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Consider boundary value problem

−∆u+ F (x, u,∇u) = 0 on Ω

u = 0 on ∂Ω

or

∆∆u+ F (x, u,∇u, . . . ) = 0 on Ω

u =
∂u

∂ν
= 0 on ∂Ω

Ω ⊂ Rn domain with some regularity, F given nonlinearity with some

smoothness

AIM: Derive conditions for existence of a solution in some

“close” and explicit neighborhood of some approximate solution

“Conditions”: either of general type, to be verified analytically, or

more special, to be verified automatically on a computer
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General concept:

Transformation into fixed-point equation

u = Tu

and computation of appropriate set U such that

TU ⊂ U

and moreover, T has certain properties (e.g. contractivity

or compactness)

Application of some Fixed-Point Theorem (Banach, Schauder, . . . )

 Existence of a solution u∗ ∈ U

The set U provides enclosure
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Abstract formulation

Let (X, 〈·, ·〉X), (Y, 〈·, ·〉Y ) Hilbert spaces

Let F : X → Y continuously (Fréchet) differentiable mapping

problem : u ∈ X, F(u) = 0

Aim now (first): Existence and bounds for this abstract problem
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Let ω ∈ X approximate solution,

L := F ′(ω) : X → Y (linear, bounded)

Suppose that constants δ and K, and a nondecreasing function

g : [0,∞)→ [0,∞) have been computed such that

a) ‖F(ω)‖Y ≤ δ,

b) ‖u‖X ≤ K‖Lu‖Y for all u ∈ X,

c1) ‖F ′(ω + u)−F ′(ω)‖B(X,Y ) ≤ g(‖u‖X) for all u ∈ X,

c2) g(t)→ 0 as t→ 0+

5



Need in addition: L : X → Y onto

Y = X ′ dual space, Φ : X → X ′ canonical isometric isomorphism

i.e. (Φu)[v] = 〈u, v〉X for u, v ∈ X

Assume that Φ−1L : X → X is symmetric (i.e. (Lu)[v] = (Lv)[u]

for all u, v ∈ X)

Then Φ−1L selfadjoint, one-to-one ⇒ range (Φ−1L) dense

⇒ range (L) dense

Moreover, range (L) is closed by b).
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Transformation of F(u) = 0 into fixed-point problem (Newton):

F(u) = 0 ⇔ F ′(ω)[u− ω] = −F(ω)−
[
F(u)−F(ω)−F ′(ω)[u− ω]

]
⇔ F ′(ω)︸ ︷︷ ︸

=L

[v] = −F(ω)−
[
F(ω + v)−F(ω)−F ′(ω)[v]

]
, v = u− ω

⇔ v = −L−1
{
F(ω) +

[
F(ω + v)−F(ω)−F ′(ω)[v]

]}
=: Tv

Let V := {v ∈ X : ‖v‖X ≤ α}, α > 0 to be chosen

Then T (V ) ⊂ V if δ ≤
α

K
−G(α) , G(t) :=

∫ t
0
g(s)ds
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Need either i) T compact ( Schauder’s Fixed-Point Theorem)

or ii) T contractive ( Banach’s Fixed-Point Theorem)

ad ii) additional contraction condition

Kg(α) < 1

Theorem: For some α ≥ 0, let δ ≤
α

K
−G(α) , and let i) or ii) hold.

Then, there exists a solution u ∈ X of F(u) = 0 satisfying

‖u− ω‖X ≤ α
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−∆u+ F (x, u) = 0 on Ω, u = 0 on ∂Ω

weak solutions: Ω ⊂ Rn Lipschitz

X =
◦
H 1(Ω), 〈u, v〉X := 〈∇u,∇v〉L2 + σ〈u, v〉L2, Y = H−1(Ω) = X ′

Fréchet differentiability requires growth conditions on F , allowing ho-

wever exponential growth if n ≤ 2.

a) ‖ −∆ω + F (·, ω)‖H−1 ≤ ‖ − div(∇ω − ρ)‖H−1 + ‖divρ− F (·, ω)‖H−1

≤ ‖∇ω − ρ‖L2 + ĉ‖divρ− F (·, ω)‖L2,

ρ ∈ H(div; Ω) approximation to ∇ω, ‖u‖L2 ≤ ĉ‖u‖X for u ∈ X
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b) Lu = −∆u+ cu, c(x) =
∂F

∂u

(
x, ω(x)

)
Let Φ : X → Y, Φu := −∆u+σu canonical isometric isomorphism

Φ−1L is symmetric, so

‖u‖X ≤ K‖Lu‖Y = K‖Φ−1Lu‖X for u ∈ X

⇐⇒ K ≥
[
min

{
|λ| : λ ∈ spectrum of Φ−1L

}]−1

 need bounds for essential spectrum (analytically) and

eigenvalue bounds:

Φ−1Lu = λu⇐⇒ −∆u+ σu =
1

1− λ

(
σ − c(x)

)
u ,

choose σ > c(x) (x ∈ Ω)
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Eigenvalue bounds

weak EVP 〈u, v〉X = λb(u, v) for all v ∈ X

where b bounded, Hermitian, positive bilinear form on X

Upper eigenvalue bounds: Rayleigh-Ritz

Let ũ1, . . . , ũN ∈ X linearly independent (approximate eigenfunctions).

Define N ×N-matrices

A0 := (〈ũi, ũj〉X), A1 := (b(ũi, ũj))

Λ1 ≤ Λ2 ≤ · · · ≤ ΛN eigenvalues of the matrix EVP

A0x = ΛA1x.

Then, if ΛN < σess := inf{ essential spectrum }, there are

at least N eigenvalues λ1 ≤ · · · ≤ λN below σess, and

λi ≤ Λi (i = 1, . . . , N)
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Lower eigenvalue bounds: Temple-Lehmann

Let ũ1, . . . , ũN and Λ1, . . . ,ΛN < σess as before.

Let w1, . . . , wN ∈ X satisfy

〈wi, v〉X = b(ũi, v) for all v ∈ X (∗)
and let ρ ∈ R be such that

ΛN < ρ ≤

{
λN+1 , if λN+1 < σess exists

σess , otherwise

}
(∗∗)

Define, besides A0 and A1,

A2 := (〈wi, wj〉X),

and let µ1 ≤ µ2 ≤ · · · ≤ µN < 0 be the eigenvalues of

(A0 − ρA1)x = µ(A0 − 2ρA1 + ρ2A2)x.

Then, λi ≥ ρ
(

1− 1
1−µN+1−i

)
(i = 1, . . . , N)

(∗) often difficult in practice; considerable improvement by Goerisch

(∗∗) homotopy method
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homotopy method for obtaining ρ such that

ΛN < ρ ≤ λN+1 .

Let (bt)t∈[t0,t1] family of bilinear forms on X such that

i) for s ≤ t : bs(u, u) ≥ bt(u, u) (u ∈ X)

ii) for each t: The eigenvalue problem 〈u, v〉X = λbt(u, v) for all v ∈ X (EVPt)

has at least N + 1 eigenvalues λ(t)
1 ≤ · · · ≤ λ

(t)
N+1 below its essential spectrum

iii) for t = t0, the eigenvalues of (EV Pt), or at least bounds to them, are known

iv) for t = t1, problem (EV Pt) is the given one

Consequences: By i), ii), and the min-max-principle λ(t)
k increasing in t, for each

fixed k ∈ {1, . . . , N + 1}.

In particular, λ(t0)
N+1 ≤ λ

(t1)
N+1 = λN+1.

Thus, ρ := λ(t0)
N+1 can be chosen if ΛN < λ(t0)

N+1.

The last condition requires that problem (EV Pt0) (solvable in closed form!) and the
given one are sufficiently close.
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The homotopy algorithm with M = 5 starting eigenvalues and K = 3 “dropped”

eigenvalues.
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Example:

with J. McKenna (Connecticut), B. Breuer

∆u+ u2 = λ sin(πx) sin(πy) on Ω := (0,1)× (0,1)
u = 0 on ∂Ω

Open problem (resp. conjecture) since the 1980’s:

At least four solutions for λ sufficiently large?

For λ = 800:

McKenna: computation of 4 essentially different approximate
solutions by numerical mountain pass method

Breuer: improvement of accuracy of the approximations by
Fourier series and spectral multigrid methods

Existence and enclosure method provided indeed
4 essentially different solutions!

Two years after our result: More general analytical proof by Dancer and Yan.
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Eigenvalue homotopy for L2 = −∆− 2ω2

Eigenvalue enclosures
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jointly with Ch. Wieners:
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Dancer obtained similar multiplicity results for a domain Ω consisting of two

disjoint balls with a thin connecting corridor.
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Emden’s Equation on an unbounded L-shaped domain
(jointly with F. Pacella and D. Rütters)

Consider the problem −∆u = up in Ω
u = 0 on ∂Ω
u > 0 in Ω

or, equivalently,

{
−∆u = |u|p in Ω

u = 0 on ∂Ω

}
where Ω ⊂ RN is a domain and 1 < p < N+2

N−2
(p > 1 in case N = 2).

In particular, we are interested in the unbounded L-shaped domain

Ω = ((−1,∞)× (0,1)) ∪ ((−1,0)× (−∞,1))

O
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Goal: Prove existence of a symmetric solution with one bump centered

in the corner (by computer assistance)
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Computation of an approximate solution

Choose Ω0 ⊂ Ω compact (cut off “far out part” of the infinite legs)

and compute approximate solution ω0 ∈ H1
0(Ω0) of

−∆u = |u|p in Ω0, u = 0 on ∂Ω0. Then use

ω =

{
ω0 in Ω0
0 in Ω\Ω0

as approximate solution on Ω.

For computing ω0, we use a Newton iteration and Finite Elements;

the re-entrant corner requires, in addition, use of a corner singular

function (for accuracy reasons).
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For the computation of K, we need a positive lower bound for

min {|λ| : λ ∈ spectrum of Φ−1L}.

The spectrum of Φ−1L consists of

i) essential spectrum

ii) isolated eigenvalues of finite multiplicity

i) Essential spectrum of Φ−1L

• Consider L0 : H1
0(Ω)→ H−1(Ω), v 7→ −∆v +

(
π2

π2+1
χΩ1

)
v,

where Ω1 = (−1,0)× (0,1).

• Φ−1L0 is compact perturbation of Φ−1L since ω and χΩ1
have compact support,

and thus σess(Φ−1L) = σess(Φ−1L0)

• Estimate Rayleigh quotient to obtain σ(Φ−1L0) ⊂
[

π2

π2+1
,∞
)

:
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ii) Isolated eigenvalues of Φ−1L

(Φ−1L)[u] = λu ⇐⇒ L[u] = λΦ[u]

⇐⇒ −∆u− p|ω|p−2ωu = λ(−∆u+ u)

⇐⇒ (1− λ)(−∆u+ u) = (1 + p|ω|p−2ω)u
1−λ>0⇐⇒ (−∆u+ u) =

1

1− λ︸ ︷︷ ︸
=:κ

(1 + p|ω|p−2ω)u

Task: Compute upper and lower bounds for eigenvalues κ

neighboring 1.
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Numerical results for p = 3
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Bound for residuum:

δ = 0.001699

Bound for inverse of Linearization:

Ksym = 3.73

‖ω‖L4 ≤ 3.014333
C4 = 0.46200

For α = 0.006471 we have:

δ ≤ ψ(α) =
α

K
− γα2(‖ω‖L4 + C4α)

Thus, there exists a solution u ∈ H1
0(Ω) such that ‖u− ω‖H1

0
≤ 0.006471
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Travelling wave equation on R

(jointly with P. J. McKenna, J. Horak, B. Breuer)
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Verified upper bounds for the crucial constants K,α, δ. The 40 approximations are

ordered as in Figure 1.
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Course of homotopy algorithm for solution number 5 (upper branch).
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(jointly�with�J.�Wunderlich)
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