

1. Effective multivariate polynomials
I CoqEAL [Cano, Cohen, Dénès, Mörtberg, Rouhling, Siles]
 uses SSReflect and MathComp [Gonthier et al.]
I proof: MathComp Multinomials [Strub]
I implem.: FMapAVL from Coq stdlib
I coefficients: Q as bigQ from Coq stdlib

2. Effective check for positive definite matrices
I CoqEAL
I proof: MathComp matrices
I implem.: lists of lists, CoqEAL
I coefficients: floating-point from CoqInterval [Melquiond]

or hardware floats (c.f., Érik tomorrow)
3. Reflexive tactic

I OCaml code as a wrapper for SDP solvers
I Some Ltac2 code
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The validsdp tactic – the big picture

Goal

xi : R ` 0 ≤ r (x , p) : list(R)×AST

P : list(list(N)×Q)

(z ,Q) : list(list(N))×list(list(F))

check(x , p, (z ,Q)) = true0 ≤ interp(x , p)

Ltac
reification (Ltac)

transform to effective datatypes

SDP solver (OCaml)

computation

correctness
theorem

convertibility
rule

14 / 20



Sum of Squares (SOS) Polynomials

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

15 / 20



Benchmarks (1/2)

Problem n d
OSD

P

(no
t ve

rifie
d)

Monn
iaux

C11

(no
t ve

rifie
d)

NLC
erti

fy

(no
t ve

rifie
d)

Val
idS

DP
PVS

/Be
rnst

ein

NLC
erti

fy
HO

L Ligh
t/

Tay
lor

adaptativeLV 4 4 0.75 2.67 1.12 5.16 14.93 2.61 12.31
butcher 6 4 1.58 — 1.05 9.40 48.44 8.36 15.62
caprasse 4 4 0.41 1.82 0.88 5.19 25.89 2.63 17.68
heart 8 4 3.18 268.75 — 16.67 131.13 — 26.15
magnetism 7 2 1.11 2.04 1.64 5.18 245.52 14.50 16.07
reaction 3 2 0.81 1.56 0.24 4.33 11.48 1.96 12.41
schwefel 3 4 0.95 2.45 2.76 3.70 14.72 56.13 17.46
fs260 6 4 1.25 — — 5.99 — — —
fs461 6 4 0.70 11.18 0.87 5.18 621.06 7.46 22.70
fs491 6 4 0.54 21.81 — 5.38 — — —
fs745 6 4 0.98 11.74 0.94 5.55 623.17 6.90 22.48
fs752 6 2 0.35 1.81 0.90 3.80 54.52 7.88 13.34
fs8 6 2 0.43 1.53 1.48 3.93 52.63 6.62 13.40
fs859 6 8 — — — — — — —
fs860 6 4 1.21 10.53 1.11 6.08 73.65 7.34 14.28
fs861 6 4 1.09 10.48 1.20 5.15 69.74 7.87 14.28
fs862 6 4 1.27 79.25 1.25 5.37 73.54 7.58 14.14
fs863 6 2 0.94 1.50 — 3.85 — — 13.85
fs864 6 2 0.56 2.05 — 4.05 — — 13.28
fs865 6 2 0.76 2.11 — 3.68 — — 13.76
fs867 6 2 0.21 2.09 1.74 4.22 — 8.04 —

Times in s with 900 s timeout 16 / 20



Benchmarks (2/2)

Problem n d
OSD

P

(no
t ve

rifie
d)

Monn
iaux

C11

(no
t ve

rifie
d)

NLC
erti

fy

(no
t ve

rifie
d)

Val
idS

DP
PVS

/Be
rnst

ein

NLC
erti

fy
HO

L Ligh
t/

Tay
lor

fs868 6 4 0.94 — — 6.05 — — —
fs884 6 4 — — — — — — —
fs890 6 4 — 7.78 — — — — —
ex4_d4 2 12 — — — — — — —
ex4_d6 2 18 — — — — — — —
ex4_d8 2 24 16.99 — — 82.89 — — —
ex4_d10 2 30 — — — — — — —
ex5_d4 3 8 1.67 — — 13.63 — — —
ex5_d6 3 12 16.10 — — 66.82 — — —
ex5_d8 3 16 203.06 — — 353.70 — — —
ex5_d10 3 20 — — — — — — —
ex6_d4 4 8 16.82 — — 44.99 — — —
ex6_d6 4 12 — — — — — — —
ex7_d4 2 12 — — — — — — —
ex7_d6 2 18 1.50 — — 26.78 — — —
ex7_d8 2 24 15.38 — — 83.47 — — —
ex7_d10 2 30 — — — — — — —
ex8_d4 2 8 0.87 15.72 — 7.52 — — —
ex8_d6 2 12 — — — — — — —
ex8_d8 2 16 — — — — — — —
ex8_d10 2 20 — — — — — — —

Times in s with 900 s timeout 17 / 20



Sum of Squares (SOS) Polynomials

Numerical Verification

Formalization & Reflexive Tactic

Benchmarks

Conclusion

18 / 20



Conclusion

I Context: formal proof of multivariate polynomial positivity
I A Coq reflexive tactic

I Input: polynomial goals with real variables and rational coefs
I Use off-the-shelf SDP solvers as untrusted oracles
I Numerical approach with formal floating-point arithmetic
I Algorithm involving matrices (Cholesky)

19 / 20



Thank you!

Questions

?
https://github.com/validsdp/validsdp

20 / 20
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Inaccuracy in Solving SDPs
SDP solvers only yield approximate solutions due to
I inexact termination

I failure of strict feasibility
I ill conditioning
I floating-point rounding errors

State of the art [Harrison, Peyrl and Parrilo, Monniaux and Corbineau,
Kaltofen et al., Magron et al.]

I round to exact rational solution (heuristic)
I proofs in rational arithmetic (expensive).
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Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible Q s.t. every Q′ in a small neighborhood is feasible)
previous method almost never works.

{X | X � 0}

{Q + E }Q

cannot conclude

equality constraints
2 / 4



Intuitively, Rounding to an Exact Solution
{X | X � 0}

Q̃

Q̃

Q

equality constraints
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Positivstellensatz

We want to prove that

p1(x1, . . . , xn) ≥ 0 ∧ . . . ∧ pm(x1, . . . , xn) ≥ 0

is not satisfiable.

Sufficient condition: there exist ri ∈ R[x ] s.t.

−
∑

i
ri pi > 0 and ∀i , ri ≥ 0

I equivalence under hypotheses (Putinar’s Positivstellensatz)
I no practical bound on degrees of ri ⇒ will be arbitrarily fixed
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