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This talk is built on, rather than being about, the interval FF'T.

G. Liu and V. Kreinovich, “Fast convolution and Fast Fourier Transform
under interval and fuzzy uncertainty,” Journal of Computer and System
Sciences, vol. 76, no. 1, pp. 63-76, Feb. 2010. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/p11/S00220000090004 52

S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77-104. Kluwer Academic
Publishers, Dordrecht, 1999.

MR4103639 Brisebarre, Nicolas; Joldes, Mioara; Muller, Jean-Michel; Nanes, Ana-Maria; Picot, Joris
Error analysis of some operations involved in the Cooley-Tukey fast Fourier transform.
ACM Trans. Math. Software 46 (2020), no. 2, Art. 11, 27 pp.
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Computer assisted proofs based on DFT/FFT go back to the early 1990’s

MR1008096 de la Llave, R.; Rana, David
Accurate strategies for small divisor problems.
Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 85-90.

MR1156419 Reviewed de la Llave, Rafael
A renormalization group explanation of numerical observations of analyticity domains.

J. Statist. Phys. 66 (1992), no. 5-6, 1631-1634.

A fantastic general reference is the paper of Jordi:

MR3709329 Reviewed Figueras, J.-Ll.; Haro, A.; Luque, A.
Rigorous computer-assisted application of KAM theory: a modern approach.

Found. Comput. Math. 17 (2017), no. 5, 1123—1193.

Today’s talk is inspired by/builds on thees, with a slight change of emphasis...

sequence space versus functions space
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Question of The Hour:

consider the Banach algebra “little ell nu one” * For a,b € ¢, define their discrete convolution a * b by

¢t ={a={an}nez : an € C and |lal|, < oo}

Cl*b Zan kbk

keZ
where |lall, = Z a, v U 1
n=-—00 Then a *b € £} with
The pair (€, - ||,) is a Banach space.
[ la bl < |lall, [[6]]
o Let
={z € 7Z :imag(z) < p} That is, the triple (¢.,] - ||,, *) is a Banach Algebra.
o If @ € £}, then the function u(z) defined by * The terms of the discrete convolution are the Fourier
coeflicients of the pointwise product.
%a" * Polynomials become iterated discrete convolutions.
ne

is analytic on Syg(,), continuous on its closure, and 27 periodic in the real part.

v ullg = sup |u(z)| < |al. (giving up some strip width bounds derivatives)
zESlogu

Banach spaces of infinite sequences are convenient for computer assisted arguments.
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Question of The Hour:

consider the Banach algebra “little ell nu one”

0} ={a={antnez : a, € C and |la||, < oo} That is, the sequence F'(a) = b = {b, }, ., is defined by
= n 27
where [lally = ) |an|v!" v > 1 by, = L f(u(8)) e " df
Nn=——0Q 271 0
27
Let f: C — C be an analytic function. _ L f Z are® | e qg
271 0 I

We are interested in the function F': ¢> — /-

defined by the rule
Note: if f is polynomial then F'(a) is easily expressed in

F(a) =1 terms of discrete convolutions.

if and only if
b = {bn}nGZ

are the Fourier coeflicients of the function One can study analogous questions for

Taylor series and Chebyshev series.

flu(z) = 3 bue™

nez
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Question of The Hour:

Example problems in dynamical systems/nonlinear analysis:

o Initial value problem for an ODE: o Spectral sub-manifold - continuous time.
z(t) = f(z(t)) f:R*=RY P AsP'(s) = f(P(s)) f: R - RY
x(0) = 29 € R? Impose that
f real analytic Taylo |P'(0)]]* >0

f real analytic

¢ Invariant circle - discrete time

g PO+w)=f(PO)  f:R*—= R

P periodic
phase cond

f real analytic

v System of scalar BVP on |a,b] C R:

Lu(z)+ f(u(z)) =0  f:R?* - R?

periodic BCs & %

f real analytic

» Spectral sub-manifold — discrete time. Fourier * Invariant torus - continuous time
d d " . &
( 3) f( (3)) Tmpose that g ()] 8—91})(91’92) +w28—02P(91’92) — f(P(91,92))
|P'(0)]I* >0 f: R — RY
f real analytic P periodic

phase cond
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Question of The Hour:

Example problems in dynamical systems/nonlinear analysis:

; x(t) Flx(t)) Taylor

' Lul@) + £ (u(a)) = 0 it » Chebyshev Conjugacy problems!

)
)\SP’(S) = f(P(s))
« P ((9 -+ w) — f ( P( (9)) »_’”'.,.;_’

0 wla—elp(91702)+WQ892 (91,92) — f(P(gl,ez))

Computer assisted proofs for these problems (and many others) can be obtained using a common approach.

Step 1: Formulate as a zero finding problem on an appropriate Banach space.

Step 2: Project and solve numerically.

Step 3: Make a Newton-Kantorovich or Nash-Moser argument: prove a true solution nearby.

Lanford, Eckman, Koch, Plum... school of a-posteriori analysis

A key step in studying any of these equations is studying the compositions with f



Ecole Normale Supérieure de Lyon

J.D. Mireles James

Theorem 5.1 (Newton Kantorovich (with smoothing approximate inverse)). Suppose that X',
are Banach spaces and that that F: X — Y is a Fréchet differentiable map. Assume that
AT X = Y, and A: Y — X are bounded linear operators with A one-to-one, and that T € X,

and ry,Y, Zo, Z1, L9 > 0 have that

o Approximate root:
|AF(Z)||x <Y,

o Approximate inverse:
| ldx — AAT|| gy < Zo,

o Approximate derivative:

|4 [DF@) - AT]||, | <2,

e Local Lipschitz bound on the Fréchet derivative:

sup  |[A|DF(z) — DF(y)||pxy < Zallz — yllx-

T,Y€ B, (z)

Suppose that
Zo+ 71 <1, andthat (1 —Zy— 21)* > 425Y.

Define
B=(1—2Zy—Z1)+ /(1 - Zy — Z1)? — A2,
p
C=-
275
and

Then, for any r > 0 with
46_1Y <r<dc,

there exists a unique
r. € B.(T),

so that
F(z,) = 0.

Moreover, ADJF (x,) is a Banach space isomorphism.
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Theorem 5.1 (Newton Kantorovich (with smoothing approximate inverse)). Suppose that X, )
are Banach spaces and that that F: X — Y is a Fréchet differentiable map. Assume that
AT X - Y, and A:' Y — X are bounded linear operators with A one-to-one, and that T € X,
and v, Y, Zy, Z1, Z2 > 0 have that

e Approximate root:

[AF(Z)[x <Y,
e Approximate inverse:
| Idy — AATHB(X) < Zo, Then, for any r > 0 with
487y <r<C,
e Approximate derivative:
there exists a unique
HA [Df@) B AT] HB(X) < 2 Ty € By (T),
. . . C so that
e Local Lipschitz bound on the Fréchet derivative:
F(z.) = 0.

sup  [|A[DF(z) = DF(y)llpxy < Zallz = yllx.
x,yEBT*(f)

Moreover, ADF(x) is a Banach space isomorphism.

Suppose that
Zo+7Z1 <1, andthat (1—Zy—71)? > 4ZyY.

Define
B=(1-2y—21) + /(1 Zo— 1) —42sY,
_ b
“=2
and
R = min (r,,C).

* The proof studies the Newton-like operator
T(x) =x— AF(x)

* The hypotheses of the theorem are exactly what is needed to show that
I is a contraction on the complete metric space B, (Z).

» Another consequence of the theorem is that ADF(x,) is an isomorphism.

This information can sometimes be parlayed into stability /transversality information.
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.
For example if f(z) = e* — 1 this is a toy model for a suspension bridge.

Traveling waves on unbounded domains

MR2220064 Breuer, B.; Horak, J.: McKenna, P. J.; Plum, M.
A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam.

J. Differential Equations 224 (2006), no. 1, 60-97.

Stability

MR4017416 Nagatou, K.; Plum, M.; McKenna, P. J.
Orbital stability investigations for travelling waves in a nonlinearly supported beam.

J. Differential Equations 268 (2019), no. 1, 80-114.

Today’s talk focuses on even periodic solutions.
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https://mathscinet-ams-org.eu1.proxy.openathens.net/mathscinet/search/author.html?mrauthid=651249
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

We seek a solution of the form

u(z) = E:Zanem‘” (impose a_, = ay)
ne

where a € £ with v > 1.

Plugging this ansatz into the BVP leads to the system of equations
(n* — Bn?)ay, + by (a) =0, n €7

where {by}, ., are the Fourier series coefficients of

flu(z)) =) bne™®

NEL
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7
Note that

[DF(a)h], = (n* — n?)h, + [b/(a) * hl,

where b'(a) is the map on coefficient space induced by
the function f'(z).

How to truncate?
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map

F(a), = (n* — Bn?)ay, + b, (a) n € 7
How to truncate?
Imagine that f(z) = 2°.

Then
b(a)n, = Zan_kak

keZ

Truncation to N modes (a_n,...,an) is given by

b))y = D afay

Jt+k=n
gLIEISN
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7
How to truncate?

Polynomial f(z) is similar.
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7
How to truncate?

More interested in the case where f(z) is analytic but not polynomial.

flz) =€ —1
7(2) = cos(z)
fz) = ——

(1+ 22)2/3
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7

How to truncate?

More interested in the case where f(z) is analytic but not polynomial.

Let
N
UN(CE) _ Z anezna:

n=—N
Approximate the Fourier coefficients of
f(u"(2))

using the DFT/FFT.

... you make several kinds of mistakes here...
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Example: That is: solve the linear system

N o . o — —
uN(a:) _ Z anez’na: G_ZN‘T_N e e”N"’—N b_n f—N
n=—N . — :
Approximate the Fourier coefficients of i e~ Nen eV EN i bn fN
/ (UN(CU)) or
Choose uniformly spaced (z_p,...,xN) in [—m, 7). Mb = {
Evaluate One can work out M ~'by hand!
SO
N @)oo SN @) = (s f) 0
Want {bn }nez with The FFT is just a fast algorithm for evaluating u' ().
fuN(z)) = Z b,e!™* The IFFT is just a fast algorithm for evaluating the matrix
neL vector product M ~'f.

But!

The {En}i:]:_ ~ are only approximately the Fourier
coefficients of f (u” (z))

... trig interpolation versus projection...

— N .
Instead, compute {bn}n:_ ~ With

N N

f—N: Z Bnez’nax_N fN: Z Bnez’an

n=—N n—-—
Aliasing error...
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7

How to truncate?

Given {a,})__ 5 let
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.

Define the map
F(a), = (n* — Bn*)a, + b,(a) n € 7

How to truncate?

Define FY . C?N*tt 5 ¢?2N*1 by
FN (aV) = (n* — Bn®)a)) + [bn(a™)])
Have
DFY (V) hN = (n* — pn?)hlY + [ea(a™)]N « hNIY

Where
[en (a™)]Y

are the approximate Fourier coefficients of f’(u” (z)) computed by DFT/FFT.
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Example: consider the scalar boundary value problem

W™ 4 Bu" + f(u) =0 v € [, 7 ' N = 30 .is sufﬁci.erolt to insure that a,, decay
to machine precision.

with f an analytic function, and Neumann boundary conditions. ' The nonlinearity and the Frechet derivative

Take f(z) =e*—1and g =1.1 are evaluated via DFT/FFT.

Truncated map is .
» Based on the decay rate of the coefficients

FY (a") = (n* — Bn?)a, + [bn(a™)],) of & we guess an appropriate v > 1 in

hich to f late th f.
Projecting onto N = 30 Fourier modes and applying Newton we find WHICH 10 JotTHTHate LS proo

the following numerical approximate solution:

Figure 1: A periodic solution of the suspension bridge equation (14) at 5 = 1.1.
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.  Define the bounded linear operator A: ¢} — ¢}

Truncated map 1is A ANBEN) if | < N
FN (aN) = (n* — Bn?)a’ + [b,(a™)]Y " u-thy, if |n| >N
and a”¥ = (@a_p,...,an) has
FN@V)~o0

Let AN be an approximate inverse (numerically computed)
for DFN (@™).
Note that the derivative
[DF(a)h], = (n* — Bn®)h, + [V/(a) * Al
has unbounded diagonal term
Ly = n* — An?

with explicit inverse
1
—1 —
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The Defect Bound: ||AF(a)|l, <Y Then

Define the map |AF (@™)|, = Z HAF ]n‘ i
F(a), = (n* — Bn*)a, + b,(a) n € Z nel
Truncated map is Z AN FN @), o1 4 Z [AN ]| ! + Z : by, | bl o n|
FN (V) = (n* — Br®)al + [ba(a™)]} nish i< A
and a”¥ = (@a_p,...,an) has
FY@") =0 Need bounds on
Define the bounded linear operator A: £, — /. €n = by — by, n| < N
ANRNY, if In] < N d
[Ah]n:{[_lh ] %fn_N an
S byl |n|> N
Th
. _N (n* — Bn®)an, + b, +€, |n|<N
F(@"), =
by, n|l > N
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The Defect Bound: ||[AF(a)|, <Y

Need bounds on
€n — Op — En |’TL‘ <N

Strategy:

Choose an N,,; so that the Fourier coefficients of f o u decay to machine precision.

Choose an Ngpr > 2N,,; (a power of 2) which will be used to control the aliasing.
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The Defect Bound: ||[AF(a)|, <Y

Need bounds on

‘bnl |’n" >Ntail
For n > 0
1 27'('
b =50 | f(a@)e —ina g
70
1

—’L’nZd
o f( (2))e < Choose a p > p = In(v)

1 — —inz
=5 f (u(z))e™"""dz
1 27T | -
= o= | flalz —ip)e ™" Pdx
—
1 27T

—e P f(u(xz —ip))e " dz.
27T 0
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The Defect Bound: ||[AF(a)|, <Y

Then
Need bounds on 1 27 ) N o
bl Il > N bl < e [ 17t = i)l ez
1 (1 [ |
For n > 0 | on < — (%/O | flu(z — zﬁ))\daz)
b= — | f(a(z))e "%dz
2T
1 —’LTLZ
= — f( (2))e" " d
-
1 — —’LTLZ
= o f(u( ))e dz
-
1 r | -~
— f(u(z — iﬁ))e_m(x_w}dm
2t
1 27T

—e P f(u(xz —ip))e " dz.
27 0
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The Defect Bound: ||[AF(a)|, <Y

Need bounds on

‘bnl |’n" > Ntail
1 27
[ (e —ip))|dz < O,
Consider a number Ngpr (a power of 2) and a uniform mesh of [0, 27| of mesh size NFFT that is
2k
Tk Nepr #=0,..., Nerr Nepr 2> 2N,

For each £k =0, ..., Ngpr, denote by C’g an upper bound satistying

sup | f(u(x —ip))| < CF.

wE[QEk,CEk+1]

Then,
NFFT —1

NFFT_ T
) 1 k+1 ) N 1 y
| G —ip) de = - E:: / flae—ip)dr < —— 3 Ck

0 FFT L—0
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The Defect Bound: ||[AF(a)|, <Y

Need bounds on For a given x € |xk, x4 1], there exists § € [O, ]\2,;} such that x = x, + . Hence,
bl 0| > N
. fatw—ip) = f [ 3 (@ne)e
To find Cﬁ with In|<N
_ . _ —  n(p+10)\ nx
sup | f(a(x — ip)] < CF. = [ 3 @entrioeines
TE[Th, Th1] n|<N
Nekr g \
is an interval FFT" = f Z o, einmr |
First note that \n=—251 /
?_L(ZC _ Zﬁ) _ Z C—Lnein(x—iﬁ) where
In|<N o def C—Lnen(p—|—15), n=-—-N,...,N
o 0, ne{—"E, ., —N—-1}U{N+1,... 2 1}
— Z (ane ,0)6 )
In|<N Now use interval arithmetic to compute an interval o, such that
- o

o, = a, e PT1) ¢ o,, forall oe |0, .
" Nrpr_
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The Defect Bound: ||[AF(a)|, <Y

Need bounds on
‘bnl |’n" > Ntail

To find C’g with

sup | f(a(z —ip))| < CF.

xE[mk,mk+1]

NFEET 1

Denote the vector of intervals @ = {a,} 2 4.
. Ngpr

2

where a,, = [0,0] for |n| > N. Then combining the
FEFT and interval arithmetic, compute
sup ]\f(ﬂ(m —ip))| < Cp = sup|f((FFT(a)))],
TC|Tk,Tk+1

Finally, we apply the same approach to —p to get C'_; such that |b,| < g__f

for all n < 0. Deno‘ting
C d:ef maX{C_ﬁ, Cp}
we get that
C
b, | < —al for all n € Z.
1/ n
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The Defect Bound: ||[AF(a)||, <Y

Th C
en b,| < Ik for all n € Z.
JAF@N)|l, =) |[AF@")].| v™
NEZL
B S W LCO P Sy FLANEIRES R S
In|<N In|<N In|>N
_ZHANFN ‘V||+ZHAN |V||+ Z — Bn? 288 Z n4—5n2y||
In|<N In|<N N<|n|< N, n|> N, ..
_ \bn\-i-en 2C -~ AN
= 3 [IAVEN @)L+ S (AN ] o+ Il 4 — (=)
In|<N In|<N N<|TL|Z<N1-, ,an Ntlail—ﬁNtail nzzjvtau g
1 1 Ntail+1
_ N N /=N | N | bn| + €n 10 2C (%)
D (AYEN@O[ D AV D g e

n|<N In|<N N<|n|< N
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The Defect Bound: ||[AF(a)|, <Y

Just need the ¢,, for ‘n‘ < Ngpr ‘bn‘ < i for all n € Z.

o y|n‘ 7

Recall the so called ‘“discrete Poisson summation formula”:

€En — bn o En — = Z (bn+jNFFT + bn—jNFFT)
71=1

See for example Ch 6 of The DFT: An Owner’s Manual for the Discrete Fourier Transform
by Briggs and Henson.

00
|5n| < Z ‘bn‘I‘jNFFT‘ T ‘bn_jNFFT‘
j—l

1
Z Vn‘|‘]NFFT | VjNFFT_n

| /\
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The Defect Bound: ||[AF(a)|, <Y

Just need the €,, for [n| < Nppr

|AF@N)|l, =) |[AF@")],|v™

neEZ
N. .. +1
‘bn‘ T €n 20 (g) o
| ANFN ‘ V|n| 4 “AN ‘ V|n| 4 |n| | 2 % —
|n§N |”§§:N N<|n|Z<Nt 5”2 Ntiil — B Np.i 1 — 7

where

1 1
‘&“n‘ 1S QC(Vn -V ) pNFFT_l
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Approximate derivative:
|A[DF(a) — A']||px) < Z1

Have to perform a similar analysis for
/ _ 2 : /
(b *h)n — |n1|h|n2|,
ni1-+mno=n

Where b’ are the Fourier coefficients of f’ o 4.

Use the fact that this is bounded and linear in A, hence in the dual space.
(Du8al of £} is a weighted little £ infinity space)

Get explicit finite formulas that only require computing FFT for f'(z).



Local estimate:

|ADF(c) — DF(a)l||px) < Z2(r)r, for all c € B,(a) and all r > 0.

[[DE(c) = DF(a)|hz|l1.0 = [[|D f(a+7hi) = D f(a)hall
(A sz(C_L -+ T‘h)](hl,hg)Hl

r||[[D? f (a4 r*h)](h1, ha)lx

VASRVA\

< rlle® Ml wllhlly [[hell
< T‘|€a+r*h |1

< rlle®|rwlllle” ™

< re” e

for any r* > r, where the last inequality follows from using the Banach algebra. Hence, we set

ZQ d:ef Baﬂl

\AHB(zl)@T*
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Example: consider the scalar boundary value problem
" B+ f(u) = 0 v € [,

with f an analytic function, and Neumann boundary conditions.
Take f(z) =e* —1 and g =1.1

Figure 1: A periodic solution of the suspension bridge equation (14) at § = 1.1.

N =35 v=1.3 In(v) ~ 0.262 Yy ~ 3.59705 x 1012
N,., = 60 r, =107°

Ngpr = 512

r ~ 3.59714 x 1072

Proof takes about 1.1 seconds.
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~The estimates just require that we can evaluate f and f’ on interval data.

—Also need a local bound on || " (u)]].

So changing the nonlinearity just means changing these formulas.
We currently have this implemented in MatLab/IntLab, but a much more general implementation is possible.
Extension to Taylor and Chebyshev is similar.

Multivariable extensions are also possible (as Jordi described)



Thank you to the organizers for the invitation!

Thank you for listening!



