
Formalisation1 of the Lange and Rump’s proof of
error estimation for iterated sums of FP numbers

Laurence Rideau

May 2023

1Using Coq + Flocq library
1



Motivation (Iterated Sums)

I Accurate calculation of Euclidean Norms using Double-word
arithmetic with V. Lefèvre, N. Louvet, J.-M. Muller, and J. Picot,
TOMS, March 2023

x is a Double-word (DW) number also called double-double :
represented by the sum xh + x` of two FPs xh and x` such that

xh = RN(x)

I Euclidean Norm is the square root of a sum of squares

I iterated sums are used in many places in the accurate calculation of
the Euclidean norm, with various conditions and arguments

2



Motivation (Iterated Sums)

I Accurate calculation of Euclidean Norms using Double-word
arithmetic with V. Lefèvre, N. Louvet, J.-M. Muller, and J. Picot,
TOMS, March 2023

x is a Double-word (DW) number also called double-double :
represented by the sum xh + x` of two FPs xh and x` such that

xh = RN(x)

I Euclidean Norm is the square root of a sum of squares

I iterated sums are used in many places in the accurate calculation of
the Euclidean norm, with various conditions and arguments

2



Motivation (Iterated Sums)

I Accurate calculation of Euclidean Norms using Double-word
arithmetic with V. Lefèvre, N. Louvet, J.-M. Muller, and J. Picot,
TOMS, March 2023

x is a Double-word (DW) number also called double-double :
represented by the sum xh + x` of two FPs xh and x` such that

xh = RN(x)

I Euclidean Norm is the square root of a sum of squares

I iterated sums are used in many places in the accurate calculation of
the Euclidean norm, with various conditions and arguments

2



Motivation (Iterated Sums)

I Accurate calculation of Euclidean Norms using Double-word
arithmetic with V. Lefèvre, N. Louvet, J.-M. Muller, and J. Picot,
TOMS, March 2023

x is a Double-word (DW) number also called double-double :
represented by the sum xh + x` of two FPs xh and x` such that

xh = RN(x)

I Euclidean Norm is the square root of a sum of squares

I iterated sums are used in many places in the accurate calculation of
the Euclidean norm, with various conditions and arguments

2



FP Arithmetic: Basic Building Blocks

Algorithms computing binary operations on floating-point arguments:

I 2Sum(a, b), Fast2Sum(a, b), Fast2Mult(a, b) treated by the Flocq
library

I Exact result in the form of 2 FPs: rounding + error (a DW number)

3



Double-double numbers (DW) Arithmetic

I Different basic algorithms (addition, multiplication and division of a
DW and a FP or of 2 DW) proposed by M. Joldes, J.-M. Muller and
V. Popescu in 2017

I For each algorithm:

∗ an approximation ( double-double) of the operation on the
operands x and y , such that x = (xh, x`) is a DW and y is an
FP or a DW (yh, y`).

∗ an error bound

I Formalized in Coq and amended with J.-M. Muller in 2020

4



Arithmetic for double-doubles: addition

DWPlusFP(xh, x`, y): computes an approximation of (xh, x`) + y , with
x = (xh, x`) a DW and y an FP number .

2Sum

F2Sum

 +
x

h

y

s
h

s
l

x
l

e

v

z
h

z
l

I A relative error bound: 2·u2

1−2u = 2u2 + 4u3 + 8u4 + · · ·
where u = 2−p = ulp(1) denotes the roundoff error unit.
ulp(x) is the distance between two consecutive FP numbers in the
neighborhood of x .

I if x and y are positive, the bound becomes u2.

5



Lange & Rump’s Lemma

Lemma (Consequence of Lange and Rump’s lemma )
Let F be an arbitrary subset of R and let +̃ be an operation in F with the
only assumption that

∀a, b ∈ F, |(a+̃b)− (a + b)| ≤ min{|a|, |b|} (1)

Let x1, x2, · · · , xn be elements of F and define numbers si and εi as
follows:

s1 = x1,
si = xi +̃si−1 = (xi + si−1)(1 + εi ) for i = 2, . . . , n.

We have: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |.

6



Lange & Rump’s Lemma 2

Lemma (Lange & Rump)
Let F be an arbitrary subset of R and let +̃ be an operation in F Let x1,
x2, · · · , xn be elements of F and define numbers si and εi as follows:

s1 = x1,
si = xi +̃si−1 = (xi + si−1)(1 + εi ) for i = 2, . . . , n.

Let δi = (xi + si−i ) · εi
and for 2 ≤ k ≤ n, ξk = |δk |∑k

i=1 |xi |+
∑k−1

i=1 |δi |
Assuming

|δk | ≤

(
1 +

k∑
i=1

ξi

)
|xk | (2)

We have: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |.

2Error estimates for the summation of real numbers with application to FP summation (2017)
7



Note that it’s easy to show that the property (1)

∀a, b ∈ F, |(a+̃b)− (a + b)| ≤ min{|a|, |b|}

implies the (2) assumption : |δk | ≤
(
1 +

∑k
i=1 ξi

)
|xk |

Operator +̃ examples:

I a+̃b = RN(a + b) with a, b FP numbers

I a+̃b = (DWPlusFP a b) with a a DW and b an FP

I a+̃b = (SloppyDWPlusDW a b) with a and b DW

NB: +̃ has to verify the necessary condition (1) of the Lange&Rump
lemma: RN X, DWPlusFP X, SloppyDWPlusDW 7

8



Note that it’s easy to show that the property (1)

∀a, b ∈ F, |(a+̃b)− (a + b)| ≤ min{|a|, |b|}

implies the (2) assumption : |δk | ≤
(
1 +

∑k
i=1 ξi

)
|xk |

Operator +̃ examples:

I a+̃b = RN(a + b) with a, b FP numbers

I a+̃b = (DWPlusFP a b) with a a DW and b an FP

I a+̃b = (SloppyDWPlusDW a b) with a and b DW

NB: +̃ has to verify the necessary condition (1) of the Lange&Rump
lemma: RN X, DWPlusFP X, SloppyDWPlusDW 7

8



Sketch of the proof

Prove that: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |

Let ∆n = sn −
∑n

i=1 xi

I ∆n =
∑n

i=1 δi and |∆n| ≤
∑n

i=1 |δi |
I
∑n

i=1 |δi | ≤
∑n

i=1 ξi ·
∑n

i=1 |xi | by induction on n
case n = 1 trivial, then 2 cases

I |xn| < ξn ·
∑n−1

i=1 |xi | uses the (2) hypothesis
I ξn ·

∑n−1
i=1 |xi | ≤ |xn|

I For each k , ξk ≤ |εk |

9



Sketch of the proof

Prove that: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |

Let ∆n = sn −
∑n

i=1 xi

I ∆n =
∑n

i=1 δi and |∆n| ≤
∑n

i=1 |δi |

I
∑n

i=1 |δi | ≤
∑n

i=1 ξi ·
∑n

i=1 |xi | by induction on n
case n = 1 trivial, then 2 cases

I |xn| < ξn ·
∑n−1

i=1 |xi | uses the (2) hypothesis
I ξn ·

∑n−1
i=1 |xi | ≤ |xn|

I For each k , ξk ≤ |εk |

9



Sketch of the proof

Prove that: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |

Let ∆n = sn −
∑n

i=1 xi

I ∆n =
∑n

i=1 δi and |∆n| ≤
∑n

i=1 |δi |
I
∑n

i=1 |δi | ≤
∑n

i=1 ξi ·
∑n

i=1 |xi | by induction on n

case n = 1 trivial, then 2 cases

I |xn| < ξn ·
∑n−1

i=1 |xi | uses the (2) hypothesis
I ξn ·

∑n−1
i=1 |xi | ≤ |xn|

I For each k , ξk ≤ |εk |

9



Sketch of the proof

Prove that: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |

Let ∆n = sn −
∑n

i=1 xi

I ∆n =
∑n

i=1 δi and |∆n| ≤
∑n

i=1 |δi |
I
∑n

i=1 |δi | ≤
∑n

i=1 ξi ·
∑n

i=1 |xi | by induction on n
case n = 1 trivial, then 2 cases

I |xn| < ξn ·
∑n−1

i=1 |xi | uses the (2) hypothesis
I ξn ·

∑n−1
i=1 |xi | ≤ |xn|

I For each k , ξk ≤ |εk |

9



Sketch of the proof

Prove that: ∣∣∣∣∣sn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=2

|εi | ·
n∑

i=1

|xi |

Let ∆n = sn −
∑n

i=1 xi

I ∆n =
∑n

i=1 δi and |∆n| ≤
∑n

i=1 |δi |
I
∑n

i=1 |δi | ≤
∑n

i=1 ξi ·
∑n

i=1 |xi | by induction on n
case n = 1 trivial, then 2 cases

I |xn| < ξn ·
∑n−1

i=1 |xi | uses the (2) hypothesis
I ξn ·

∑n−1
i=1 |xi | ≤ |xn|

I For each k , ξk ≤ |εk |

9



Sequential calculation of a sum of squares in DW arithmetic

Algorithm 1 Sequential computation of
∑n−1

i=0 a2
i assuming no under/overflow.

1. For i = 0 . . . n − 1, compute (yh
i , y

`
i ) = Fast2Mult(ai , ai ).

(gives a2
i = yh

i + y `
i ).

2. Accumulate the terms yh
i in DW arithmetic: starting from

(xh
1 , x

`
1) = 2Sum(yh

0 , y
h
1 ),

for i = 2 . . . n − 1, compute (xh
i , x

`
i ) = DWPlusFP(xh

i−1, x
`
i−1, y

h
i ).

3. Accumulate the terms y `
i in FP arithmetic:

for i = 0 . . . n − 2, compute σi+1 = RN(σi + y `
i+1), with σ0 = y `

0 .

4. Obtain the approximation to (Sh,S`) to
∑n−1

i=0 a2
i as

(Sh, S`) = DWPlusFP(xh
n−1, x

`
n−1, σn−1).

10



Sequential calculation of a sum of squares in DW arithmetic

Algorithm 1 Sequential computation of
∑n−1

i=0 a2
i assuming no under/overflow.

1. For i = 0 . . . n − 1, compute (yh
i , y

`
i ) = Fast2Mult(ai , ai ).

(gives a2
i = yh

i + y `
i ).

2. Accumulate the terms yh
i in DW arithmetic: starting from

(xh
1 , x

`
1) = 2Sum(yh

0 , y
h
1 ),

for i = 2 . . . n − 1, compute (xh
i , x

`
i ) = DWPlusFP(xh

i−1, x
`
i−1, y

h
i ).

3. Accumulate the terms y `
i in FP arithmetic:

for i = 0 . . . n − 2, compute σi+1 = RN(σi + y `
i+1), with σ0 = y `

0 .

4. Obtain the approximation to (Sh,S`) to
∑n−1

i=0 a2
i as

(Sh, S`) = DWPlusFP(xh
n−1, x

`
n−1, σn−1).

10



Sequential calculation of a sum of squares in DW arithmetic

Algorithm 1 Sequential computation of
∑n−1

i=0 a2
i assuming no under/overflow.

1. For i = 0 . . . n − 1, compute (yh
i , y

`
i ) = Fast2Mult(ai , ai ).

(gives a2
i = yh

i + y `
i ).

2. Accumulate the terms yh
i in DW arithmetic: starting from

(xh
1 , x

`
1) = 2Sum(yh

0 , y
h
1 ),

for i = 2 . . . n − 1, compute (xh
i , x

`
i ) = DWPlusFP(xh

i−1, x
`
i−1, y

h
i ).

3. Accumulate the terms y `
i in FP arithmetic:

for i = 0 . . . n − 2, compute σi+1 = RN(σi + y `
i+1), with σ0 = y `

0 .

4. Obtain the approximation to (Sh,S`) to
∑n−1

i=0 a2
i as

(Sh, S`) = DWPlusFP(xh
n−1, x

`
n−1, σn−1).

10



Sequential calculation of a sum of squares in DW arithmetic

Algorithm 1 Sequential computation of
∑n−1

i=0 a2
i assuming no under/overflow.

1. For i = 0 . . . n − 1, compute (yh
i , y

`
i ) = Fast2Mult(ai , ai ).

(gives a2
i = yh

i + y `
i ).

2. Accumulate the terms yh
i in DW arithmetic: starting from

(xh
1 , x

`
1) = 2Sum(yh

0 , y
h
1 ),

for i = 2 . . . n − 1, compute (xh
i , x

`
i ) = DWPlusFP(xh

i−1, x
`
i−1, y

h
i ).

3. Accumulate the terms y `
i in FP arithmetic:

for i = 0 . . . n − 2, compute σi+1 = RN(σi + y `
i+1), with σ0 = y `

0 .

4. Obtain the approximation to (Sh, S`) to
∑n−1

i=0 a2
i as

(Sh, S`) = DWPlusFP(xh
n−1, x

`
n−1, σn−1).

10



Block calculation of sum of squares in DW arithmetic

I the ai are separated into k blocks of m numbers, with n = k ×m;
I parallelizing the calculation & obtaining a more accurate result;
I block j (j = 0, . . . , k − 1) contains amj , amj+1, . . . , am(j+1)−1.

Algorithm 2 Blockwise computation of
∑n−1

i=0 a2
i assuming no under/overflow.

1. for j = 0, 1, . . . , k − 1, compute an approximation (Z h
j ,Z

`
j ) to∑m(j+1)−1

i=mj a2
i using the sequential summation algorithm applied to

amj , amj+1, amj+2, . . . , am(j+1)−1;

2. accumulate the terms Z h
j in DW arithmetic, i.e., starting from(

Σh
1,Σ

`
1
)

= 2Sum(Z h
0 ,Z

h
1 ), iteratively compute, for j = 2 . . . k − 1 the

terms
(
Σh

j ,Σ
`
j

)
= DWPlusFP

(
Σh

j−1,Σ
`
j−1,Z

h
j

)
;

3. accumulate the terms Z `
j using the conventional “recursive” summation,

i.e., for j = 0 . . . k − 2, compute τj+1 = RN(τj + Z `
j+1), with τ0 = Z `

0 ;

4. obtain the approximation (Sh,S`) to
∑n−1

i=0 a2
i as

(Sh, S`) = DWPlusFP
(

Σh
k−1,Σ

`
k−1, τk−1

)
.

11



Formalisation

I Proof of the general Lange & Rump lemma (with parametrised
bounds and function), refined by use in various cases.

I Proof that the condition (1) implies the condition (2) of the general
Lange & Rump lemma

I Some “mistakes” detection

I SloppyDWPlusDW algorithm: the proof of the condition (1)
was wrong

I error bound of the step 4. of the algorithm

NB: During this work, the formalization was carried out at the same time
as the development of the algorithms and the (paper) proofs of
correction of the algorithms and the error bounds.

12



Formalisation

I Proof of the general Lange & Rump lemma (with parametrised
bounds and function), refined by use in various cases.

I Proof that the condition (1) implies the condition (2) of the general
Lange & Rump lemma

I Some “mistakes” detection

I SloppyDWPlusDW algorithm: the proof of the condition (1)
was wrong

I error bound of the step 4. of the algorithm

NB: During this work, the formalization was carried out at the same time
as the development of the algorithms and the (paper) proofs of
correction of the algorithms and the error bounds.

12



Conclusion

Formalisation for double-double arithmetic :

• addition,multiplication and division of a DW and an FP or of 2 DW

• new error bound for the DWPlusFP algorithm when the arguments
are positive

• square root for the double-double numbers

• Lange & Rump Lemma

∗ general case with condition (2)
∗ proof that (2) is implied by the condition (1) used in the

euclidean norms paper

13



Thank you!

14


