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1 Absolute separation of polynomials (B. Salvy)

Classically, the separation of a polynomial P ∈ C[x] is

sep(P ) = min
P (α)=P (β)=0

α ̸=β

∣∣α− β
∣∣.

Similarly, one defines the absolute separation of P as

abssep(P ) := min
P (α)=P (β)=0,

|α|̸=|β|

∣∣|α| − |β|
∣∣.

Having good lower bounds on this quantity for polynomials with integer
coefficients is of interest in the asymptotic analysis of linear recurrent se-
quences.

In the classical case of the separation of polynomials with integer coef-
ficients, Mahler (1964) gave the following lower bound

sep(P ) ≫ H(P )−d+1,

where H(P ) is the height of P , i.e., the maximum of the absolute values
of its coefficients, while ≫ hides an implicit constant that depends only on
d. Even in that classical case, the tightness of the exponent −d + 1 is still
unknown, with best known upper bounds −(2d−1)/3 for general d and −2
for d = 3.
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In a recent work [1], we obtained that if P has integer coefficients and
α, β are two roots of P with different absolute value, then in the worst
situation where neither α nor β is real (which implies d ≥ 4), one has∣∣|α| − |β|

∣∣ ≫ H(P )−(d−1)(d−2)(d−3)/2.

This cubic exponent improves on previous results. Still, we have no idea
what the actual worst-case situation is. The worst examples we could con-
struct in degree 4, 5, 6 have exponent −d − 1, quite far from the bound
above.

This leaves lots of questions open, in particular:

Q1. Is the cubic exponent optimal?

Q2. How can one construct families of examples, even in low degree, with
an exponent bigger than −d− 1?

Q3. What if one restricts to the roots of largest (or smallest) absolute
value?

[1] Yann Bugeaud, Andrej Dujella, Wenjie Fang, Tomislav Pe-
jković, and Bruno Salvy, Absolute root separation, Experimental
Mathematics 31 (2022), no. 3, 805–812.

2 Questions Related to Continued Fractions for
π2 and ζ(3) (H. Cohen)

Let z be a constant, and a(n), b(n) be polynomials in n. When I write
z = (a(n), b(n)) I mean that the continued fraction a(0) + b(0)/(a(1) +
b(1)/(a(2) + · · · )) converges to (Az + B)/(Cz + D) for some integers A,
B, C, D with AD−BC ̸= 0, or almost equivalently (i.e., excluding possible
zeros) if there is a continued fraction (abbreviated CF) converging to z
whose coefficients are equal to a(n) and b(n) for n sufficiently large.
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2.1 Question Related to π2

I have found experimentally many parametric CF for π2, and have proved
almost all. But two have resisted (in what follows u ∈ Z≥0):

π2 = ((2u2 + 8u+ 7)n+ (2u+ 3)(u2 + 3u+ 1), n(n+ u)(n+ u+ 1)(n+ 2u+ 4))

π2 = ((2u2 + 8u+ 7)n+ (2u+ 3)(u+ 2)(u+ 3), n(n+ u+ 3)(n+ u+ 4)(n+ 2u+ 4)) .

These two parametric CFs would follow (up to some additional work)
from the following:

Conjecture 2.1. Let u be a nonnegative integers. Up to a multiplicative con-
stant there exists a unique polynomial P such that

(x+ 2u+ 4)(x+ u+ 1)P (x+ 1)− (x− 1)(x+ u− 1)P (x− 1)

= ((2u2 + 8u+ 7)x+ (2u+ 3)(u2 + 3u+ 1))P (x) ,

and we have deg(P ) = u(u+ 3). The same is true if we require

(x+ 2u+ 4)(x+ u+ 4)P (x+ 1)− (x− 1)(x+ u+ 2)P (x− 1)

= ((2u2 + 8u+ 7)x+ (2u+ 3)(u+ 2)(u+ 3))P (x) .

I have asked this question on Math Overflow, and what I know is the
following:

1. These conjectures are equivalent.

2. If P exists it is indeed unique up to a multiplicative constant, and it
has degree u(u+ 3).

Of course this is equivalent to the vanishing of a complicated determinant,
but this does not seem to help.

2.2 Question Related to ζ(3)

Consider S =
∑

n≥1 1/
∏

0≤i≤m−1(n+i)ei, where ei = 1, 2, 3, 2, 1 according to
0 ≤ i < m1, m1 ≤ i < m1+m2, m1+m2 ≤ i < m1+m2+m3, m1+m2+m3 ≤
i < m1+m2+m3+m4, m1+m2+m3+m4 ≤ i < m1+m2+m3+m4+m5 = m.
These conditions guarantee that after suitable simplification’s, the Euler CF
corresponding to the series S will have deg(a(n)) ≤ 3 and deg(b(n)) ≤ 6.
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S will be a linear combination of 1, ζ(2), and ζ(3), and we do not want
any ζ(2) if we want CFs for ζ(3). A sufficient condition for this is the symme-
try condition m4 = m2, m5 = m1, and m3 odd, and this already gives after
some additional work a four parameter family of CFs for ζ(3). However
the symmetry condition is far from sufficient, and I have found hundreds
of additional quintuples where the coefficient of ζ(2) vanishes, the simplest
being (m1,m2,m3,m4,m5) = (0, 0, 2, 2, 0), and each gives a new CF. My
question is: can one classify these additional quintuples, or at least give an
explicit subfamily?

3 On André’s algebraicity criterion (V. Dimitrov)

We have
1√

1− 4x
∗ 1√

1− 4x
=

∞∑
n=0

(
2n

n

)2

xn ∈ ZJxK

as the textbook example that the Hadamard square of an algebraic func-
tion in characteristic zero is usually a transcendental holonomic function.
(In positive characteristic, the algebraic functions are closed under the
Hadamard product operation, by theorems of Furstenberg and Deligne.)
In this case it simply is the hypergeometric function

2F1

[
1/2 1/2

1
; 16x

]
∈ ZJxK

of parameters {1/2, 1/2; 1} and singularities scaled to {0, 1/16,∞}.
This is then an extremal non-example for the algebraicity criterion of

André:

Theorem 3.1 (André). A formal power series f(x) ∈ ZJxK must be alge-
braic as soon as there exists a meromorphic mapping1 φ : (D, 0) → (Ĉ, 0)
with |φ′(0)| > 1 and such that the composite germ f(φ(z)) ∈ CJzK is also
meromorphic on D.

Indeed we have the more precise:

1Here, D := {|z| < 1} denotes the complex unit disc.
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Theorem 3.2 (André). For a given meromorphic mapping φ : (D, 0) →
(Ĉ, 0) as above with |φ′(0)| > 1, there is only a finite-dimensional Q(x)-
linear span of formal power series f(x) ∈ ZJxK having the composite germ
f(φ(z)) ∈ CJzK also meromorphic on D.

A showcase of this theorem is:

Corollary 1. Let α ∈ R>0. Consider the f(x) ∈ ZJxK such that there exists
some2 linear ODE L(f) = 0, with some nonzero linear differential operator
L = Lf ∈ Z[x, d/dx] with singularities at most {0, α,∞}. We have then a
threshold:

• If α > 1/16, all such f(x) are necessarily algebraic, and they have a
finite-dimensional Q(x)-linear span.

• For α = 1/16, there are transcendental such f(x), as well as an infinite-
dimensional Q(x)-linear span of algebraic ones.

Proof. The condition on the singularities of the ODE implies, by Cauchy’s
existence theorem on linear ODE with analytic coefficients, the automatic
analytic pullback under the map

φ := αλ(z) : D → C \ {α,∞},

where

λ(z) := 16z
∞∏
n=1

( 1 + z2n

1 + z2n−1

)8

is the modular lambda map expressed in the cusp-filling coordinate z =
q := eπiτ .

As |φ′(0)| = 16α, the first point follows from André’s theorem.
For the second point, we have already seen the transcendental Hadamard

square function above, while an infinitude of independent algebraic func-
tions are supplied by the modular equation expressing λ(qN)/16 formally
into a function of x := λ(q)/16; this expression does indeed give a ZJxK
series, because ZJqK = ZJxK.

Some obvious examples include:

• For α > 1/4: No examples other than just the polynomials Z[x].
2Depending on f .
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• For α = 1/4: The two-dimensional Q(x)-vector space spanned by the
functions 1 and

√
1− 4x ∈ ZJxK.

• For α = 1/8: Certainly we have the examples (1 − 8x)1/4 and (1 −
8x)3/4 ∈ ZJxK.

• For α = 1/9: Certainly we have the examples (1 − 9x)1/3 and (1 −
9x)1/3 ∈ ZJxK.

Here now is the query I formulated at the Open problem session:

Question 1. As α → (1/16)+, does the list of examples blow up or stabilize?
In other words, is there a sequence αn → (1/16)+ along which there exist

n-tuples f1, . . . , fn ∈ ZJxK of Q(x)-linearly independent algebraic power series
germs with branching locus limited to the three points {0, αn,∞} ∈ P1?

During my talk I also raised a related question, which here I will strip
down to a still more particular form:

Question 2. Is there any G-function with an x = 0 power series of the form

f(x) =
∞∑
n=1

an
xn

[1, . . . , n]k
, for some k ∈ N0 and with all an ∈ Z,

whose singularities are only at {0, 1,∞} and yet f(x) does not lie in the mul-
tiple polylogarithms ring

Z[Lis(x) : ∀s]⊗Q(x),

where
Li(s1,...,sk)(x) :=

∑
n1>···>nk≥1

xn1

ns1
1 · · ·nsk

k

∈ QJxK.
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