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Motivation

» Polynomial inequalities in the real field are decidable (Tarski)
P> But exact algo. expensive
= Use incomplete numerical methods

» off-the-shelf optimization solvers

P a posteriori validation with exact rational arithmetic:
state of the art (simple but costly)

> a posteriori validation with floating-point arithmetic
(more efficient but non trivial)

= We'd like formal proofs
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Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials g, ...

p=> ¢
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Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials g1, ..., qm s.t.

p=> q’.
i

» If p SOS then p >0
» p SOS iff there exist z := {1,x0,x1,xox1, e ,x,‘ﬂ
and Q > 0 (i.e., for all x, xTQx > 0) s.t.

p= zTQz.

= SOS can be encoded as semi-definite programming (SDP).
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SOS: Example

Example
Is p(x,y) = 2x* + 2x3y — x?y? + 5y* SOS ?
T
x? di1 g12 qi3 x?
p(x,y) = y2 q12 g2 g23 y2
Xy qi3 g23 q33| (XY
that is

p(x,y) = quix* 4+ 2q13x>y + 2q23xy> + (2q12 + 33)x°y? + Gooy*
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SOS: Example

Example
Is p(x,y) = 2x* + 2x3y — x?y? + 5y* SOS ?
T
x? di1 q12 Qi3 x?
p(x,y) = y2 qi2 Q22 Qg23 y2

Xy gi3 q23 Q33| | Xy
that is
p(x,y) = qux* + 2q13x°y + 2q23xy> + (212 + q33)x°y° + qooy”?
hence gi11 = 2, 213 = 2, 223 = 0, 2q12 + g33 = —1, g2 = 5.

For instance [ 2 _3 1

1 _
0| =L"L L:[2 3 1]
5

Q=|-3

5
o V200 1 3

hence p(x,y) = % (2x2 —3y% + xy)2 + % (y2 + 3xy)2.
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Numerical Verification
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SOS: Using approximate SDP solvers

Result @ from SDP solver will only satisfy equality constraints
up to some error ¢

p:zTQz+zTEZ, Vij,|Eij| <96

8/20



SOS: Using approximate SDP solvers

Result @ from SDP solver will only satisfy equality constraints
up to some error ¢

p:zTQz+ZTEL Vij,|Eij| <96

If Q+E = 0then p=2z"(Q+ E)zis SOS.

8/20



SOS: Using approximate SDP solvers

Result @ from SDP solver will only satisfy equality constraints
up to some error ¢

p:zTQz+ZTEZ, Vij,|Eij| <96

If Q+E = 0then p=2z"(Q+ E)zis SOS.

» Hence the validation method: given p~z'Qz

1. Bound difference § between coefficients of p and zTQz.
2. If Q—561> 0 (s := size of Q), then p is proved SOS.

» 1 can be done with interval arithmetic
and 2 with a Cholesky decomposition (9(s*) flops).

= Efficient validation method using just floats.
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Intuitively

{M|M =0}

equality constraints

9/20



Intuitively

{M|M =0}

equality constraints

9/20



Intuitively

{M|M =0}

p SOS equality constraints

9/20



Intuitively
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Cholesky Decomposition

» To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = v/a).
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Cholesky Decomposition
» To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).
» To prove that a matrix A € R"*" is positive semi-definite
we can similarly expose R such that A= R™R
(since x (RTR) x = (Rx)T (Rx) = | Rx|[3 > 0).
» The Cholesky decomposition computes such a matrix R:
R:=0;
for j from 1 to n do
for i from1to,j—1do

i—1
R,"j = (A,"j — Z Rk,iRk,j> /R,",';
k=1

od

od

> If it succeeds (no ,/ of negative or div. by 0) then A = 0.
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Cholesky Decomposition (end)

With rounding errors A # RT R, Cholesky can succeed while A % 0.
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Cholesky Decomposition (end)
With rounding errors A # RT R, Cholesky can succeed while A % 0.

But error is bounded and for some (tiny) ¢ € R:
if Cholesky succeeds on A then A+ c/ > 0.

Hence:

Theorem

If floating-point Cholesky succeeds on A — ¢/ then A > 0
(s+1) N

holds for any ¢ > mtr(A) +4s (2(5 +1) + ml_ax(A,,,)) n

(e and 7 relative and absolute precision of floating-point format).

Proved in Coq (paper proof: 6 pages, Coq: 5.1 kloc)
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Formalization & Reflexive Tactic
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Outline of the formalization

1. Effective multivariate polynomials
» CoqEAL [Cano, Cohen, Dénés, Mértberg, Rouhling, Siles]
uses SSReflect and MathComp [Gonthier et al.]
proof: MathComp Multinomials [Strub]
implem.: FMapAVL from Coq stdlib
coefficients: Q as bigQ from Coq stdlib

VYV

13/20



Outline of the formalization

1. Effective multivariate polynomials
» CoqEAL [Cano, Cohen, Dénés, Mértberg, Rouhling, Siles]
~~ uses SSReflect and MathComp [Gonthier et al.]
> proof: MathComp Multinomials [Strub]
» implem.: FMapAVL from Coq stdlib
» coefficients: Q as bigQ from Coq stdlib
2. Effective check for positive definite matrices
» CoqEAL
» proof: MathComp matrices
» implem.: lists of lists, CoqEAL
> coefficients: floating-point from Cogqlnterval [Melquiond]
or hardware floats (c.f., Erik tomorrow)

13/20



Outline of the formalization

1. Effective multivariate polynomials
» CoqEAL [Cano, Cohen, Dénés, Mértberg, Rouhling, Siles]
~~ uses SSReflect and MathComp [Gonthier et al.]
> proof: MathComp Multinomials [Strub]
» implem.: FMapAVL from Coq stdlib
» coefficients: Q as bigQ from Coq stdlib

2. Effective check for positive definite matrices
» CoqEAL
» proof: MathComp matrices
» implem.: lists of lists, CoqEAL
> coefficients: floating-point from Cogqlnterval [Melquiond]
or hardware floats (c.f., Erik tomorrow)
3. Reflexive tactic

» OCaml code as a wrapper for SDP solvers
» Some Ltac2 code
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The validsdp tactic — the big picture

Goal

Ltac

reification (Ltac)

xi: R I—Ogr}

convertibility
:rule

~

(x, p) : list(R)xAST

transform to effective datatypes

’ P list(list(N) x Q) ‘
SDP solver (OCaml)

(z, Q) : list(list(N)) xlist(list(F))

computation

0 < interp(x, p)

correctness
theorem

check(x, p, (z, Q)) = true
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Benchmarks
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Benchmarks (1/2)

O} . N \3
IR & e &
050Qqe{\;\:§ :(\\j:{\ i@(ﬁ‘:\e{\‘(\eé\ 5()9 \%e((\(’& (,"'\‘&‘! ‘(\O\/\O/:%

Problem n d \(\O& \(\O& Q\O& \\?’\\6 ‘NS W 'Vy!\
adaptativelV 4 4 0.75 2.67 1.12 5.16 14.93 2.61 12.31
butcher 6 4 1.58 — 1.05 9.40 48.44 8.36 15.62
caprasse 4 4 041 1.82 0.88 5.19 25.89 2.63 17.68
heart 8 4 3.18 268.75 — 16.67 131.13 — 26.15
magnetism 7 2 111 2.04 1.64 5.18 24552 1450 16.07
reaction 3 2 081 1.56 0.24 4.33 11.48 1.96 12.41
schwefel 3 4 0.95 2.45 2.76 3.70 14.72 56.13 17.46
fs260 6 4 1.25 — — 5.99 — — —
fs461 6 4 0.70 11.18 0.87 5.18 621.06 7.46 22.70
fs491 6 4 054 21.81 —_ 5.38 — —_ —
fs745 6 4 0098 11.74 0.94 5.55 623.17  6.90 22.48
fs752 6 2 0.35 1.81 0.90 3.80 54.52 7.88 13.34

fs8 6 2 043 1.53 1.48 3.93 52.63 6.62 13.40
fs859 6 8 — — — — — — —
fs860 6 4 1.21 10.53 1.11 6.08 73.65 7.34 14.28
fs861 6 4 1.09 10.48 1.20 5.15 69.74 7.87 14.28
fs862 6 4 1.27 79.25 1.25 5.37 73.54 7.58 14.14
fs863 6 2 094 1.50 — 3.85 — — 13.85
fs864 6 2 0.56 2.05 — 4.05 — — 13.28
fs865 6 2 0.76 2.11 — 3.68 — — 13.76
fs867 6 2 0.21 2.09 1.74 4.22 — 8.04 —

Times in s with 900 s timeout
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R <8 2 o
OC—’OQ o N\o(\(\\'a & 6\/(/@("6(\‘&\9 y QS\ o2 oy ‘(\O\/\\o/(
Problem n d \“O (° I\ NE ?Q W <2
fs868 6 4 0.94 — — 6.05 —_ = —
fs884 6 4 — — o o _ = —
fs890 6 4 — 7.78 — — —_ = —
ex4_d4 2 12 — — — — —_ = —
exd_d6 2 18 — — — — - - =
ex4_d8 2 24 16.99 — — 8289 — — —
ex4_d10 2 30 — — — — —_ = —
ex5_d4 3 8 1.67 — — 1363 — — —
ex5_d6 3 12 16.10 — — 66.82 —_ = =
ex5_d8 3 16 203.06 — — 353.70 — — —
ex5_d10 3 20 — — — — —_ = —
ex6_d4 4 8 16.82 — — 4499 — —
ex6_d6 4 12 — — — — _ = —
ex7_d4 2 12 — — — — —_ = —
ex7_d6 2 18 1.50 — — 26.78 — — —
ex7_ds8 2 24 15.38 — — 83.47 _ = =
ex7_d10 2 30 — — — _ = —
ex8_d4 2 8 0.87 15.72 — 7.52 —_ = —
ex8_d6 2 12 — — — —_ = =
ex8_d8 2 16 — — — — —_ = —
ex8_d10 2 20 — — — — —_ = —

Times in s with 900 s timeout 1720



Conclusion
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Conclusion

» Context: formal proof of multivariate polynomial positivity
> A Coq reflexive tactic

» Input: polynomial goals with real variables and rational coefs
» Use off-the-shelf SDP solvers as untrusted oracles

» Numerical approach with formal floating-point arithmetic

» Algorithm involving matrices (Cholesky)
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Thank you!

Questions

https://github.com/validsdp/validsdp
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https://github.com/validsdp/validsdp

Inaccuracy in Solving SDPs

SDP solvers only yield approximate solutions due to
P inexact termination
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Inaccuracy in Solving SDPs
SDP solvers only yield approximate solutions due to
P inexact termination
» failure of strict feasibility
» ill conditioning
> floating-point rounding errors

State of the art [Harrison, Peyrl and Parrilo, Monniaux and Corbineau,
Kaltofen et al., Magron et al.]

» round to exact rational solution (heuristic)
» proofs in rational arithmetic (expensive).
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Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible @ s.t. every Q@' in a small neighborhood is feasible)
previous method almost never works.

{X[|Xx =0}

equality constraints
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Intuitively, Rounding to an Exact Solution

{X[X =0}

equality constraints
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Intuitively, Rounding to an Exact Solution

(X | X =0}

]

equality constraints
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Positivstellensatz

We want to prove that
pi(xi; .-y Xn) = 0 A

is not satisfiable.

co e A pm(xa, .

7Xn)20
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Positivstellensatz

We want to prove that
pi(x1, .- sXn) 0N oA Pm(X1,. .0, %x0) >0

is not satisfiable.

Sufficient condition: there exist r; € R[x] s.t.

—Zr;p,->0 and Vi,r; >0

» equivalence under hypotheses (Putinar’s Positivstellensatz)

» no practical bound on degrees of r; = will be arbitrarily fixed
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