
Error bounds that are certain, sharp. . .
and whose proof is trustable:

the curse of long and boring proofs

Jean-Michel Muller
with contributions from M. Joldes, V. Popescu, L. Rideau, B. Salvy

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

What’s the point in all this?

We wish to prove error bounds of medium-size,
“atomic” algorithms in FP arithmetic, but. . .

error bounds. . . for what purpose?

proofs. . . for what purpose?

2

Context: base 2, precision-p FP arithmetic

A Floating-Point number (FPN) x is represented by two integers:

Floating-Point number:

x =

(
M

2p−1

)
· 2e = m0.m1m2 · · ·mp−1 · 2e

where M, e ∈ Z, with |M| ≤ 2p − 1 and emin ≤ e ≤ emax. Additional
requirement: e smallest under these constraints.

x is normal if |x | ≥ 2emin (implies |M| ≥ 2p−1, i.e., m0 = 1);

x is subnormal otherwise (m0 = 0);

largest finite FPN Ω = 2emax+1 − 2emax−p+1;

rounding unit: u = 2−p.

3

Error bounds. . .

FP system parametered by precision p or unit round-off u = 2−p;

for a given algorithm, we consider an (absolute or relative) error bound
B(u);

the (most likely unknown) worst case error is W(u).

The bound B is

certain (for u ≤ u0) if W(u) ≤ B(u) for u ≤ u0;

asymptotically optimal if W(u)/B(u)→ 1 as u → 0;

tight (for u ≤ u0) if W(u) is close to B(u) for u ≤ u0.

Example: bounds of the form αu +O(u2), frequent in numerical analysis, are
not certain, they do not allow to guarantee that the error is less than some
clearly given value (and with 8-bit FP formats, with p = 2 or 3, high-order
terms are not negligible!)

4

Error bounds (in FP arithmetic). . . for what purpose ?

choice between different algorithms:

an informed choice of the algorithm that has the best balance
performance/accuracy requires tight bounds;
certainty not that important;

guaranteeing the behavior of a possibly critical software:

need to prove that the error is not ≥ some threshold
→ certainty important,

tightness not always needed;

5

Error bounds (in FP arithmetic). . . for what purpose ?

careful implementation optimization: arithmetic in “small” FP formats
faster than in “large” formats → use small formats whenever possible.

small formats → much larger rounding errors → careful analysis
needed. Hence Tight error bounds are preferable,
however, very small underestimation is rarely a problem;

fully validated set of “atomic” algorithms:

the most common transcendental functions such as exp, ln;
simple algebraic functions such as 1/

√
x , hypot(x , y) =

√
x2 + y2

are “basic building blocks” of numerical computing : users expect same
behavior as for +, −, ×, ÷, √.

→ having bounds that are both certain and tight is desirable.

6

Error bounds. . . an example with
√
x2 + y 2

if |x | < |y | then
swap (x , y)

end if
r ← RN (y/x)

t ← RN (1 + r2)

s ← RN (
√
t)

ρ2 = RN (|x | · s)

Bounds (assuming u ≤ 1/4):

straightforward bound:
B0(u) = 7

2u +O(u2);

easily obtained relative error
bound: B1(u) = 3u;

with more care:
B2(u) = 5

2u +O(u2);

with much more care:
B3(u) = 5

2u + 3
8u

2.

B1 is certain but not sharp, B2 is
asymptotically optimal but not certain,
B3 is asymptotically optimal & certain.

The proof of bound B3 is muuuuuch longer than the proof of bound B1.
This seems general: tightness has a cost.

7

Proofs. . . for what purpose ?

1 to check, by following the proof step by step, that the claimed property
holds;

2 to have a deep understanding of what is behind the claimed property.

Rather antagonistic goals:

goal 1 requires many details,

goal 2 needs a focus on the “big things” (hence many “without loss of
generality. . . ” or “the second case is similar”).

In general our “paper proofs” are in between: is this the right solution?

8

The two examples considered in this talk

“double word” arithmetic: formal proofs helped to

strengthen claimed results,
improve them,
find (hmmm. . . embarassing) bugs.

hypotenuse function
√

x2 + y2: computer algebra helped to

obtain tight bounds,
explore several variants.

Before presenting that: additional notions on FP arithmetic (roundings,
error-free transforms, double-word arithmetic).

9

Correct rounding

the sum, product, . . . of two FP numbers is not, in general, a FP number
→ must be rounded;

the IEEE 754 Std for FP arithmetic specifies several rounding functions;

the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation
followed by rounding.

correctly rounded +, −, ×, ÷, √. are required;

correctly rounded sin, cos, exp, ln, 1/
√
x ,
√

x2 + y2, etc. only
recommended (not mandatory).

→ when c = a + b appears in a program, we get c = RN (a + b).

10

ulp (“unit in last place”) and “absolute error” due to rounding

Definition (ulp function)

If |x | ∈ [2e , 2e+1), then ulp (x) = 2max{e,emin}−p+1.

It is the distance between consecutive FP numbers in the neighborhood of x .

Properties:

|x − RN (x)| ≤ 1
2 ulp (x);

if x is a FP number then it is an integer multiple of ulp (x).

Frequently used for expressing errors of atomic functions.

11

Relative error due to rounding

if x is in the normal range (i.e., 2emin ≤ |x | ≤ Ω), then

|x − RN (x)| ≤ 1
2
ulp (x) = 2blog2 |x|c−p,

therefore,
|x − RN (x)| ≤ u · |x |, (1)

with u = 2−p = 1
2 ulp (1) . Hence the relative error

|x − RN (x)|
|x |

(for x 6= 0) is ≤ u.

u, called unit round-off is frequently used for expressing errors.

(1): u can be replaced by u
1+u

(attained for x = 1 + u).

12

Absolute error (in ulps) of rounding to nearest a
real number x ∈ [1/2, 16], assuming a binary FP

“toy” system with p = 5.

Relative error (in multiples of u = 2−p) of rounding
to nearest a real number x ∈ [1/2, 16], assuming a

binary FP “toy” system with p = 5.

The relative error bound u is tight only slightly above a power of 2.

13

Error-free transforms and double-word arithmetic

2Sum(a, b)

s ← RN (a + b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

t ← RN (δa + δb)

return (s, t)

Fast2Sum(a, b)

s ← RN (a + b)

z ← RN (s − a)

t ← RN (b − z)

return (s, t)

Barring overflow:

the pair (s, t) returned by 2Sum satisfies s = RN (a + b) and
t = (a + b)− s;

if |a| ≥ |b| then the pair (s, t) returned by Fast2Sum satisfies
s = RN (a + b) and t = (a + b)− s.

Such algorithms: Error-free transforms.

14

Error-free transforms and double-word arithmetic

2Prod(a, b)

π ← RN (ab)

ρ← RN (ab − π)

return (π, ρ)

Barring overflow, if the exponents ea and eb of a and b satisfy
ea + eb ≥ emin + p − 1 then then the pair (π, ρ) returned by Fast2Sum satisfies
π = RN (ab) and ρ = (ab)− π.

Fast2Sum, 2Sum and 2Prod: return x represented by a pair (xh, x`) of
FPN such that xh = RN (x) and x = xh + x`;

Such pairs: double-word numbers (DW).

Algorithms for manipulating DW suggested by various authors since 1971.

15

DW+DW: “accurate version”

Sum of two DW numbers. There also exists a “quick & dirty” algorithm, but its
relative error is unbounded.

DWPlusDW

1: (sh, s`)← 2Sum(xh, yh)

2: (th, t`)← 2Sum(x`, y`)

3: c ← RN (s` + th)

4: (vh, v`)← Fast2Sum(sh, c)

5: w ← RN (t` + v`)

6: (zh, z`)← Fast2Sum(vh,w)

7: return (zh, z`)

ah I Xl 9h I Ye

v
v

s
t

25mm 25mm

v v

sh se th te

> <

±
C

] L

Fast 2am
d

'h I ve

v
v

z ,
Footage#

L

16

DW+DW: “accurate version”

We have (after a rather tedious proof):

Theorem (Joldeş, Popescu, M., 2017)
If p ≥ 3, the relative error of Algorithm DWPlusDW is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (2)

That theorem has an interesting history. . .

17

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:7

ALGORITHM 6: – AccurateDWPlusDW(xh ,x! ,yh ,y!). Calculation of (xh ,x!) + (yh ,y!) in binary,
precision-p, !oating-point arithmetic.

1: (sh , s!) ← 2Sum(xh ,yh)
2: (th , t!) ← 2Sum(x! ,y!)
3: c ← RN(s! + th)
4: (vh ,v!) ← Fast2Sum(sh , c)
5: w ← RN(t! +v!)
6: (zh , z!) ← Fast2Sum(vh ,w)
7: return (zh , z!)

Li et al. (2000, 2002) claim that in binary64 arithmetic (p = 53) the relative error of Algorithm 6
is upper bounded by 2 · 2−106. This bound is incorrect, as shown by the following example: If

xh = 9007199254740991,
x! = −9007199254740991/254,
yh = −9007199254740987/2, and
y! = −9007199254740991/256,

(2)

then the relative error of Algorithm 6 is
2.24999999999999956 · · · × 2−106.

Note that this example is somehow “generic”: In precision-p FP arithmetic, the choice xh =

2p − 1, x! = −(2p − 1) · 2−p−1,yh = −(2p − 5)/2, andy! = −(2p − 1) · 2−p−3 leads to a relative error
that is asymptotically equivalent (as p goes to in"nity) to 2.25u2.

Now let us try to "nd a relative error bound. We are going to show the following result.

Theorem 3.1. If p ≥ 3, then the relative error of Algorithm 6 (AccurateDWPlusDW) is bounded
by

3u2

1 − 4u = 3u2 + 12u3 + 48u4 + · · · , (3)

which is less than 3u2 + 13u3 as soon as p ≥ 6.

Note that the conditions on p (p ≥ 3 for the bound (3) to hold, p ≥ 6 for the simpli"ed bound
3u2 + 13u3) are satis"ed in all practical cases.

Proof. First, we exclude the straightforward case in which one of the operands is zero. We
can also quickly proceed with the case xh+yh = 0: The returned result is 2Sum(x!,y!), which is
equal to x + y, that is, the computation is errorless. Now, without loss of generality, we assume
1 ≤ xh < 2, x ≥ |y | (which implies xh ≥ |yh |), and xh + yh nonzero. Notice that 1 ≤ xh < 2 implies
1 ≤ xh ≤ 2 − 2u, since xh is a FP number.

De"ne ϵ1 as the error committed at Line 3 of the algorithm:
ϵ1 = c − (s! + th) (4)

and ϵ2 as the error committed at Line 5:
ϵ2 = w − (t! +v!). (5)

1. If −xh < yh ≤ −xh/2. Sterbenz Lemma, applied to the "rst line of the algorithm, implies
sh = xh + yh , s! = 0, and c = RN(th) = th .

De"ne
σ =

{
2 if yh ≤ −1,
1 if −1 < yh ≤ −xh/2.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:8 M. Joldes et al.

We have −xh < yh ≤ (1 − σ) + xh
2 (σ − 2), so 0 ≤ xh + yh ≤ 1 + σ · (xh

2 − 1) ≤ 1 − σu. Also, since
xh is a multiple of 2u andyh is a multiple of σu, sh = xh + yh is a multiple of σu. Since sh is nonzero,
we !nally obtain

σu ≤ sh ≤ 1 − σu . (6)

We have |x! | ≤ u and |y! | ≤ σ
2u, so

|th | ≤
(
1 + σ

2

)
u and |t! | ≤ u2. (7)

From Equation (6), we deduce that the "oating-point exponent of sh is at least −p + σ − 1. From
Equation (7), the "oating-point exponent of c = th is at most −p + σ − 1. Therefore, the Fast2Sum
algorithm introduces no error at line 4 of the algorithm, which implies

vh +v! = sh + c = sh + th = x + y − t! .
Equations (6) and (7) imply

|sh + th | ≤ 1 +
(
1 − σ

2

)
u ≤ 1 + u

2 ,

so |vh | ≤ 1 and |v! | ≤ u
2 . From the bounds on |t! | and |v! |, we obtain:

|ϵ2 | ≤ 1
2ulp(t! +v!) ≤ 1

2ulp
(
u2 +

u

2

)
=
u2

2 (8)

and

|ϵ2 | ≤ 1
2ulp

[1
2ulp(x! + y!) +

1
2ulp

(
(x + y) +

1
2ulp(x! + y!)

)]
. (9)

Lemma 2.1 and |sh | ≥ σu imply that either sh + th = 0, or |vh | = |RN(sh + c) | = |RN(sh + th) | ≥
σu2. If sh + th = 0, then vh = v! = 0 and the sequel of the proof is straightforward. Therefore, in
the following, we assume |vh | ≥ σu2.

Now,

• If |vh | = σu2, then |v! + t! | ≤ u |vh | + u2 = σu3 + u2, which implies |w | = |RN(t! +v!) | ≤
σu2 = |vh |;

• If |vh | > σu2, then, since vh is a FP number, |vh | is larger than or equal to the FP number
immediately above σu2, which is σ (1 + 2u)u2. Hence |vh | ≥ σu2/(1 − u), so |vh | ≥ u · |vh | +
σu2 ≥ |v! | + |t! |. So, |w | = |RN(t! +v!) | ≤ |vh |.

Therefore, in all cases, Fast2Sum introduces no error at line 6 of the algorithm, and we have

zh + z! = vh +w = x + y + ϵ2. (10)

Directly using Equation (10) and the boundu2/2 on |ϵ2 | to get a relative error bound would result in
a large bound, because x + y may be small. However, when x + y is very small, some simpli!cation
occurs thanks to Sterbenz Lemma. First, xh + yh is a nonzero multiple of σu. Hence, since |x! +
y! | ≤ (1 + σ

2)u, we have |x! + y! | ≤ 3
2 (xh + yh). Let us now consider the two possible cases:

• If − 3
2 (xh + yh) ≤ x! + y! ≤ − 1

2 (xh + yh), which implies − 3
2sh ≤ th ≤ − 1

2sh , then Sterbenz
lemma applies to the "oating-point addition of sh and c = th . Therefore line 4 of the al-
gorithm results in vh = sh and v! = 0. An immediate consequence is ϵ2 = 0, so zh + z! =
vh +w = x + y: the computation of x + y is errorless;

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

18

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:9

• If − 1
2 (xh + yh) < x! + y! ≤ 3

2 (xh + yh), then 5
2 (x! + y!) ≤ 3

2 (xh + yh + x! + y!) = 3
2 (x + y),

and − 1
2 (x + y) < 1

2 (x! + y!). Hence, |x! + y! | < |x + y |, so ulp(x! + y!) ≤ ulp(x + y). Com-
bined with Equation (9), this gives

|ϵ2 | ≤ 1
2ulp

(
3
2ulp(x + y)

)
≤ 2−pulp(x + y) ≤ 2 · 2−2p · (x + y).

2. If −xh/2 < yh ≤ xh

Notice that we have xh/2 < xh + yh ≤ 2xh , so xh/2 ≤ sh ≤ 2xh . Also notice that we have
|x! | ≤ u.

• If 1
2 < xh + yh ≤ 2 − 4u. De!ne

σ =

{
1 if xh + yh ≤ 1 − 2u,
2 if 1 − 2u < xh + yh ≤ 2 − 4u .

We have
σ

2 (1 − 2u) ≤ sh ≤ σ (1 − 2u) and |s! | ≤ σ

2u . (11)

When σ = 1, we necessarily have −xh/2 < yh < 0, so |y! | ≤ u/2. And when σ = 2, |yh | ≤
xh ≤ 2 − 2u implies |y! | ≤ u. Hence we always have |y! | ≤ σ

2u. This implies |x! + y! | ≤
(1 + σ/2)u, therefore

|th | ≤
(
1 + σ

2

)
u and |t! | ≤ u2. (12)

Now, |s! + th | ≤ (1 + σ)u, so

|c | ≤ (1 + σ)u and |ϵ1 | ≤ σu2. (13)

Since sh ≥ 1/2 and |c | ≤ 3u, if p ≥ 3, then Algorithm Fast2Sum introduces no error at line
4 of the algorithm, that is,

vh +v! = sh + c .

Therefore |vh +v! | = |sh + c | ≤ σ (1 − 2u) + (1 + σ)u ≤ σ . This implies

|vh | ≤ σ and |v! | ≤ σ

2u . (14)

Thus |t! +v! | ≤ u2 + σ
2u, so

|w | ≤ σ

2u + u
2 and |ϵ2 | ≤ σ

2u
2. (15)

From Equations (11) and (13), we deduce sh + c ≥ σ
2 − u (2σ + 1), so |vh | ≥ σ

2 − u (2σ + 1). If
p ≥ 3, then |vh | ≥ |w |, so Algorithm Fast2Sum introduces no error at line 6 of the algorithm,
that is, zh + z! = vh +w .
Therefore,

zh + z! = x + y + η,

with |η | = |ϵ1 + ϵ2 | ≤ 3σ
2 u

2. Since

x + y ≥ (xh − u) + (yh − u/2) >

{ 1
2 − 3

2u if σ = 1,
1 − 4u if σ = 2,

the relative error |η |/(x + y) is upper bounded by
3u2

1 − 4u .

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:10 M. Joldes et al.

• If 2 − 4u < xh + yh ≤ 2xh , then 2 − 4u ≤ sh ≤ RN(2xh) = 2xh ≤ 4 − 4u and |s! | ≤ 2u. We
have

th + t! = x! + y!,

with |x! + y! | ≤ 2u, hence |th | ≤ 2u, and |t! | ≤ u2. Now, |s! + th | ≤ 4u, so |c | ≤ 4u, and
|ϵ1 | ≤ 2u2. Since sh ≥ 2 − 4u and |c | ≤ 4u, if p ≥ 3, then Algorithm Fast2Sum introduces
no error at line 4 of the algorithm. Therefore,

vh +v! = sh + c ≤ 4 − 4u + 4u = 4,

so vh ≤ 4 and |v! | ≤ 2u. Thus, |t! +v! | ≤ 2u + u2. Hence, either |t! +v! | < 2u and |ϵ2 | ≤
1
2 ulp(t! +v!) ≤ u2, or 2u ≤ t! +v! ≤ 2u + u2, in which case w = RN(t! +v!) = 2u and
|ϵ2 | ≤ u2. In all cases, |ϵ2 | ≤ u2. Also, sh ≥ 2 − 4u and |c | ≤ 4u imply vh ≥ 2 − 8u, and
|t! +v! | ≤ 2u + u2 implies |w | ≤ 2u. Hence if p ≥ 3, then Algorithm Fast2Sum introduces
no error at line 6 of the algorithm.

All this gives
zh + z! = vh +w = x + y + η,

with |η | = |ϵ1 + ϵ2 | ≤ 3u2.
Since x + y ≥ (xh − u) + (yh − u) > 2 − 6u, the relative error |η |/(x + y) is upper bounded
by

3u2

2 − 6u ,

The largest bound obtained in the various cases we have analyzed is
3u2

1 − 4u .

Elementary calculus shows that foru ∈ [0, 1/64] (i.e.,p ≥ 6) this is always less than 3u2 + 13u3. !

The bound (3) is probably not optimal. The largest relative error we have obtain through
many tests is around 2.25 × 2−2p = 2.25u2. An example is the input values given in Equa-
tion (2), for which, with p = 53 (binary64 arithmetic), we obtain a relative error equal to
2.24999999999999956 · · · × 2−106.

4 MULTIPLICATION OF A DOUBLE-WORD NUMBER BY A
FLOATING-POINT NUMBER

We !rst consider the following algorithm, suggested by Li et al. (2000):

ALGORITHM 7: – DWTimesFP1(xh ,x! ,y). Calculation of (xh ,x!) × y in binary, precision-p, "oating-
point arithmetic.

1: (ch , c!1) ← 2Prod(xh ,y)
2: c!2 ← RN(x! · y)
3: (th , t!1) ← Fast2Sum(ch , c!2)
4: t!2 ← RN(t!1 + c!1)
5: (zh , z!) ← Fast2Sum(th , t!2)
6: return (zh , z!)

Li et al. (2000, 2002) (with more detail in the technical report Li et al. (2000), which is a pre-
liminary version of the journal article Li et al. (2002)), give a relative error bound 4 · 2−106 for
Algorithm 7 when the underlying "oating-point arithmetic is binary64 (i.e., p = 53). Below, we

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

19

20

21

22

DW+DW: “accurate version”

So the theorem gives an error bound

3u2

1− 4u
' 3u2 . . .

As said before, that theorem has an interesting history:

the authors of the first paper where a bound was given (in 2000) claimed
(without published proof) that the relative error was always ≤ 2u2 (in
binary64 arithmetic);

when trying (without success) to prove their bound, we found an example
with error ≈ 2.25u2;

we finally proved the theorem, and Laurence Rideau started to write a
formal proof in Coq;

of course, that led to finding a (minor) flaw in our proof. . .

(I hate Coq people)

23

DW+DW: “accurate version”

fortunately the flaw was quickly corrected (before final publication of the
paper. . . Phew)!

still, the gap between worst case found (≈ 2.25u2) and the bound (≈ 3u2)
was frustrating, so I spent months trying to improve the theorem. . .

and of course this could not be done: it was the worst case that needed
spending time!

we finally found that with
xh = 1
x` = u − u2

yh = − 1
2 + u

2

y` = − u2

2 + u3.

Exercise: all these values are
FP numbers.

error 3u2−2u3

1+3u−3u2+2u3 is attained. With p = 53 (binary64 arithmetic), gives
error 2.99999999999999877875 · · · × u2.

24

DW+DW: “accurate version”

We suspect the initial authors hinted their claimed bound just by
performing zillions of random tests

in this domain, the worst cases are extremely unlikely: you must build
them. Almost impossible to find them by chance.

log10 of the frequency of cases for which the relative error of DWPlusDW is
≥ λu2 as a function of λ.

25

DW × DW

Product z = (zh, z`) of two DW numbers x = (xh, x`) and y = (yh, y`);

several algorithms → tradeoff speed/accuracy. We just give one of them.

DWTimesDW

1: (ch, c`1)← 2Prod(xh, yh)

2: t` ← RN (xh · y`)
3: c`2 ← RN (t` + x`yh)

4: c`3 ← RN (c`1 + c`2)

5: (zh, z`)← Fast2Sum(ch, c`3)

6: return (zh, z`)

ah I Xl 9h I be

inv
÷:p ÷
-

vv v

FMA

✓

Clz
✓
<

+

✓

✓
Cls

z <
Festonna

26

DW × DW

We have

Theorem (M. and Rideau, 2022)
If p ≥ 5, the relative error of Algorithm DWTimesDW is less than or equal to

5u2

(1 + u)2
< 5u2.

and that theorem too has an interesting (hmmm. . . a bit more annoying?)
history!

in 2017, I participated to the proof of an initial relative error bound 6u2;

again, Laurence tried translating the proof in Coq. . . and it turned out the
proof was based on a wrong lemma (and this was after publication).

(what did I say about Coq people?)

27

DW × DW

after a few nights of bad sleep, turn-around. . . that also improved the
bound: 6u2 → 5u2!

no proof of asymptotic optimality, but in binary64 arithmetic, we have
examples with error > 4.98u2;

real consolation or lame excuse? Maybe without the flaw, we would never
have found the better bound.

28

Halfway conclusion

Full set of validated DW algorithms for the arithmetic operations and the square
root (M. and Rideau, 2022; Lefèvre, Louvet, Picot, M. and Rideau, 2023).

That class of algorithms really needs formal proof:

Proofs have too many subcases to be certain you have not forgotten one;

they are boring: almost nobody reads them.

Alternate–or complementary–solution? try to automatically compute bounds:

short-term goal: limit human intervention (and therefore, human error);

long-term goal: bounds correct by construction.

29

An example: hypotenuse function
√

x2 + y 2

function hypot listed in Section 9 of the IEEE-754 Std for FP arithmetic
and Section 7.12.7.3 of the C17 Std. The C Std even says

The hypot functions compute the square root of the sum of
the squares of x and y , without undue overflow or underflow. A
range error may occur.

naive algorithm: reasonably accurate (rel. err. < 2u), but risks of

spurious overflow: we obtain ∞, even if exact result � Ω, or
spurious underflow: very inaccurate result if subnormal
intermediate values.

30

The naive algorithm

NaiveHypot

1: sx ← RN (x2)

2: sy ← RN (y2)

3: σ ← RN (sx + sy)

4: ρ1 = RN (
√
σ)

classical relative error
bound 2u +O(u2);

refinement: 2u
(Jeannerod & Rump);

asymptotically optimal
(Jeannerod, M., Plet).

Examples in binary64/double precision
arithmetic (p = 53):

if x = 2600 and y = 0, returned result
+∞, exact result 2600;

if x = 65× 2−542 and y = 72× 2−542,
returned result 96× 2−542, exact result
97× 2−542.

⇒ need to scale the operands.

31

Simple scaling

1: if |x | < |y | then
2: swap (x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ρ2 = RN (|x | · s)

several versions;

this one requires availability of an FMA
(fused multiply-add: RN (ab + c));

relative error bounded by 5
2u + 3

8u
2;

asymptotically optimal.

⇒ avoiding spurious overflow has a significant cost in terms of accuracy.

Improvements?

32

Simple scaling with compensation (Nelson Beebe, 2017)

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)

this version: requires an FMA;

one Newton-Raphson iteration;

relative error bound 8
5u + 7

5u
2 (Salvy & M., 2023);

sharp: known case with error 1.5999739u in
binary64 FP arithmetic.

33

Borges’ “fused” algorithm (2020)

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: (shx , s

`
x)← Fast2Mult(x , x)

5: (shy , s
`
y)← Fast2Mult(y , y)

6: (σh, σ`)← Fast2Sum(shx , s
h
y)

7: s ← RN (
√
σh)

8: δs ← RN (σh − s2)

9: τ1 ← RN (s`x + s`y)

10: τ2 ← RN (δs + σ`)

11: τ ← RN (τ1 + τ2)

12: c ← RN (τ/s)

13: ρ4 ← RN (0.5c + s)

Requires an FMA. DW and NR. Relative error bound u + 14u2 (Salvy & M.
2023). Asymptotically optimal.

34

Kahan’s algorithm (1987)

1: δ ← RN (x − y)

2: if δ > y then
3: r ← RN (x/y)

4: t ← RN (1 + r2)

5: s ← RN (
√
t)

6: z ← RN (r + s)

7: else
8: r2 ← RN (δ/y)

9: tr2 ← RN (2r2)

10: r3 ← RN (tr2 + r22)

11: r4 ← RN (2 + r3)

12: s2 ← RN (
√
r4)

13: d = RN (R2 + s2)

14: q = RN (r3/d)

15: r5 ← RN (P` + q)

16: r6 ← RN (r5 + r2)

17: z ← RN (Ph + r6)

18: end if
19: z2 ← RN (y/z)

20: ρ7 ← RN (x + z2)

In this presentation, requires an FMA . We assume 0 ≤ y ≤ x . Precomputed
constants R2 = RN (

√
2), Ph = RN (1 +

√
2), and P` = RN (1 +

√
2− Ph).

Not-fully-trusted paper and pencil proof of a bound 1.5765u +O(u2), known
cases with error 1.4977u in binary32 arithmetic.

35

The various bounds obtained

Algorithm reference error bound condition status

Naive folklore 2u − 8
5 (9− 4

√
6)u2 p ≥ 2 asympt. optimal

Simple scaling folklore 5
2 u + 3

8 u2 p ≥ 2 asympt. optimal

Scaling w. compensation N. Beebe (2017) 8
5 u + 7

5 u2 p ≥ 4 sharp

Borges “fused” C. Borges (2020) u + 14u2 p ≥ 5 asympt. optimal

Kahan W. Kahan (1987) 1.5765u +O(u2) ? p ≥ 9 a bit loose

36

Goal: tight and certain relative error bounds

Programs that at step k have an instruction of the form

x_k = x_i op x_j or x_k = sqrt(x_i)

where op is +, -, * or /, and x_i and x_j are either precomputed values
or input values (i , j < k);

Computed values:

xk = RN (xi op xj) or xk = RN (
√
xi);

basic relations:

xk = xi op xj ± 1
2 ulp (xi op xj),

xk = (xi op xj)(1 + ε), with |ε| ≤ u
1+u

< u.
(3)

(or the same with
√
xi)

Optimisation problem: find the maximum and the minimum of the quantity
ρ/
√

x2 + y2 − 1 in the region defined by the equalities and inequalities
obtained from analyzing the program (e.g., (3)) → Algebraic bound.

37

Goal: tight and certain relative error bounds

algorithmically the polynomial optimization problem is well-understood
(Nie & Ranestad 2009, Bank, Giusti, Heintz, Safey El Din 2014);

however, it is very expensive.

→ the natural turn around is to compute approximations of the algebraic
bound, or to restrict ourselves to order-1 analyses in u;

here: testing the limits of what can be computed exactly from the bounds
of the individual operations;

The “general” methods do not exploit the sparsity and the structure of
our systems;

→ use of heuristics;

38

Prototype implementation: illustration with the naive alg.

NaiveHypot

1: sx ← RN (x2)

2: sy ← RN (y2)

3: σ ← RN (sx + sy)

4: ρ1 = RN (
√
σ)

> with(BoundRoundingError); # loads the package
> Algo1:=[Input(x=0..2^16,y=0..2^16,_u=0..1/4),
> s[x]=RN(x^2),s[y]=RN(y^2),sigma=RN(s[x]+s[y]),

rho=RN(sqrt(sigma))]:
> sys:=AnalyzeAlgo(Algo1):
> linpart:=BoundLinearTerm(sys);

linpart := 2_u, {_epsρ = 1,_epsσ = 1,_epssx = 1,_epssy = 1}

> quad:=BoundQuadraticTerm(linpart,sys);

quad := RootOf(5_Z2 − 144_Z − 192,−1.276734354), {_u = 1/4}

> allvalues(quad[1]);

72

5
−

32
√
6

5

39

Goal: tight and certain relative error bounds

Reminder: computed values

xk = RN (xi op xj) or xk = RN (
√
xi);

we compare the computed values xk with the exact values:

x∗k = x∗i op x∗j or x∗k =
√

x∗i ;

(initial values: xi = x∗i for i ≤ 0).

The analysis consists in iteratively computing relative error bounds ε`k(u)

and εrk(u) such that (here, for positive xk and x∗k)

x∗k

(
1− ε`k(u)

)
≤ xk ≤ x∗k (1 + εrk(u)) ; (4)

40

Goal: tight and certain relative error bounds

with care, iteratively computing bounds of the form (4), using at each
step the “basic relations” (3) is not so difficult;

ending up with a tight bound is difficult. Two reasons:
requires existence of input values for which the individual rounding
errors attain their maximum (with the right sign) at each operation.

→ Not always possible: Correlations. 3 · (x · y), one cannot have
both (x · y) and 3 · (x · y) very slightly above a power of 2;

(and, indeed, 3 · (x · y) more accurate than (3 · x) · y)
the “basic relations” (3) are not the last word: there are some
additional properties specific to FP arithmetic, and some “bit
coincidences”.

41

Examples of additional properties specific to FP arithmetic

Lemma (Sterbenz)

If a and b are floating-point numbers satisfying a/2 ≤ b ≤ 2a then b − a is a
floating-point number, which implies RN (b − a) = b − a.

(more generally, some operations are exact: any multiple of 2k of abs. val.
≤ 2k+p is a FPN)

Lemma (Jeannerod-Rump)

When p ≥ 2, the relative error of a square root is bounded by

1− 1√
1+2u ; (5)

the relative error of a division in binary FP arithmetic is bounded by

u − 2u2. (6)

42

“Bit coincidences”: computation of x2−2 as RN (RN (x ·x)−2)

p max. relative error

11 2048u = 1 all information lost

12 670u = 0.16 not so bad

13 7001u = 0.85

14 8005u = 0.49

15 11366u = 0.35

16 65536u = 1 all information lost

Depends on how close
√
2 is to a FP number. In a way, 12-bit arithmetic more

accurate than 16-bit arithmetic.

43

Analysis of Beebe’s algorithm

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)

44

Analysis of Beebe’s algorithm

Simplification: x ≥ y > 0

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

Main idea: Newton-Raphson iteration

ε

2s
+ s =

t − s2

2s
+ s =

√
t +

(s −
√
t)2

2s
,

so that (ε
2s

+ s
)
−
√
t =

(s −
√
t)2

2s
.

45

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

define α by y = αx , so that r = RN (α);

r = α + uεr , with

|εr | ≤

 1
4 , if α ≤ 1/2,
1
2 , if α > 1/2.

t = 1 + r2 + uεt , with |εt | ≤ 1 (comes from
1 + r2 ≤ 2);

s =
√
t + uεs , with |εs | ≤ 1 (comes from t < 2);

ε = t − s2 (comes from Sterbenz Lemma).

46

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

∣∣ ε
2s

∣∣ =
∣∣∣ t−s2

2s

∣∣∣
=

∣∣∣ (s−uεs)
2−s2

2s

∣∣∣
=

∣∣∣−uεs +
u2ε2s
2s

∣∣∣ ≤ u + u2

2 .

(7)

If |ε/(2s)| ≤ u then the error committed by
rounding ε

2s to nearest is ≤ u2/2;

If |ε/(2s)| > u, then since the FPN above u is
u + 2u2, (7) implies RN (ε/(2s)) = ±u
⇒ again the rounding error is ≤ u2/2.

Hence in all cases, |c| ≤ u and

c =
ε

2s
+ εc

u2

2
,

with |εc | ≤ 1.

47

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

ν = xc(1 + uεν) with |εν | ≤ 1/(1 + u);

ρ = (ν + xs)(1 + uερ) with |ερ| ≤ 1/(1 + u);

48

Analysis of Beebe’s algorithm

Putting all this together:

ρ = (ν + xs)(1 + uερ),

= x
(

(−uεs + u2

2 (εc + ε2s /s))(1 + uεν) +
√
t + uεs

)
(1 + uερ),

= x
(√

t + u2

2 ((εc + ε2s /s)(1 + uεν)− 2εsεν)
)

(1 + uερ)

= x
√
1 + r2

√
1 + uεt

1+r2

(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ),

Lemma

The relative error of the algorithm is

R =
√

1 + r2−α2

1+α2

√
1 + uεt

1+r2

×
(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ)− 1,

= r2−α2+uεt
2(1+α2) + uερ + O(u2), u → 0.

Moreover, |εs |, |εt |, |εc | are bounded by 1 and |εν | and |ερ| by 1/(1 + u).

49

Now, the painful work

linear term (
2αεr + εt
2(1 + α2)

+ ερ

)
· u

increasing function of εr , εt and ερ,
εr ≤ 1/4 if α ≤ 1/2, εr ≤ 1/2 otherwise,
εt , ερ ≤ 1

→ max. value 8/5;

show that for u ∈ [0, 1/2],

∂R

∂ερ
≥ 0,

∂R

∂εt
≥ 0,

∂R

∂εr
≥ 0,

∂R

∂εc
≥ 0.

→ it suffices to consider the extremum values of ερ, εt , εr , and εc ;

process the cases α < 1/2 and 1/2 ≤ α ≤ 1 separately;

in each case, lower and upper bound on R. . .

50

Analysis of Beebe’s algorithm

Theorem
Assuming u ≤ 1/16 (i.e., p ≥ 4), the relative error of Beebe’s algorithm is
bounded by

χ4(u) = (1 + 2u)

√
1 + u/5

1 + u
− 1 + u2 (1 + 2u)2

(1 + u)2


√
5

5
+

1

5
√

(1+u)
(
1+ u

5
)

2 − u

+
2
√
5

5 (1 + 2u)

 ,

=
8

5
u +

(
3
√
5

5
−

2

25

)
u2 +

(
116

125
+

14
√
5

25

)
u3 + O

(
u4)

' 1.6u + 1.26u2 + O(u3)

≤
8

5
u +

14

10
u2
.

How do we publish a proof? Have a Maple worksheet publicly available and
just get a rough sketch (similar to these slides) in a paper?

51

And the other algorithms?

Borges’ algorithm: really painful. . . but we managed to obtain the result;

Kahan’s algorithm:

We may ultimately succeed (already a dirty proof of a bound 1.5765u +O(u2))
It seems we are approaching a limit. . .

. . . and again, as for DW arithmetic, if we fully “expand” the proofs they are
terrible (probably unpublishable).

52

But, really, what were we trying to do?

obtain the best “algebraic bound”: the best one could deduce from the
individual bounds on the rounding errors of the operations and a few
properties such as Sterbenz Lemma;

but when the algorithms become complex, does that bound remain tight?

we have seen: correlations;
even without correlations: tightness requires that for each operation
the maximum error is almost reached, with the right signs;
in general: probability of this decreases exponentially with number
of operations;

→ Rule of thumb: when the number of operations is no longer small in front
of p, little hope of having a worst-case error close to the algebraic bound.

53

Conclusion

formal proof and computer algebra:

add confidence to the computed bounds;
allow us to get to grips with (slightly) bigger algorithms;
make it possible to explore many variants of an algorithm (just
“replay” the calculation with small modifications);

long-term goal: use both techniques together (have the computer algebra
tool generate a certificate);

seems we are approaching the limit (in terms of algorithm size) of what
can be done “exactly”;

consolation: for larger algorithms, little hope of having a worst-case error
close to the algebraic bound;

what is a publishable proof? A human-readable rough sketch along with a
Coq file and/or a Maple (or whatever tool) worksheet? What we
currently do is just a stylistic exercise. . .

54

