Error bounds that are certain, sharp... and whose proof is trustable: the curse of long and boring proofs

Jean-Michel Muller with contributions from M. Joldes, V. Popescu, L. Rideau, B. Salvy

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

We wish to prove error bounds of medium-size, "atomic" algorithms in FP arithmetic, but...

- error bounds... for what purpose?
- proofs... for what purpose?

A Floating-Point number (FPN) x is represented by two integers:

• Floating-Point number:

$$x = \left(\frac{M}{2^{p-1}}\right) \cdot 2^e = m_0 \cdot m_1 m_2 \cdots m_{p-1} \cdot 2^e$$

where $M, e \in \mathbb{Z}$, with $|M| \le 2^p - 1$ and $e_{\min} \le e \le e_{\max}$. Additional requirement: *e* smallest under these constraints.

- x is normal if $|x| \ge 2^{e_{\min}}$ (implies $|M| \ge 2^{p-1}$, i.e., $m_0 = 1$);
- x is subnormal otherwise $(m_0 = 0)$;
- largest finite FPN $\Omega = 2^{e_{\max}+1} 2^{e_{\max}-p+1}$;
- rounding unit: $u = 2^{-p}$.

Error bounds...

- FP system parametered by precision p or unit round-off $u = 2^{-p}$;
- for a given algorithm, we consider an (absolute or relative) error bound B(u);
- the (most likely unknown) worst case error is W(u).

The bound $\ensuremath{\mathcal{B}}$ is

- certain (for $u \leq u_0$) if $W(u) \leq B(u)$ for $u \leq u_0$;
- asymptotically optimal if $\mathcal{W}(u)/\mathcal{B}(u) \to 1$ as $u \to 0$;
- tight (for $u \leq u_0$) if W(u) is close to $\mathcal{B}(u)$ for $u \leq u_0$.

Example: bounds of the form $\alpha u + O(u^2)$, frequent in numerical analysis, are not certain, they do not allow to guarantee that the error is less than some clearly given value (and with 8-bit FP formats, with p = 2 or 3, high-order terms are not negligible!)

• choice between different algorithms:

- an informed choice of the algorithm that has the best balance performance/accuracy requires tight bounds;
- certainty not that important;
- guaranteeing the behavior of a possibly critical software:
 - $\bullet\,$ need to prove that the error is not \geq some threshold
 - \rightarrow certainty important,
 - tightness not always needed;

Error bounds (in FP arithmetic)... for what purpose ?

- careful implementation optimization: arithmetic in "small" FP formats faster than in "large" formats → use small formats whenever possible.
 - small formats → much larger rounding errors → careful analysis needed. Hence Tight error bounds are preferable,
 - however, very small underestimation is rarely a problem;
- fully validated set of "atomic" algorithms:
 - the most common transcendental functions such as exp, In;
 - simple algebraic functions such as $1/\sqrt{x}$, hypot $(x, y) = \sqrt{x^2 + y^2}$ are "basic building blocks" of numerical computing : users expect same behavior as for $+, -, \times, \div, \sqrt{2}$.
- $\rightarrow\,$ having bounds that are both certain and tight is desirable.

Error bounds...an example with $\sqrt{x^2 + y^2}$

if |x| < |y| then swap (x, y)end if $r \leftarrow \text{RN}(y/x)$ $t \leftarrow \text{RN}(1 + r^2)$

$$s \leftarrow \mathsf{RN}(\sqrt{t})$$

 $ho_2 = \mathsf{RN}(|x| \cdot s)$

Bounds (assuming $u \leq 1/4$):

- straightforward bound: $B_0(u) = \frac{7}{2}u + O(u^2);$
- easily obtained relative error bound: B₁(u) = 3u;
- with more care: $\mathcal{B}_2(u) = \frac{5}{2}u + \mathcal{O}(u^2);$
- with much more care: $B_3(u) = \frac{5}{2}u + \frac{3}{8}u^2.$

 \mathcal{B}_1 is certain but not sharp, \mathcal{B}_2 is asymptotically optimal but not certain, \mathcal{B}_3 is asymptotically optimal & certain.

The proof of bound \mathcal{B}_3 is muuuuuch longer than the proof of bound \mathcal{B}_1 . This seems general: tightness has a cost.

- to check, by following the proof step by step, that the claimed property holds;
- 2 to have a deep understanding of what is behind the claimed property.

Rather antagonistic goals:

- goal 1 requires many details,
- goal 2 needs a focus on the "big things" (hence many "without loss of generality..." or "the second case is similar").

In general our "paper proofs" are in between: is this the right solution?

• "double word" arithmetic: formal proofs helped to

- strengthen claimed results,
- improve them,
- find (hmmm...embarassing) bugs.
- hypotenuse function $\sqrt{x^2 + y^2}$: computer algebra helped to
 - obtain tight bounds,
 - explore several variants.

Before presenting that: additional notions on FP arithmetic (roundings, error-free transforms, double-word arithmetic).

Correct rounding

- the sum, product, ... of two FP numbers is not, in general, a FP number → must be rounded;
- the IEEE 754 Std for FP arithmetic specifies several rounding functions;
- the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation followed by rounding.

- correctly rounded +, -, ×, \div , $\sqrt{.}$ are required;
- correctly rounded sin, cos, exp, ln, $1/\sqrt{x}$, $\sqrt{x^2 + y^2}$, etc. only recommended (not mandatory).

 \rightarrow when c = a + b appears in a program, we get c = RN(a + b).

Definition (ulp function)

If $|x| \in [2^e, 2^{e+1})$, then $ulp(x) = 2^{\max\{e, e_{\min}\}-p+1}$.

It is the distance between consecutive FP numbers in the neighborhood of *x*. Properties:

- $|x RN(x)| \le \frac{1}{2} ulp(x);$
- if x is a FP number then it is an integer multiple of ulp (x).

Frequently used for expressing errors of atomic functions.

Relative error due to rounding

• if x is in the normal range (i.e., $2^{e_{\min}} \leq |x| \leq \Omega$), then

$$|x - \mathsf{RN}(x)| \leq \frac{1}{2} \operatorname{ulp}(x) = 2^{\lfloor \log_2 |x| \rfloor - p},$$

therefore,

$$|x - \mathsf{RN}(x)| \le u \cdot |x|,\tag{1}$$

with $u = 2^{-p} = \frac{1}{2} \operatorname{ulp}(1)$. Hence the relative error

$$\frac{|x - \mathsf{RN}(x)|}{|x|}$$

(for $x \neq 0$) is $\leq u$.

- *u*, called unit round-off is frequently used for expressing errors.
- (1): *u* can be replaced by $\frac{u}{1+u}$ (attained for x = 1 + u).

Absolute error (in ulps) of rounding to nearest a real number $x \in [1/2, 16]$, assuming a binary FP "toy" system with p = 5.

Relative error (in multiples of $u = 2^{-p}$) of rounding to nearest a real number $x \in [1/2, 16]$, assuming a binary FP "toy" system with p = 5.

The relative error bound u is tight only slightly above a power of 2.

Error-free transforms and double-word arithmetic

2Sum(a, b)

$$s \leftarrow \mathsf{RN} (a + b)$$

$$a' \leftarrow \mathsf{RN} (s - b)$$

$$b' \leftarrow \mathsf{RN} (s - a')$$

$$\delta_a \leftarrow \mathsf{RN} (a - a')$$

$$\delta_b \leftarrow \mathsf{RN} (b - b')$$

$$t \leftarrow \mathsf{RN} (\delta_a + \delta_b)$$
return (s, t)

Fast2Sum(a, b)

$$s \leftarrow \text{RN} (a + b)$$
$$z \leftarrow \text{RN} (s - a)$$
$$t \leftarrow \text{RN} (b - z)$$
$$return (s, t)$$

Barring overflow:

- the pair (s, t) returned by 2Sum satisfies s = RN (a + b) and t = (a + b) − s;
- if $|a| \ge |b|$ then the pair (s, t) returned by Fast2Sum satisfies s = RN(a + b) and t = (a + b) s.

Such algorithms: Error-free transforms.

2Prod(a, b)

```
\pi \leftarrow \mathsf{RN}(ab)
\rho \leftarrow \mathsf{RN}(ab - \pi)
return (\pi, \rho)
```

Barring overflow, if the exponents e_a and e_b of a and b satisfy $e_a + e_b \ge e_{\min} + p - 1$ then then the pair (π, ρ) returned by Fast2Sum satisfies $\pi = \text{RN}(ab)$ and $\rho = (ab) - \pi$.

- Fast2Sum, 2Sum and 2Prod: return x represented by a pair (x_h, x_ℓ) of FPN such that x_h = RN (x) and x = x_h + x_ℓ;
- Such pairs: double-word numbers (DW).

Algorithms for manipulating DW suggested by various authors since 1971.

Sum of two DW numbers. There also exists a "quick & dirty" algorithm, but its relative error is unbounded.

DWPlusDW

1: $(s_h, s_\ell) \leftarrow 2 \operatorname{Sum}(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2 \operatorname{Sum}(x_\ell, y_\ell)$ 3: $c \leftarrow \operatorname{RN}(s_\ell + t_h)$ 4: $(v_h, v_\ell) \leftarrow \operatorname{Fast2Sum}(s_h, c)$ 5: $w \leftarrow \operatorname{RN}(t_\ell + v_\ell)$ 6: $(z_h, z_\ell) \leftarrow \operatorname{Fast2Sum}(v_h, w)$ 7: return (z_h, z_ℓ)

We have (after a rather tedious proof):

Theorem (Joldeș, Popescu, M., 2017) If $p \ge 3$, the relative error of Algorithm DWPlusDW is bounded by

$$\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots,$$
 (2)

That theorem has an interesting history...

ALGORITHM 6: – AccurateDWPlusDW(x_h, x_ℓ, y_h, y_ℓ). Calculation of $(x_h, x_\ell) + (y_h, y_\ell)$ in binary, precision-p, floating-point arithmetic.

1: $(s_h, s_\ell) \leftarrow 2\text{Sum}(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2\text{Sum}(x_\ell, y_\ell)$ 3: $c \leftarrow \mathbb{RN}(s_\ell + t_h)$ 4: $(v_h, v_\ell) \leftarrow \text{Fast2Sum}(s_h, c)$ 5: $w \leftarrow \mathbb{RN}(t_\ell + v_\ell)$ 6: $(z_h, z_\ell) \leftarrow \text{Fast2Sum}(v_h, w)$ 7: $\text{return}(z_{\star}, z_{\star})$

Li et al. (2000, 2002) claim that in binary64 arithmetic (p = 53) the relative error of Algorithm 6 is upper bounded by $2 \cdot 2^{-100}$. This bound is incorrect, as shown by the following example: If

$$x_h = 9007199254740991,$$

 $x_f = -9007199254740991/2^{54},$
 $y_h = -9007199254740987/2, and$ (2)
 $w_r = -9007199254740987/2^{56}.$

then the relative error of Algorithm 6 is

 $2.24999999999999956 \cdots \times 2^{-106}$

Note that this example is somehow "generic": In precision-p FP arithmetic, the choice $x_h = 2^p - 1$, $x_r = -(2^p - 1) \cdot 2^{-p-1}$ leads to a relative error that is asymptotically equivalent (as p goes to infinity) to $2.5x^2$.

Now let us try to find a relative error bound. We are going to show the following result.

THEOREM 3.1. If $p \ge 3$, then the relative error of Algorithm 6 (AccurateDWPlusDW) is bounded by

$$\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots, \qquad (3)$$

which is less than $3u^2 + 13u^3$ as soon as $p \ge 6$.

Note that the conditions on p ($p \ge 3$ for the bound (3) to hold, $p \ge 6$ for the simplified bound $3u^2 + 13u^3$) are satisfied in all practical cases.

Photon: First, we exclude the straightforward case in which one of the operands is zero. We can also quickly proceed with the case $x_h + y_B = 0$. The returned result is $2 \operatorname{sum}(x_r, y_r)$, which is equal to $x + y_r$, that is, the computation is errorless. Now, without loss of generality, we assume $1 \le x_x \le 2, x \ge |y|$ (which implies $x_x \ge |y_h|$), and $x_h + y_B$ nonzero. Notice that $1 \le x_h < 2$ implies $1 \le x_h \le 2 = x_h$.

Define c_1 as the error committed at Line 3 of the algorithm:

$$= c - (s_{\ell} + t_h)$$

(4)

and e2 as the error committed at Line 5:

$$e_2 = w - (t_\ell + v_\ell).$$

1. If $-x_h < y_h \le -x_h/2$. Sterbenz Lemma, applied to the first line of the algorithm, implies $s_h = x_h + y_h$, $s_c = 0$, and $c = RN(t_h) = t_h$.

Define

$$\sigma = \begin{cases} 2 \text{ if } y_h \leq -1, \\ 1 \text{ if } -1 < y_h \leq -x_h/2 \end{cases}$$

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:8

M. Joldes et al.

We have $-x_h < y_h \le (1 - \sigma) + \frac{x_1}{2}(\sigma - 2)$, so $0 \le x_h + y_h \le 1 + \sigma \cdot (\frac{x_2}{2} - 1) \le 1 - \sigma u$. Also, since x_h is a multiple of 2u and y_h is a multiple of σu . Since s_h is nonzero, we finally obtain

$$\sigma u \le s_h \le 1 - \sigma u$$
. (6)

We have $|x_\ell| \le u$ and $|y_\ell| \le \frac{a}{2}u$, so

$$|t_h| \le \left(1 + \frac{\sigma}{2}\right)u$$
 and $|t_\ell| \le u^2$. (7)

From Equation (6), we deduce that the floating-point exponent of s_h is at least $-\rho + \sigma - 1$. From Equation (7), the floating-point exponent of $c = t_h$ is at most $-\rho + \sigma - 1$. Therefore, the Fast2Sum algorithm introduces no error at line 4 of the algorithm, which implies

$$v_h + v_\ell = s_h + c = s_h + t_h = x + y - t_\ell$$
.

Equations (6) and (7) imply

$$|s_h + t_h| \le 1 + \left(1 - \frac{\sigma}{2}\right)u \le 1 + \frac{u}{2}$$

so $|v_h| \le 1$ and $|v_\ell| \le \frac{u}{2}$. From the bounds on $|t_\ell|$ and $|v_\ell|$, we obtain:

$$|e_2| \le \frac{1}{2} ulp(t_\ell + v_\ell) \le \frac{1}{2} ulp\left(u^2 + \frac{u}{2}\right) = \frac{u^2}{2}$$
(8)

and

$$|e_2| \le \frac{1}{2} ulp \left[\frac{1}{2} ulp(x_\ell + y_\ell) + \frac{1}{2} ulp \left((x + y) + \frac{1}{2} ulp(x_\ell + y_\ell) \right) \right].$$
 (9)

Lemma 2.1 and $|s_k| \ge \sigma u$ imply that either $s_k + t_k = 0$, or $|v_k| = |\text{RN}(s_k + c_i)| = |\text{RN}(s_k + t_k)| \ge \sigma u^2$. If $s_k + t_k = 0$, then $v_k = v_\ell = 0$ and the sequel of the proof is straightforward. Therefore, in the following, we assume $|v_k| \ge \sigma u^2$.

Now,

- If |v_h| = σu², then |v_ℓ + t_ℓ| ≤ u|v_h| + u² = σu³ + u², which implies |w| = |RN(t_ℓ + v_ℓ)| ≤ σu² = |v_h|;
- If $|v_h| > \sigma u^2$, then, since v_h is a FP number, $|v_h|$ is larger than or equal to the FP number immediately above σu^2 , which is $\sigma(1 + 2u)u^2$. Hence $|v_h| \ge \sigma u^2/(1 - u)$, so $|v_h| \ge u \cdot |v_h| + \sigma u^2 \ge |v_c| + |t_f|$. So, $|w| = |\mathbb{RN}(t_f + v_f)| \le |v_h|$.

Therefore, in all cases, Fast2Sum introduces no error at line 6 of the algorithm, and we have

$$z_h + z_\ell = v_h + w = x + y + c_2.$$
 (10)

Directly using Equation (10) and the bound $u^2/2$ on $|c_2|$ to get a relative error bound would result in a large bound, because x + y may be small. However, when x + y is very small, some simplification occurs thanks to Sterhenz Lemma. First, $x_h + y_h$ is a nonzero multiple of σu . Hence, since $|x_\ell + y_\ell| \le \frac{1}{2} \langle x_h + y_h \rangle$. Let us now consider the two possible cases:

 If -¹/₂(x_h + y_h) ≤ x_ℓ + y_ℓ ≤ -¹/₂(x_h + y_h), which implies -¹/₂s_k ≤ t_h ≤ -¹/₂s_h, then Sterbenz lemma applies to the floating-point addition of s_h and c = t_h. Therefore line 4 of the algorithm results in v_h = s_h and v_ℓ = 0. An immediate consequence is c₂ = 0, so z_h + z_ℓ = v_h + w = x + y: the computation of x + y is errorles;

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

• If $-\frac{1}{2}(x_h + y_h) < x_\ell + y_\ell < \frac{3}{2}(x_h + y_k)$, then $\frac{5}{2}(x_\ell + y_\ell) \leq \frac{3}{2}(x_h + y_h + x_\ell + y_\ell) = \frac{3}{2}(x + y)$, and $-\frac{1}{2}(x + y) < \frac{1}{2}(x_\ell + y_\ell)$. Hence, $|x_\ell + y_\ell| < |x + y|$, so $ulp(x_\ell + y_\ell) \leq ulp(x + y)$. Combined with Equation (9), this gives

$$|e_2| \le \frac{1}{2} ulp(\frac{3}{2} ulp(x + y)) \le 2^{-\rho} ulp(x + y) \le 2 \cdot 2^{-2\rho} \cdot (x + y).$$

2. If $-x_h/2 < y_h \le x_h$

Notice that we have $x_h/2 < x_h + y_h \le 2x_h$, so $x_h/2 \le s_h \le 2x_h$. Also notice that we have $|x_\ell| \le u$.

If ¹/₂ < x_h + y_h ≤ 2 − 4u. Define

$$\sigma = \begin{cases} 1 \text{ if } x_h + y_h \leq 1 - 2u, \\ 2 \text{ if } 1 - 2u < x_h + y_h \leq 2 - 4 \end{cases}$$

We have

$$\frac{\sigma}{2}(1-2u) \le s_h \le \sigma(1-2u)$$
 and $|s_\ell| \le \frac{\sigma}{2}u$. (11)

When $\sigma = 1$, we necessarily have $-x_h/2 < y_h < 0$, so $|y_\ell| \le u/2$. And when $\sigma = 2$, $|y_h| \le x_h \le 2 - 2u$ implies $|y_\ell| \le u$. Hence we always have $|y_\ell| \le \frac{\pi}{2}u$. This implies $|x_\ell + y_\ell| \le (1 + \sigma/2)u$. herefore

$$|t_h| \le \left(1 + \frac{\sigma}{2}\right)u$$
 and $|t_\ell| \le u^2$. (12)

Now, $|s_{\ell} + t_h| \le (1 + \sigma)u$, so

$$|\epsilon| \le (1 + \sigma)u$$
 and $|\epsilon_1| \le \sigma u^2$. (13)

Since $s_k \ge 1/2$ and $|c| \le 3u$, if $p \ge 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm, that is,

$$v_k + v_\ell = s_k + c.$$

Therefore $|v_k + v_\ell| = |s_k + c| \le \sigma(1 - 2u) + (1 + \sigma)u \le \sigma$. This implies

$$|v_h| \le \sigma$$
 and $|v_\ell| \le \frac{\sigma}{2}u$. (14)

Thus $|t_{\ell} + v_{\ell}| \le u^2 + \frac{\sigma}{2}u$, so

$$|w| \le \frac{\sigma}{2}u + u^2$$
 and $|e_2| \le \frac{\sigma}{2}u^2$. (15)

From Equations (11) and (13), we deduce $s_b + c \ge \frac{\sigma}{2} - u(2\sigma + 1)$, so $|v_b| \ge \frac{\sigma}{2} - u(2\sigma + 1)$. If $p \ge 3$, then $|v_b| \ge |w|$, so Algorithm Fast2Sum introduces no error at line 6 of the algorithm, that is, $z_b + z_c = v_b + w$. Therefore

$$z_h + z_\ell = x + y + \eta$$
,

with $|\eta| = |\epsilon_1 + \epsilon_2| \le \frac{2\sigma}{2}u^2$. Since

$$x + y \ge (x_h - u) + (y_h - u/2) > \begin{cases} \frac{1}{2} - \frac{3}{2}u & \text{if } \sigma = 1, \\ 1 - 4u & \text{if } \sigma = 2, \end{cases}$$

the relative error $|\eta|/(x + y)$ is upper bounded by

 $\frac{3u^2}{1-4u}$.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:10

M. Joldes et al.

• If $2 - 4u < x_h + y_h \le 2x_h$, then $2 - 4u \le s_h \le RN(2x_h) = 2x_h \le 4 - 4u$ and $|s_\ell| \le 2u$. We have

 $t_{h} + t_{\ell} = x_{\ell} + y_{\ell}$,

with $|x_t + y_t| \le 2u$, hence $|t_b| \le 2u$, and $|t_t| \le u^2$. Now, $|s_t + t_b| \le 4u$, so $|c| \le 4u$, and $|c_j| \le 2u^2$. Since $s_b \ge 2 - 4u$ and $|c| \le 4u$; if $p \ge 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm. Therefore,

 $v_h + v_\ell = s_h + c \le 4 - 4u + 4u = 4$,

so $v_h \leq 4$ and $|v_q| \leq 2n$. Thus, $|t_q + v_q| \leq 2n + n^2$. Hence, either $|t_q + v_q| < 2m$ and $|v_q| \leq 2n + n^2$. $|u_q||t_q + v_q| > 2n$. $|u_q| < 2m + n^2$. In which case $v = 8N(t_q + v_q) = 2m$ and $|v_q| \leq 2m + n^2$. In which case $v = 8N(t_q + v_q) = 2m$ and $|v_q| \leq 4m$ imply $v_h \geq 2 - 8m$, and $|v_q| \leq 4m$ imply $v_h \geq 2 - 8m$, and $|v_q| \leq 4m$ imply $v_h \geq 2 - 8m$, and an or error at line 6 of the algorithm. All this gives

$$z_h + z_\ell = v_h + w = x + y + \eta$$

with $|\eta| = |\epsilon_1 + \epsilon_2| \le 3u^2$.

Since $x+y \geq (x_h-u) + (y_h-u) > 2-6u,$ the relative error $|\eta|/(x+y)$ is upper bounded by

$$\frac{3u^2}{2-6i}$$

The largest bound obtained in the various cases we have analyzed is

$$\frac{3u^2}{1-4u}$$
.

Elementary calculus shows that for $u \in [0, 1/64]$ (i.e., $p \ge 6$) this is always less than $3u^2 + 13u^3$. \Box

The bound (3) is probably not optimal. The largest relative error we have obtain through many tests is around $2.25 \times 2^{-2p} = 2.25 u^2$. An example is the input values given in Equation (2), for which, with p = 53 (binary64 arithmetic), we obtain a relative error equal to $2.2499999999999995 \cdots \times 2^{-200}$.

ALGORITHM 6: - AccurateDWPlusDW(x_h, x_ℓ, y_h, y_ℓ). Calculation of $(x_h, x_\ell) + (y_h, y_\ell)$ in binary, precision-p, floating-point arithmetic $1: (s_k, s_\ell) \leftarrow 2Sum(s_k, u_k)$

2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ 3: $c \leftarrow RN(s_{\ell} + t_{h})$ $4: (v_1, v_2) \leftarrow Fast2Sum(s_1, c)$ 5: $w \leftarrow RN(t_2 + t_2)$ 6: (z_k, z_ℓ) ← Fast2Sum (v_k, w)

7: return (zh, zf)

Li et al. (2000, 2002) claim that in binary64 arithmetic (p = 53) the relative error of Algorithm 6 is upper bounded by 2 · 2-166. This bound is inco-

 $x_h = 900719^{\circ}$ in which one of the operal. $y_h = -9007$ $y_{r}^{y_{h}} = -900$ he returned result is $2Sum(x_{\ell}, y_{\ell})$. then the relative error of Algorithm 6 is

2.24999999Jow, without loss of generality, we Note that this example is somehow "gener

 $x^{j-1, x_{\ell}=-(2^{p}-1), x^{p-1}, y_{k}=-(2^{p}-5)/2, J}$, nonzero. Notice that $1 \le x_{h} < x_{h}$ Now let us try to find a relative error bound. We are s.

THEOREM 3.1. If $p \ge 3$, then the relative error of Algorithm 6 ...

 $\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots,$

which is less than 3a2 + 13a3 as soon as to

Note that the conditions on p ($p \ge 3$ for the bound (3) to hold, $p \ge 6$ for the simplified bound $3u^2 + 13u^3$) are satisfied in all practical cases.

PROOF. First, we exclude the straightforward case in which one of the operands is zero. We can also quickly proceed with the case $x_1 + y_2 = 0$. The returned result is $2Sum(x_2, y_2)$, which is equal to x + y, that is, the computation is errorless Now, without loss of generality, we assume $1 \le x_k < 2, x \ge |y|$ (which implies $x_k \ge |u_k|$), and $x_k + m$ nonzero. Notice that $1 \le x_k < 2$ implies $1 \le x_k \le 2 - 2u$, since x_k is a FP number.

Define ϵ_1 as the error committed at Line 3 of the algorithm

$$c - (s_\ell + t_h)$$

and ϵ_2 as the error committed at Line 5: $e_2 = w - (t_\ell + v_\ell).$

(4)

1. If $-x_h < y_h \le -x_h/2$. Sterbenz Lemma, applied to the first line of the algorithm, implies $s_k = x_h + y_h$, $s_\ell = 0$, and $c = RN(t_h) = t_h$.

Define

$$\sigma = \begin{cases} 2 \text{ if } y_h \leq -1, \\ 1 \text{ if } -1 < y_h \leq -x_h \end{cases}$$

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res, Publication date: October 2017.

M. Joldes et al.

We have $-x_h < u_h \le (1 - \sigma) + \frac{x_h}{2}(\sigma - 2)$, so $0 \le x_h + u_h \le 1 + \sigma \cdot (\frac{x_h}{2} - 1) \le 1 - \sigma u$. Also, since x_b is a multiple of 2u and u_b is a multiple of σu , $s_b = x_b + u_b$ is a multiple of σu . Since s_b is nonzero, we finally obtain

$$\sigma u \le s_h \le 1 - \sigma u$$
. (6)

We have $|x_\ell| \le u$ and $|y_\ell| \le \frac{a}{2}u$, so

$$|t_k| \le \left(1 + \frac{\sigma}{2}\right)u$$
 and $|t_\ell| \le u^2$. (7)

From Equation (6), we deduce that the floating-point exponent of s_k is at least $-p + \sigma - 1$. From Equation (7), the floating-point exponent of $c = t_k$ is at most $-p + \sigma - 1$. Therefore, the Fast2Sum algorithm introduces no error at line 4 of the algorithm, which implies

$$v_h + v_\ell = s_h + c = s_h + t_h = x + y - t_\ell$$
.

Equations (6) and (7) imply

$$|s_h + t_h| \le 1 + \left(1 - \frac{\sigma}{2}\right)u \le 1 + \frac{u}{2}$$

so $|v_h| \le 1$ and $|v_\ell| \le \frac{n}{2}$. From the bounds on $|t_\ell|$ and $|v_\ell|$, we obtain

$$|e_2| \le \frac{1}{2} ulp(t_\ell + v_\ell) \le \frac{1}{2} ulp\left(u^2 + \frac{u}{2}\right) = \frac{u^2}{2}$$
(8)

$$|e_2| \le \frac{1}{2} ulp \left[\frac{1}{2} ulp(x_\ell + y_\ell) + \frac{1}{2} ulp \left((x + y) + \frac{1}{2} ulp(x_\ell + y_\ell) \right) \right].$$
 (9)

Lemma 2.1 and $|s_k| \ge \sigma u$ imply that either $s_k + t_k = 0$, or $|v_k| = |RN(s_k + c)| = |RN(s_k + t_k)| \ge$ σu^2 . If $s_h + t_h = 0$, then $v_h = v_\ell = 0$ and the sequel of the proof is straightforward. Therefore, in the following, we assume $|v_{\lambda}| \ge \sigma u^2$.

- If $|v_{k}| = \sigma u^{2}$, then $|v_{\ell} + t_{\ell}| \le u|v_{k}| + u^{2} = \sigma u^{3} + u^{2}$, which implies $|w| = |RN(t_{\ell} + v_{\ell})| \le |v_{\ell}| + |v_{\ell}| \le |v_{\ell$ $\sigma u^2 = |v_h|;$
- If |v_h| > σu², then, since v_h is a FP number, |v_h| is larger than or equal to the FP number immediately above σu^2 , which is $\sigma (1 + 2u)u^2$. Hence $|v_h| \ge \sigma u^2/(1 - u)$, so $|v_h| \ge u \cdot |v_h| +$ $\sigma u^2 \ge |v_2| + |t_2|$, So, $|w| = |RN(t_2 + v_2)| \le |v_b|$.

Therefore, in all cases, Fast2Sum introduces no error at line 6 of the algorithm, and we have

$$z_k + z_\ell = v_h + w = x + y + \epsilon_2.$$
 (10)

Directly using Equation (10) and the bound $u^2/2$ on $|e_2|$ to get a relative error bound would result in a large bound, because x + y may be small. However, when x + y is very small, some simplification occurs thanks to Sterbenz Lemma First, $x_1 + u_2$ is a nonzero multiple of σu . Hence, since $|x_2 +$ $|y_\ell| \le (1 + \frac{\alpha}{2})u$, we have $|x_\ell + y_\ell| \le \frac{1}{2}(x_h + y_h)$. Let us now consider the two possible cases:

• If $-\frac{5}{2}(x_b + y_b) \le x_f + y_f \le -\frac{1}{2}(x_b + y_b)$, which implies $-\frac{5}{2}s_b \le t_b \le -\frac{1}{2}s_b$, then Sterberg lemma applies to the floating-point addition of s_k and $c = t_k$. Therefore line 4 of the algorithm results in $v_h = s_h$ and $v_\ell = 0$. An immediate consequence is $e_2 = 0$, so $z_h + z_\ell =$ $v_k + w = x + y$: the computation of x + y is errorless;

15res:8

We have $-x_h < y_h \le (1 - \sigma) + \frac{x_h}{2}(\sigma - 2)$, so $0 \le x_h + y_h \le 1 + \sigma \cdot (\frac{x_h}{2} - 1) \le 1 - \sigma u$. Also, since ALGORITHM 6: - AccurateDWPlusDW(x_h, x_ℓ, y_h, y_ℓ). Calculation of $(x_h, x_\ell) + (y_h, y_\ell)$ in binary, x_b is a multiple of 2u and u_b is a multiple of σu , $s_b = x_b + u_b$ is a multiple of σu . Since s_b is nonzero, precision-p, floating-point arithmetic we finally obtain $1: (s_k, s_\ell) \leftarrow 2Sum(s_k, u_k)$ $\sigma u \leq s_b \leq 1 - \sigma u$. (6) 2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ $2 \frac{\operatorname{der} \mathbf{U} \cdot \mathbf{U}^{(r) - \operatorname{der} (r_{d})} \leq u \text{ and } |y_{\ell}| \leq \frac{c}{2} u, \text{ so}}{\sqrt{-1}} \frac{|u|}{|u|} u \operatorname{der} |y_{\ell}| \leq u^{2}.$ 3: $c \leftarrow RN(s_{\ell} + t_{h})$ $4: (v_1, v_2) \leftarrow Fast2Sum(s_1, c)$ 5: $w \leftarrow RN(t_2 + t_2)$ 6: (z_k, z_ℓ) ← Fast2Sum (v_k, w) 7: return (zh, zf) $\text{...ther } s_h + t_h = 0, \text{ or } |v_h| = |\text{RN}(s_h + c)| = |\text{RN}^{\text{point exponent of } s_k \text{ at last } r_{r+r-1}^{-1} \text{ ...therefore, the FaultSum } s_{k+1}^{-1} \text{ ..., starting the set of } s_{k+1}^{-1} \text{ ..., starting the set o$ Li et al. (2000, 2002) claim that is upper bounded by 2 · 2-166. T d the sequel of the proof is straightforward. The sequel of the proof is straightforward. $\left(1 - \frac{\sigma}{\alpha}\right)u \le 1 + \frac{u}{\alpha}$ then the relative error of Algorithm 6 is aunds on Itel and Ittel, we obtain 2.2499999999999999956 $|e_2| \le \frac{1}{2} ulp(t_\ell + v_\ell) \le \frac{1}{2} ulp(u^2 + \frac{u}{2}) = \frac{u}{2}$ Note that this example is somehow "generic": In precision-p FP arman. (8) $2^{p} - 1$, $x_{\ell} = -(2^{p} - 1) \cdot 2^{-p-1}$, $y_{h} = -(2^{p} - 5)/2$, and $y_{\ell} = -(2^{p} - 1) \cdot 2^{-p-3}$ leads to a relative error that is asymptotically equivalent (as p sors to infinity) to 2.25a2 and Now let us try to find a relative error bound. We are going to show the following result $|\epsilon_2| \le \frac{1}{2} ulp \left[\frac{1}{2} ulp(x_{\ell} + y_{\ell}) + \frac{1}{2} ulp \left((x + y) + \frac{1}{2} ulp(x_{\ell} + y_{\ell}) \right) \right]$ (9) THEOREM 3.1. If $p \ge 3$, then the relative error of Algorithm 6 (AccurateDWPlusDW) is bounded byLemma 2.1 and $|s_k| \ge \sigma u$ imply that either $s_k + t_k = 0$, or $|v_k| = |RN(s_k + c)| = |RN(s_k + t_k)| \ge$ $\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots,$ σu^2 . If $s_k + t_k = 0$, then $v_h = v_\ell = 0$ and the sequel of the proof is straightforward. Therefore, in (3) the following, we assume $|v_{\lambda}| \ge \sigma u^2$. which is less than 3a2 + 13a3 as soon as to Note that the conditions on p ($p \ge 3$ for the bound (3) to hold, $p \ge 6$ for the simplified bound • If $|v_{k}| = \sigma u^{2}$, then $|v_{\ell} + t_{\ell}| \le u|v_{k}| + u^{2} = \sigma u^{3} + u^{2}$, which implies $|w| = |RN(t_{\ell} + v_{\ell})| \le |v_{\ell}| + |v_{\ell}| \le |v_{\ell$ $3u^2 + 13u^3$) are satisfied in all practical cases $\sigma u^2 = |v_h|;$ PROOF. First W (1 -) YV LILAVE |AL T 911 - If |v_h| > σu², then, since v_h is a FP number, |v_h| is larger than or equal to the FP number immediately above σu^2 , which is $\sigma (1 + 2u)u^2$. Hence $|v_h| \ge \sigma u^2/(1 - u)$, so $|v_h| \ge u \cdot |v_h| +$ can - $|v_{1}|^{2} \ge |v_{2}| + |t_{2}|$, So, $|w| = |RN(t_{2} + v_{2})| \le |v_{0}|$. vll cases, Fast2Sum introduces no error at line 6 of the algorithm, and we have If $-\frac{3}{2}(x_h + y_h) \le x_\ell + y_\ell \le -\frac{1}{2}(x_h + y_h)$ (10) v using Equation (10) and the bound $u^2/2$ on $|e_2|$ to get a relative error bound would result in and a sthe sum annlies to the floating-no a large bound, because x + y may be small. However, when x + y is very small, some simplification occurs thanks to Sterbenz Lemma. First, $x_h + y_h$ is a nonzero multiple of σu . Hence, since $|x_\ell|$ $|y_\ell| \le (1 + \frac{\sigma}{2})u$, we have $|x_\ell + y_\ell| \le \frac{3}{2}(x_h + y_h)$. Let us now consider the two possible cases: 1. If $-x_h < y_h \le -x_h/2$. Sterbenz Lemma, applied to the first line of the algorithm, implies $n = \frac{1}{2}(x_h + y_h) \le x_\ell + y_\ell \le -\frac{1}{2}(x_h + y_h)$, which implies $-\frac{3}{2}s_h \le t_h \le -\frac{1}{2}s_h$, then Sterbenz $s_k = x_h + y_h$, $s_\ell = 0$, and $c = RN(t_h) = t_h$. lemma applies to the floating-point addition of s_h and $c = t_h$. Therefore line 4 of the al-Define gorithm results in $v_h = s_h$ and $v_\ell = 0$. An immediate consequence is $e_2 = 0$, so $z_h + z_\ell =$ $\sigma = \begin{cases} 2 \text{ if } y_h \leq -1, \\ 1 \text{ if } -1 < y_h \leq -x_h/2. \end{cases}$ $v_k + w = x + y$: the computation of x + y is errorless; ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res, Publication date: October 2017

21

M. Joldes et al.

• If $-\frac{1}{2}(x_h + y_h) < x_\ell + y_\ell \le \frac{3}{2}(x_h + y_h)$, then $\frac{5}{2}(x_\ell + y_\ell) \le \frac{3}{2}(x_h + y_h + x_\ell + y_\ell) = \frac{3}{2}(x + y_h)$. and $-\frac{1}{2}(x+y) < \frac{1}{2}(x_{\ell}+y_{\ell})$. Hence, $|x_{\ell}+y_{\ell}| < |x+y|$, so $ulp(x_{\ell}+y_{\ell}) \le ulp(x+y)$. Combined with Equation (9), this gives

$$|\epsilon_2| \le \frac{1}{2} ulp(\frac{3}{2} ulp(x + y)) \le 2^{-p} ulp(x + y) \le 2 \cdot 2^{-2p} \cdot (x + y)$$

2. If $-x_h/2 < y_h \le x_h$

Notice that we have $x_k/2 \le x_k + y_k \le 2x_k$, so $x_k/2 \le s_k \le 2x_k$. Also notion that we have $|x_\ell| \le u$.

• If $\frac{1}{2} < x_h + y_h \le 2 - 4u$. Define

We have

Elementary calculus shows that $f_0^{1 \le 2u + u^{1} \text{ implies } \{v\} \le 2u}$. Hence if $p \ge 3$, then Algorithm FastSum introduces

When $\sigma = 1$, we is

 $x_h \leq 2 - 2u$ implies $|y_\ell|$ $(1 + \sigma/2)u$, therefore

The bound (3) is probable

Now, $|s_{\ell} + t_h| \le (1 + \sigma)u$, so

$$|c| \le (1 + \sigma)u$$
 and $|e_1| \le \sigma u^2$. (13)

Since $s_b \ge 1/2$ and $|c| \le 3\mu$, if $p \ge 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm, that is,

$$v_h + v_\ell = s_h + c.$$

Therefore $|v_h + v_\ell| = |s_h + c| \le \sigma (1 - 2u) + (1 + \sigma)u \le \sigma$. This implies

$$|v_k| \le \sigma$$
 and $|v_\ell| \le \frac{\sigma}{2}u$. (14)

Thus $|t_{\ell} + v_{\ell}| \le u^2 + \frac{\sigma}{2}u$, so

$$|w| \le \frac{\sigma}{2}u + u^2$$
 and $|e_2| \le \frac{\sigma}{2}u^2$. (15)

From Equations (11) and (13), we deduce $s_k + c \ge \frac{\sigma}{2} - u(2\sigma + 1)$, so $|v_k| \ge \frac{\sigma}{2} - u(2\sigma + 1)$. If $p \ge 3$, then $|v_h| \ge |w|$, so Algorithm Fast2Sum introduces no error at line 6 of the algorithm. that is, $z_h + z_\ell = v_h + w$. Therefore

$$z_k + z_\ell = x + y + \eta$$
,

with $|\eta| = |\epsilon_1 + \epsilon_2| \le \frac{3\sigma}{2}u^2$. Since

$$x + y \ge (x_h - u) + (y_h - u/2) > \begin{cases} \frac{1}{2} - \frac{3}{2}u & \text{if } \sigma = 1, \\ 1 - 4u & \text{if } \sigma = 2, \end{cases}$$

the relative error |n|/(x + y) is upper bounded by

$$\frac{3u^2}{1-4u}$$
.

ACM Transactions on Mathematical Software Vol 44 No. 2 Article 15ner Publication date: October 2017

15res:10

M. Joldes et al.

 If 2 − 4u < x_h + y_h ≤ 2x_h, then 2 − 4u ≤ s_h ≤ RN(2x_h) = 2x_h ≤ 4 − 4u and |s_ℓ| ≤ 2u. We have

$t_h + t_\ell = x_\ell + y_\ell,$

with $|x_{\ell} + y_{\ell}| \le 2u$, hence $|t_h| \le 2u$, and $|t_{\ell}| \le u^2$. Now, $|s_{\ell} + t_h| \le 4u$, so $|c| \le 4u$, and $|e_1| \le 2u^2$. Since $s_k \ge 2 - 4u$ and $|c| \le 4u$, if $p \ge 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm. Therefore,

$v_h + v_\ell = s_h + c \le 4 - 4u + 4u = 4$

so $v_k \leq 4$ and $|v_\ell| \leq 2u$. Thus, $|t_\ell + v_\ell| \leq 2u + u^2$. Hence, either $|t_\ell + v_\ell| < 2u$ and $|\epsilon_2| \leq 2u + u^2$. $ulp(t_{\ell} + v_{\ell}) \le u^2$, or $2u \le t_{\ell} + v_{\ell} \le 2u + u^2$, in which case $w = RN(t_{\ell} + v_{\ell}) = 2u$ and $\leq u^2$. In all cases, $|e_2| \leq u^2$. Also, $s_b \geq 2 - 4u$ and $|c| \leq 4u$ imply $v_b \geq 2 - 8u$, and

is gives

$$z_h + z_\ell = v_h + w = x + y + \eta$$
,

 $\sinh |\eta| = |\epsilon_1 + \epsilon_2| \le 3u^2$

Since $x + y \ge (x_h - u) + (y_h - u) > 2 - 6u$, the relative error $|\eta|/(x + y)$ is upper bounded bv

$$\frac{3u^2}{2-6u}$$

The largest bound obtained in the various cases we have analyzed is

Elementary calculus shows that for u = 0, 1/64 (i.e., $p \ge 6$) this is always less than $3u^2 + 13u^3$.

The bound (3) is probably not optimal. The largest relative error we have obtain through many tests is around $2.25 \times 2^{-2p} = 2.25u^2$. An example is the input values given in Equation (2), for which, with p = 53 (binary64 arithmetic), we obtain a relative error equal to 2.24999999999999956 · · · × 2⁻¹⁶⁶.

DW+DW: "accurate version"

So the theorem gives an error bound

$$\frac{3u^2}{1-4u}\simeq 3u^2\ldots$$

As said before, that theorem has an interesting history:

- the authors of the first paper where a bound was given (in 2000) claimed (without published proof) that the relative error was always ≤ 2u² (in binary64 arithmetic);
- when trying (without success) to prove their bound, we found an example with error $\approx 2.25 u^2$;
- we finally proved the theorem, and Laurence Rideau started to write a formal proof in Coq;
- of course, that led to finding a (minor) flaw in our proof...

(I hate Coq people)

DW+DW: "accurate version"

- fortunately the flaw was quickly corrected (before final publication of the paper... Phew)!
- still, the gap between worst case found ($\approx 2.25u^2$) and the bound ($\approx 3u^2$) was frustrating, so I spent months trying to improve the theorem...
- and of course this could not be done: it was the worst case that needed spending time!
- we finally found that with

 $\begin{array}{rcl} x_{h} & = & 1 \\ x_{\ell} & = & u - u^{2} \\ y_{h} & = & -\frac{1}{2} + \frac{u}{2} \\ y_{\ell} & = & -\frac{u^{2}}{2} + u^{3}. \end{array}$

Exercise: all these values are FP numbers.

error $\frac{3u^2-2u^3}{1+3u-3u^2+2u^3}$ is attained. With p = 53 (binary64 arithmetic), gives error 2.99999999999999999877875 $\cdots \times u^2$.

DW+DW: "accurate version"

- We suspect the initial authors hinted their claimed bound just by performing zillions of random tests
- in this domain, the worst cases are extremely unlikely: you must build them. Almost impossible to find them by chance.

 \log_{10} of the frequency of cases for which the relative error of DWPlusDW is $\geq \lambda u^2$ as a function of λ .

$\text{DW} \times \text{DW}$

- Product $z = (z_h, z_\ell)$ of two DW numbers $x = (x_h, x_\ell)$ and $y = (y_h, y_\ell)$;
- $\bullet\,$ several algorithms \rightarrow tradeoff speed/accuracy. We just give one of them.

DWTimesDW

- 1: $(c_h, c_{\ell 1}) \leftarrow 2 \operatorname{Prod}(x_h, y_h)$
- 2: $t_{\ell} \leftarrow \mathsf{RN}(x_h \cdot y_{\ell})$
- 3: $c_{\ell 2} \leftarrow \mathsf{RN}(t_{\ell} + x_{\ell}y_h)$
- 4: $c_{\ell 3} \leftarrow \mathsf{RN}(c_{\ell 1} + c_{\ell 2})$
- 5: $(z_h, z_\ell) \leftarrow \mathsf{Fast2Sum}(c_h, c_{\ell 3})$
- 6: return (z_h, z_ℓ)

$\text{DW} \times \text{DW}$

We have

Theorem (M. and Rideau, 2022)

If $p \ge 5$, the relative error of Algorithm DWTimesDW is less than or equal to

$$\frac{5u^2}{(1+u)^2} < 5u^2.$$

and that theorem too has an interesting (hmmm...a bit more annoying?) history!

- in 2017, I participated to the proof of an initial relative error bound $6u^2$;
- again, Laurence tried translating the proof in Coq...and it turned out the proof was based on a wrong lemma (and this was *after* publication).

(what did I say about Coq people?)

- after a few nights of bad sleep, turn-around...that also improved the bound: $6u^2 \rightarrow 5u^2!$
- no proof of asymptotic optimality, but in binary64 arithmetic, we have examples with error $> 4.98u^2$;
- *real consolation or lame excuse?* Maybe without the flaw, we would never have found the better bound.

Full set of validated DW algorithms for the arithmetic operations and the square root (M. and Rideau, 2022; Lefèvre, Louvet, Picot, M. and Rideau, 2023).

That class of algorithms really needs formal proof:

- Proofs have too many subcases to be certain you have not forgotten one;
- they are boring: almost nobody reads them.

Alternate-or complementary-solution? try to automatically compute bounds:

- short-term goal: limit human intervention (and therefore, human error);
- long-term goal: bounds correct by construction.

An example: hypotenuse function $\sqrt{x^2 + y^2}$

• function hypot listed in Section 9 of the IEEE-754 Std for FP arithmetic and Section 7.12.7.3 of the C17 Std. The C Std even says

The hypot functions compute the square root of the sum of the squares of x and y, without undue overflow or underflow. A range error may occur.

- naive algorithm: reasonably accurate (rel. err. < 2u), but risks of
 - spurious overflow: we obtain $\infty,$ even if exact result $\ll \Omega,$ or
 - spurious underflow: very inaccurate result if subnormal intermediate values.

The naive algorithm

NaiveHypot

1: $s_x \leftarrow \text{RN}(x^2)$ 2: $s_y \leftarrow \text{RN}(y^2)$ 3: $\sigma \leftarrow \text{RN}(s_x + s_y)$ 4: $\rho_1 = \text{RN}(\sqrt{\sigma})$

- classical relative error bound $2u + O(u^2)$;
- refinement: 2u
 (Jeannerod & Rump);
- asymptotically optimal (Jeannerod, M., Plet).

Examples in binary64/double precision arithmetic (p = 53):

- if $x = 2^{600}$ and y = 0, returned result $+\infty$, exact result 2^{600} ;
- if $x = 65 \times 2^{-542}$ and $y = 72 \times 2^{-542}$, returned result 96×2^{-542} , exact result 97×2^{-542} .

 \Rightarrow need to scale the operands.

1: if |x| < |y| then 2: swap (x, y)3: end if 4: $r \leftarrow RN(y/x)$ 5: $t \leftarrow RN(1 + r^2)$ 6: $s \leftarrow RN(\sqrt{t})$ 7: $\rho_2 = RN(|x| \cdot s)$

- several versions;
- this one requires availability of an FMA (fused multiply-add: RN (ab + c));
- relative error bounded by $\frac{5}{2}u + \frac{3}{8}u^2$;
- asymptotically optimal.

 \Rightarrow avoiding spurious overflow has a significant cost in terms of accuracy.

Improvements?

- 1: if |x| < |y| then
- 2: swap(x, y)
- 3: end if
- 4: $r \leftarrow \operatorname{RN}(y/x)$
- 5: $t \leftarrow \mathsf{RN}(1+r^2)$
- 6: $s \leftarrow \mathsf{RN}(\sqrt{t})$
- 7: $\epsilon \leftarrow \mathsf{RN}(t-s^2)$
- 8: $c \leftarrow \mathsf{RN}(\epsilon/(2s))$
- 9: $\nu \leftarrow \mathsf{RN}(|x| \cdot c)$
- 10: $\rho_3 \leftarrow \mathsf{RN}(|x| \cdot s + \nu)$

- this version: requires an FMA;
- one Newton-Raphson iteration;
- relative error bound $\frac{8}{5}u + \frac{7}{5}u^2$ (Salvy & M., 2023);
- sharp: known case with error 1.5999739*u* in binary64 FP arithmetic.

1: if |x| < |y| then 2: swap(x, y)3: end if 4: $(s_x^h, s_x^\ell) \leftarrow \text{Fast2Mult}(x, x)$ 5: $(s_y^h, \sigma_\ell) \leftarrow \text{Fast2Sum}(s_x^h, s_y^h)$ 6: $(\sigma_h, \sigma_\ell) \leftarrow \text{Fast2Sum}(s_x^h, s_y^h)$ 7: $s \leftarrow \text{RN}(\sqrt{\sigma_h})$ 8: $\delta_s \leftarrow \text{RN}(\sigma_h - s^2)$ 9: $\tau_1 \leftarrow \text{RN}(s_x^\ell + s_y^\ell)$ 10: $\tau_2 \leftarrow \text{RN}(\sigma_s + \sigma_\ell)$ 11: $\tau \leftarrow \text{RN}(\tau_1 + \tau_2)$ 12: $c \leftarrow \text{RN}(\tau/s)$ 13: $\rho_4 \leftarrow \text{RN}(0.5c + s)$

Requires an FMA. DW and NR. Relative error bound $u + 14u^2$ (Salvy & M. 2023). Asymptotically optimal.

Kahan's algorithm (1987)

1:	$\delta \leftarrow RN(x-y)$	11:	$r_4 \leftarrow RN\left(2+r_3\right)$
2:	if $\delta > y$ then	12:	$s_2 \leftarrow RN\left(\sqrt{r_4}\right)$
3:	$r \leftarrow RN(x/y)$	13:	$d = \operatorname{RN}(R_2 + s_2)$
4:	$t \leftarrow \operatorname{RN}(1+r^2)$	14:	$q = \operatorname{RN}(r_3/d)$
5:	$s \leftarrow RN\left(\sqrt{t} ight)$	15:	$r_5 \leftarrow RN\left(P_\ell + q\right)$
6:	$z \leftarrow RN(r+s)$	16:	$r_6 \leftarrow \operatorname{RN}(r_5 + r_2)$
7:	else	17:	$z \leftarrow \operatorname{RN}(P_h + r_6)$
8:	$r_2 \leftarrow RN(\delta/y)$	18:	end if
9:	$tr_2 \leftarrow RN(2r_2)$	19:	$z_2 \leftarrow RN\left(y/z\right)$
10:	$r_3 \leftarrow \text{RN}(tr2 + r_2^2)$	20:	$\rho_7 \leftarrow RN(x+z_2)$

In this presentation, requires an FMA . We assume $0 \le y \le x$. Precomputed constants $R_2 = \text{RN}(\sqrt{2})$, $P_h = \text{RN}(1 + \sqrt{2})$, and $P_\ell = \text{RN}(1 + \sqrt{2} - P_h)$. Not-fully-trusted paper and pencil proof of a bound $1.5765u + \mathcal{O}(u^2)$, known cases with error 1.4977*u* in binary32 arithmetic.

Algorithm	reference	error bound	condition	status
Naive	folklore	$2u - \frac{8}{5}(9 - 4\sqrt{6})u^2$	$p \ge 2$	asympt. optimal
Simple scaling	folklore	$\frac{5}{2}u + \frac{3}{8}u^2$	$p \ge 2$	asympt. optimal
Scaling w. compensation	N. Beebe (2017)	$\frac{8}{5}u + \frac{7}{5}u^2$	$p \ge 4$	sharp
Borges ''fused''	C. Borges (2020)	$u + 14u^2$	$p \ge 5$	asympt. optimal
Kahan	W. Kahan (1987)	$1.5765u + O(u^2)$?	$p \ge 9$	a bit loose

Goal: tight and certain relative error bounds

• Programs that at step k have an instruction of the form

 $x_k = x_i \text{ op } x_j \text{ or } x_k = \operatorname{sqrt}(x_i)$

where op is +, -, * or /, and x_i and x_j are either precomputed values or input values (i, j < k);

• Computed values:

$$x_k = \operatorname{RN}(x_i \text{ op } x_j) \text{ or } x_k = \operatorname{RN}(\sqrt{x_i});$$

• basic relations:

$$\begin{array}{rcl} x_k & = & x_i \text{ op } x_j \pm \frac{1}{2} \operatorname{ulp}(x_i \text{ op } x_j), \\ x_k & = & (x_i \text{ op } x_j)(1+\epsilon), & \operatorname{with} |\epsilon| \leq \frac{u}{1+u} < u. \end{array} \tag{3}$$

(or the same with $\sqrt{x_i}$)

Optimisation problem: find the maximum and the minimum of the quantity $\rho/\sqrt{x^2 + y^2} - 1$ in the region defined by the equalities and inequalities obtained from analyzing the program (e.g., (3)) \rightarrow Algebraic bound.

Goal: tight and certain relative error bounds

- algorithmically the polynomial optimization problem is well-understood (Nie & Ranestad 2009, Bank, Giusti, Heintz, Safey El Din 2014);
- however, it is very expensive.
- \rightarrow the natural turn around is to compute approximations of the algebraic bound, or to restrict ourselves to order-1 analyses in *u*;
 - here: testing the limits of what can be computed exactly from the bounds of the individual operations;
 - The "general" methods do not exploit the sparsity and the structure of our systems;
- \rightarrow use of heuristics;

Prototype implementation: illustration with the naive alg.

NaiveHypot

1: $s_x \leftarrow \text{RN}(x^2)$ 2: $s_y \leftarrow \text{RN}(y^2)$ 3: $\sigma \leftarrow \text{RN}(s_x + s_y)$ 4: $\rho_1 = \text{RN}(\sqrt{\sigma})$ $\textit{linpart} := \texttt{2_u}, \{_\textit{eps}_{\rho} = \texttt{1}, _\textit{eps}_{\sigma} = \texttt{1}, _\textit{eps}_{\mathsf{s}_{\mathsf{X}}} = \texttt{1}, _\textit{eps}_{\mathsf{s}_{\mathsf{Y}}} = \texttt{1}\}$

 $quad := RootOf(5_Z^2 - 144_Z - 192, -1.276734354), \{ u = 1/4 \}$

> allvalues(quad[1]);

$$\frac{72}{5} - \frac{32\sqrt{6}}{5}$$

Goal: tight and certain relative error bounds

• Reminder: computed values

$$x_k = \mathsf{RN}(x_i \text{ op } x_j) \text{ or } x_k = \mathsf{RN}(\sqrt{x_i});$$

• we compare the computed values x_k with the exact values:

$$x_k^* = x_i^* \text{ op } x_j^* \text{ or } x_k^* = \sqrt{x_i^*};$$

(initial values: $x_i = x_i^*$ for $i \leq 0$).

The analysis consists in iteratively computing relative error bounds ε^ℓ_k(u) and ε^r_k(u) such that (here, for positive x_k and x^{*}_k)

$$x_k^*\left(1-\epsilon_k^\ell(u)\right) \le x_k \le x_k^*\left(1+\epsilon_k^r(u)\right);\tag{4}$$

Goal: tight and certain relative error bounds

- with care, iteratively computing bounds of the form (4), using at each step the "basic relations" (3) is not so difficult;
- ending up with a tight bound is difficult. Two reasons:
 - requires existence of input values for which the individual rounding errors attain their maximum (with the right sign) at each operation.
 - → Not always possible: Correlations. $3 \cdot (x \cdot y)$, one cannot have both $(x \cdot y)$ and $3 \cdot (x \cdot y)$ very slightly above a power of 2;

(and, indeed, $3 \cdot (x \cdot y)$ more accurate than $(3 \cdot x) \cdot y$)

• the "basic relations" (3) are not the last word: there are some additional properties specific to FP arithmetic, and some "bit coincidences".

Lemma (Sterbenz)

If a and b are floating-point numbers satisfying $a/2 \le b \le 2a$ then b - a is a floating-point number, which implies RN(b - a) = b - a.

(more generally, some operations are exact: any multiple of 2^k of abs. val. $\leq 2^{k+p}$ is a FPN)

Lemma (Jeannerod-Rump)

When $p \ge 2$, the relative error of a square root is bounded by

$$1 - \frac{1}{\sqrt{1+2u}};\tag{5}$$

the relative error of a division in binary FP arithmetic is bounded by

$$u-2u^2.$$
 (6)

р	max. rela	ative error	
11	2048 <i>u</i>	= 1	all information lost
12	670 <i>u</i>	= 0.16	not so bad
13	7001 <i>u</i>	= 0.85	
14	8005 <i>u</i>	= 0.49	
15	11366 <i>u</i>	= 0.35	
16	65536 <i>u</i>	= 1	all information lost

Depends on how close $\sqrt{2}$ is to a FP number. In a way, 12-bit arithmetic more accurate than 16-bit arithmetic.

1: if |x| < |y| then 2: swap(x, y)3: end if 4: $r \leftarrow RN(y/x)$ 5: $t \leftarrow RN(1 + r^2)$ 6: $s \leftarrow RN(\sqrt{t})$ 7: $\epsilon \leftarrow RN(t - s^2)$ 8: $c \leftarrow RN(\epsilon/(2s))$ 9: $\nu \leftarrow RN(|x| \cdot c)$ 10: $\rho_3 \leftarrow RN(|x| \cdot s + \nu)$

Simplification: $x \ge y > 0$

1: $r \leftarrow \operatorname{RN}(y/x)$ 2: $t \leftarrow \operatorname{RN}(1+r^2)$ 3: $s \leftarrow \operatorname{RN}(\sqrt{t})$ 4: $\epsilon \leftarrow \operatorname{RN}(t-s^2)$ 5: $c \leftarrow \operatorname{RN}(\epsilon/(2s))$ 6: $\nu \leftarrow \operatorname{RN}(x \cdot c)$ 7: $\rho_3 \leftarrow \operatorname{RN}(x \cdot s + \nu)$ Main idea: Newton-Raphson iteration

$$\frac{\epsilon}{2s} + s = \frac{t - s^2}{2s} + s = \sqrt{t} + \frac{(s - \sqrt{t})^2}{2s},$$

so that

$$\left(\frac{\epsilon}{2s}+s\right)-\sqrt{t}=\frac{(s-\sqrt{t})^2}{2s}$$

1: $r \leftarrow \operatorname{RN}(y/x)$ 2: $t \leftarrow \operatorname{RN}(1+r^2)$ 3: $s \leftarrow \operatorname{RN}(\sqrt{t})$ 4: $\epsilon \leftarrow \operatorname{RN}(t-s^2)$ 5: $c \leftarrow \operatorname{RN}(\epsilon/(2s))$ 6: $\nu \leftarrow \operatorname{RN}(x \cdot c)$ 7: $\rho_3 \leftarrow \operatorname{RN}(x \cdot s + \nu)$

- define α by $y = \alpha x$, so that $r = RN(\alpha)$;
- $r = \alpha + u\epsilon_r$, with

$$|\epsilon_r| \le \begin{cases} rac{1}{4}, & ext{ if } lpha \le 1/2, \ rac{1}{2}, & ext{ if } lpha > 1/2. \end{cases}$$

- $t = 1 + r^2 + u\epsilon_t$, with $|\epsilon_t| \le 1$ (comes from $1 + r^2 \le 2$);
- $s = \sqrt{t} + u\epsilon_s$, with $|\epsilon_s| \le 1$ (comes from t < 2);
- $\epsilon = t s^2$ (comes from Sterbenz Lemma).

Analysis of Beebe's algorithm

1: $r \leftarrow \operatorname{RN}(y/x)$ 2: $t \leftarrow \operatorname{RN}(1+r^2)$ 3: $s \leftarrow \operatorname{RN}(\sqrt{t})$ 4: $\epsilon \leftarrow \operatorname{RN}(t-s^2)$ 5: $c \leftarrow \operatorname{RN}(\epsilon/(2s))$ 6: $\nu \leftarrow \operatorname{RN}(x \cdot c)$ 7: $\rho_3 \leftarrow \operatorname{RN}(x \cdot s + \nu)$

$$\begin{vmatrix} \frac{\epsilon}{2s} \end{vmatrix} = \left| \frac{t-s^2}{2s} \right|$$

$$= \left| \frac{(s-u\epsilon_s)^2 - s^2}{2s} \right|$$

$$= \left| -u\epsilon_s + \frac{u^2\epsilon_s^2}{2s} \right| \le u + \frac{u^2}{2}.$$

$$(7)$$

- If |ε/(2s)| ≤ u then the error committed by rounding ^ε/_{2s} to nearest is ≤ u²/2;
- If $|\epsilon/(2s)| > u$, then since the FPN above u is $u + 2u^2$, (7) implies RN $(\epsilon/(2s)) = \pm u$ \Rightarrow again the rounding error is $\leq u^2/2$.

Hence in all cases, $|c| \leq u$ and

$$c=\frac{\epsilon}{2s}+\epsilon_c\frac{u^2}{2},$$

with $|\epsilon_c| \leq 1$.

1: $r \leftarrow \operatorname{RN}(y/x)$ 2: $t \leftarrow \operatorname{RN}(1+r^2)$ 3: $s \leftarrow \operatorname{RN}(\sqrt{t})$ 4: $\epsilon \leftarrow \operatorname{RN}(t-s^2)$ 5: $c \leftarrow \operatorname{RN}(\epsilon/(2s))$ 6: $\nu \leftarrow \operatorname{RN}(x \cdot c)$ 7: $\rho_3 \leftarrow \operatorname{RN}(x \cdot s + \nu)$

- $\nu = xc(1 + u\epsilon_{\nu})$ with $|\epsilon_{\nu}| \leq 1/(1 + u)$;
- $\rho = (\nu + xs)(1 + u\epsilon_{\rho})$ with $|\epsilon_{\rho}| \leq 1/(1 + u)$;

Analysis of Beebe's algorithm

Putting all this together:

$$\begin{split} \rho &= (\nu + xs)(1 + u\epsilon_{\rho}), \\ &= x\left((-u\epsilon_{s} + \frac{u^{2}}{2}(\epsilon_{c} + \epsilon_{s}^{2}/s))(1 + u\epsilon_{\nu}) + \sqrt{t} + u\epsilon_{s}\right)(1 + u\epsilon_{\rho}), \\ &= x\left(\sqrt{t} + \frac{u^{2}}{2}((\epsilon_{c} + \epsilon_{s}^{2}/s)(1 + u\epsilon_{\nu}) - 2\epsilon_{s}\epsilon_{\nu})\right)(1 + u\epsilon_{\rho}) \\ &= x\sqrt{1 + r^{2}}\sqrt{1 + \frac{u\epsilon_{t}}{1 + r^{2}}}\left(1 + \frac{u^{2}}{2\sqrt{t}}((\epsilon_{c} + \epsilon_{s}^{2}/s)(1 + u\epsilon_{\nu}) - 2\epsilon_{s}\epsilon_{\nu})\right)(1 + u\epsilon_{\rho}), \end{split}$$

Lemma

The relative error of the algorithm is

$$R = \sqrt{1 + \frac{r^2 - \alpha^2}{1 + \alpha^2}} \sqrt{1 + \frac{u\epsilon_t}{1 + r^2}} \\ \times \left(1 + \frac{u^2}{2\sqrt{t}} ((\epsilon_c + \epsilon_s^2/s)(1 + u\epsilon_\nu) - 2\epsilon_s\epsilon_\nu)\right) (1 + u\epsilon_\rho) - 1, \\ = \frac{r^2 - \alpha^2 + u\epsilon_t}{2(1 + \alpha^2)} + u\epsilon_\rho + O(u^2), \quad u \to 0.$$

Moreover, $|\epsilon_s|, |\epsilon_t|, |\epsilon_c|$ are bounded by 1 and $|\epsilon_{\nu}|$ and $|\epsilon_{\rho}|$ by 1/(1+u).

Now, the painful work

• linear term

$$\left(\frac{2\alpha\epsilon_r+\epsilon_t}{2(1+\alpha^2)}+\epsilon_\rho\right)\cdot u$$

- increasing function of ϵ_r, ϵ_t and ϵ_{ρ} ,
- $\epsilon_r \leq 1/4$ if $lpha \leq 1/2$, $\epsilon_r \leq 1/2$ otherwise,
- $\epsilon_t, \epsilon_\rho \leq 1$

 \rightarrow max. value 8/5;

• show that for
$$u \in [0, 1/2]$$
,

$$\frac{\partial R}{\partial \epsilon_{\rho}} \ge 0, \quad \frac{\partial R}{\partial \epsilon_{t}} \ge 0, \quad \frac{\partial R}{\partial \epsilon_{r}} \ge 0, \quad \frac{\partial R}{\partial \epsilon_{c}} \ge 0.$$

 \rightarrow it suffices to consider the extremum values of ϵ_{ρ} , ϵ_t , ϵ_r , and ϵ_c ;

- process the cases $\alpha < 1/2$ and $1/2 \le \alpha \le 1$ separately;
- in each case, lower and upper bound on R...

Theorem

Assuming $u \leq 1/16$ (i.e., $p \geq 4$), the relative error of Beebe's algorithm is bounded by

$$\begin{split} \chi_{4}(u) &= (1+2u)\sqrt{\frac{1+u/5}{1+u}} - 1 + u^{2}\frac{(1+2u)^{2}}{(1+u)^{2}} \left(\frac{\sqrt{5}}{5} + \frac{1}{\frac{5\sqrt{(1+u)\left(1+\frac{u}{5}\right)}}{2}} - u} + \frac{2\sqrt{5}}{5(1+2u)}\right),\\ &= \frac{8}{5}u + \left(\frac{3\sqrt{5}}{5} - \frac{2}{25}\right)u^{2} + \left(\frac{116}{125} + \frac{14\sqrt{5}}{25}\right)u^{3} + O\left(u^{4}\right)\\ &\simeq 1.6u + 1.26u^{2} + O(u^{3})\\ &\leq \frac{8}{5}u + \frac{14}{10}u^{2}. \end{split}$$

How do we publish a proof? Have a Maple worksheet publicly available and just get a rough sketch (similar to these slides) in a paper?

And the other algorithms?

- Borges' algorithm: really painful... but we managed to obtain the result;
- Kahan's algorithm:

We may ultimately succeed (already a dirty proof of a bound $1.5765u + O(u^2)$) It seems we are approaching a limit...

... and again, as for DW arithmetic, if we fully "expand" the proofs they are terrible (probably unpublishable).

But, really, what were we trying to do?

- obtain the best "algebraic bound": the best one could deduce from the individual bounds on the rounding errors of the operations and a few properties such as Sterbenz Lemma;
- but when the algorithms become complex, does that bound remain tight?
 - we have seen: correlations;
 - even without correlations: tightness requires that for each operation the maximum error is almost reached, with the right signs;
 - in general: probability of this decreases exponentially with number of operations;
- \rightarrow Rule of thumb: when the number of operations is no longer small in front of *p*, little hope of having a worst-case error close to the algebraic bound.

Conclusion

- formal proof and computer algebra:
 - add confidence to the computed bounds;
 - allow us to get to grips with (slightly) bigger algorithms;
 - make it possible to explore many variants of an algorithm (just "replay" the calculation with small modifications);
- long-term goal: use both techniques together (have the computer algebra tool generate a certificate);
- seems we are approaching the limit (in terms of algorithm size) of what can be done "exactly";
- consolation: for larger algorithms, little hope of having a worst-case error close to the algebraic bound;
- what is a *publishable proof*? A human-readable rough sketch along with a Coq file and/or a Maple (or whatever tool) worksheet? What we currently do is just a stylistic exercise...