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The Christoffel function
Some applications in data analysis
Connections
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� We claim that a non-standard application of the CD kernel
provides a simple and easy to use tool (with no optimization
involved) which can help solve problems not only in data
analysis, but also in approximation and interpolation of
(possibly discontinuous) functions. In particular one is able to
recover a discontinuous function with no Gibbs phenomenon.

Outlier detection Interpolation Recovery
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Motivation
Consider the following cloud of 2D-points (data set) below
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The red curve is the level set

Sγ := {x : Qd (x) ≤ γ }, γ ∈ R+

of a certain polynomial Qd ∈ R[x1, x2] of degree 2d .

� Notice that Sγ captures quite well the shape of the cloud.
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Not a coincidence!
� Surprisingly, low degree d for Qd is often enough to get a
pretty good idea of the shape of Ω (at least in dimension
p = 2,3)
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d = 3 , n = 100
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d = 4 , n = 100
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d = 5 , n = 100
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d = 5 , n = 500
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d = 3 , n = 100
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d = 4 , n = 100
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d = 5 , n = 100
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d = 3 , n = 500
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d = 3 , n = 100
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d = 3 , n = 51
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Cook up your own convincing example

Perform the following simple operations on a preferred cloud of
2D-points: So let d = 2, p = 2 and s(d) =

(p+d
p

)
.

Let vd (x)T = (1, x1, x2, x2
1 , x1x2, . . . , x1xd−1

2 , xd
2 ). be the

vector of all monomials x i
1x j

2 of total degree i + j ≤ d
Form the real symmetric matrix of size s(d)

Md :=
1
N

N∑
i=1

vd (x(i)) vd (x(i))T ,

where the sum is over all points (x(i))i=1...,N ⊂ R2 of the
data set.
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� Note that Md is the MOMENT-matrix Md (µN) of the
empirical measure

µN :=
1
N

N∑
i=1

δx(i)

associated with a sample of size N, drawn according to an
unknown measure µ.

� The (usual) notation δx(i) stands for the DIRAC measure
supported at the point x(i) of R2.
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Recall that the moment matrix Md (µ) is real symmetric with
rows and columns indexed by (xα)α∈Np

d
, and with entries

Md (µ)(α, β) :=

∫
Ω

xα+β dµ = µα+β , ∀α, β ∈ Np
d .

� Illustrative example in dimension 2 with d = 1:

M1(µ) :=


1 X1 X2

1 µ00 µ10 µ01
X1 µ10 µ20 µ11
X2 µ01 µ11 µ02


is the moment matrix of µ of "degree d=1".
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Next, form the SOS polynomial:

x 7→ Qd (x) := vd (x)T M−1
d (µN) vd (x).

= (1, x1, x2, x2
1 , . . . , x

d
2 ) M−1

d (µN)



1
x1
x2
x2

1
. . .

xd
2


Plot some level sets

Sγ := {x ∈ R2 : Qd (x) = γ }

for some values of γ, the thick one representing the
particular value γ =

(2+d
2

)
.
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The Christoffel function Λd : Rp → R+ is the reciprocal

x 7→ Qd (x)−1 , ∀x ∈ Rp

of the SOS polynomial Qd .

� It has a rich history in Approximation theory
and Orthogonal Polynomials.

� Among main contributors: Nevai, Totik, Króo, Lubinsky,
Simon, . . .
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Let Ω ⊂ Rp be the compact support of µ with nonempty interior,
and (Pα)α∈Np be a family of orthonormal polynomials w.r.t. µ.

The vector space R[x]d viewed as a subspace of L2(µ) is a
Reproducing Kernel Hilbert Space (RKHS) .

Its reproducing kernel

(x,y) 7→ K µ
d (x,y) :=

∑
|α|≤d

Pα(x) Pα(y) , ∀x,y ∈ Rp ,

is called the Christoffel-Darboux kernel.
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The reproducing property

x 7→ q(x) =

∫
Ω

K µ
d (x,y) q(y) dµ(y) , ∀q ∈ R[x]d .

� useful to determinate the best degree-d polynomial
approximation

inf
q∈R[x]d

‖f − q‖L2(µ)

of f in L2(µ). Indeed:

x 7→ f̂d (x) :=
∑
α∈Np

d

(

f̂d,α︷ ︸︸ ︷∫
Ω

f (y) Pα(y) dµ) Pα(x) ∈ R[x]d

= arg min
q∈R[x]d

‖f − q‖L2(µ)
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Just to visualize. On [−1,1], the polynomial

x 7→ K(y , x) , x ∈ [−1,1] ; y = 0, 0.5 ,1 .

mimics the Dirac measure at y (same moments up to degree
5,10,15.
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Theorem
The Christoffel function Λµd : Rp → R+ is defined by:

ξ 7→ Λµd (ξ)−1 =
∑
|α|≤d

Pα(ξ)2 = K µ
d (ξ, ξ) , ∀ξ ∈ Rp ,

and it also satisfies the variational property:

Λµd (ξ) = min
P∈R[x]d

{
∫

Ω
P2 dµ : P(ξ) = 1 } , ∀ξ ∈ Rp .

� Alternatively

Λµd (ξ)−1 = vd (ξ)T Md (µ)−1 vd (ξ) , ∀ξ ∈ Rp .
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� Importantly, and crucial for applications, the Christoffel
function identifies the support Ω of the underlying measure µ.

Theorem
Let the support Ω of µ be compact with nonempty interior.
Then:

For all x ∈ int(Ω): K µ
d (x,x) = O(dp).

For all x ∈ int(Rp \ Ω): K µ
d (x,x) = Ω(exp(αd)) for some

α > 0.

� In particular, as d →∞,

dp Λµd (x) → 0 very fast whenever x 6∈ Ω.
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Growth rates for K µ
d (x,x) = Λµd (x)−1.

dp

exp(αd)

dp+1

dp+2

exp(α
√
d)
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Some other properties

Under some (restrictive) assumption on Ω and µ

lim
d→∞

s(d) Λµd (ξ) = fµ(ξ)ω(ξ)−1

where ω is the density of an equilibrium measure
intrinsically associated with Ω.
For instance with p = 1 and Ω = [−1,1], ω(ξ) =

√
1− ξ2.

If µ and ν have same support Ω and respective densities fµ
and fν w.r.t. Lebesgue measure on Ω, positive on Ω, then:

lim
d→∞

Λµd (ξ)

Λνd (ξ)
=

fµ(ξ)

fν(ξ)
, ∀ξ ∈ Ω .

� useful for density approximation
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� For instance one may decide to classify as outliers all points
ξ such that Λµ

N

d (ξ) <
(p+d

p

)−1
.

� Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques, with only one
parameter (the degree d), and with no optimization involved.

� Lass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial, NIPS 2016.
Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 45, pp.
1439–1468
Lass. (2022) On the Christoffel function and classification in
data analysis. Comptes Rendus Mathematique 360, pp
919–928

Jean B. Lasserre∗ The Christoffel Function and some of its applications



� For instance one may decide to classify as outliers all points
ξ such that Λµ

N

d (ξ) <
(p+d

p

)−1
.

� Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques, with only one
parameter (the degree d), and with no optimization involved.

� Lass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial, NIPS 2016.
Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 45, pp.
1439–1468
Lass. (2022) On the Christoffel function and classification in
data analysis. Comptes Rendus Mathematique 360, pp
919–928

Jean B. Lasserre∗ The Christoffel Function and some of its applications



� For instance one may decide to classify as outliers all points
ξ such that Λµ

N

d (ξ) <
(p+d

p

)−1
.

� Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques, with only one
parameter (the degree d), and with no optimization involved.

� Lass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial, NIPS 2016.
Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis, Adv. Comp. Math. 45, pp.
1439–1468
Lass. (2022) On the Christoffel function and classification in
data analysis. Comptes Rendus Mathematique 360, pp
919–928

Jean B. Lasserre∗ The Christoffel Function and some of its applications



Manifold learning

A measure µ on compact set Ω is completely determined by its
moments and therefore it should not be a surprise that its
moment matrix Md (µ) contains a lot of information.

� We have already seen that its inverse Md (µ)−1 defines the
Christoffel function.

� When µ is degenerate and its support Ω is contained in a
zero-dimensional real algebraic variety V then the kernel of
Md (µ) identifies the generators of a corresponding ideal of R[x]
(the vanishing ideal of V ).
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For instance let Ω ⊂ Sp−1 (the Euclidean unit sphere of Rp)
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Then the kernel of Md (µ) contains vectors of coefficients of
polynomials in the ideal generated by the quadratic polynomial
x 7→ g(x) := 1− ‖x‖2.

In fact and remarkably,

rank Md (µ) = p(d)

for some univariate polynomial p (the Hilbert polynomial
associated with the algebraic variety) which is of degree t if t is
the dimension of the variety.

For instance t = p − 1 if the support is contained in the sphere
Sp−1 of Rp.

� Pauwels E., Putinar M., Lass. J.B. (2021). Data analysis
from empirical moments and the Christoffel function, Found.
Comput. Math. 21, pp. 243–273.
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Intuitively, with

Λd
µ(x)−1 ≈ vd (x)T (Md (µ) + εI)−1vd (x)

Λd
µ(x)−1 =

∑
λα=0

Pα(x)2

λα + ε︸ ︷︷ ︸
identifies the variety

+
∑
λα>0

Pα(x)2

λα + ε︸ ︷︷ ︸
where on the variety

.
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� Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated

in the moment matrix Md (µ).

� They can be exploited to extract various useful information
on the data set.

� In addition, extraction of this information can be done via
quite simple linear algebra techniques.
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� However

for non modest dimension of data, matrix inversion of M−1
d does

not scale well ...

� On the other hand
for evaluation Λµd (ξ) at a point ξ ∈ Rp, the variational formulation

Λµd (ξ) = min
P∈R[x]d

{
∫

Ω
P2 dµ : P(ξ) = 1 } , ∀ξ ∈ Rp .

is the simple quadratic programming problem.

min
p∈Rs(d)

{pT Mdp : vd (ξ)T p = 1 },

which can be solved quite efficiently.
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The Christoffel function for approximation

A standard approach is to approximate f : [0,1]→ R in some
function space, e.g. its projection on R[x]n ⊂ L2([0,1]):

x 7→ f̂n(x) :=
n∑

j=0

(∫ 1

0
f (y) Lj(y)dy

)
Lj(x) ,

with an orthonormal basis (Lj)j∈N of L2([0,1]).

BUT ... Ex: step function

� Typical Gibbs phenomenon occurs.
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Alternative Positive Kernels with better convergence properties
have been proposed, still in the same framework:

Féjer, Jackson kernels, etc.
Reproducing property of the CD kernel is LOST
Preserve positivity (e.g when approximating a density)
Better convergence properties than the CD kernel, in
particular uniform convergence (for continuous functions)
on arbitrary compact subsets

Jean B. Lasserre∗ The Christoffel Function and some of its applications



An alternative via a non-standard use of CD-kernel

A counter-intuitive detour: Instead of considering f : [0,1]→ R,
and the associated measure

dµ(x) := f (x) dx

on the real line, whose support is [0,1] ∈ R,

� Rather consider the graph Ω ⊂ R2 of f , i.e., the set

Ω := { (x , f (x)) : x ∈ [0,1] } .
and the measure

dφ(x , y) := δf (x)(dy) 1[0,1](x) dx

on R2 with degenerate support Ω ⊂ R2.
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Why should we do that as it implies going to R2 instead of
staying in R?

� ... because
The support of φ is exactly the graph of f , and
The CF (x , y) 7→ Λφn(x , y) identifies the support of φ!
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So suppose that we know the moments

φi,j =

∫
x iy j dφ(x , y) =

∫
[0,1]

x i f (x)j dx , i + j ≤ 2d ,

and let ε > 0 and λ be the Lebesgue measure on [0,1].

� Compute the degree-d moment matrix of φ:

Md (φ) :=

∫
vd (x , y) vd (x , y)T dφ(x , y),

� Compute the Christoffel function

x 7→ Λφ,εd (x , y)−1 := vd (x , y)T Md (φ+ ελ)−1 vd (x , y) .

Approximate f (x) by f̂d ,ε(x) := arg miny Λφ,εd (x , y)−1.
� minimize a univariate polynomial! (easy)
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Interpolation: � same story
So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and again let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md (φ) :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

of the empirical measure dφ(x , y) := 1
N
∑N

i=1 δx(i),f (x(i)) on
R2, by one pass over the data
� Compute the Christoffel function

x 7→ Λφ,εd (x , y)−1 := vd (x , y)T Md (φ+ ελ)−1 vd (x , y) .

Approximate f (x) by f̂d ,ε(x) := arg miny Λφ,εd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre∗ The Christoffel Function and some of its applications



Interpolation: � same story
So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and again let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md (φ) :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

of the empirical measure dφ(x , y) := 1
N
∑N

i=1 δx(i),f (x(i)) on
R2, by one pass over the data
� Compute the Christoffel function

x 7→ Λφ,εd (x , y)−1 := vd (x , y)T Md (φ+ ελ)−1 vd (x , y) .

Approximate f (x) by f̂d ,ε(x) := arg miny Λφ,εd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre∗ The Christoffel Function and some of its applications



Interpolation: � same story
So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and again let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md (φ) :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

of the empirical measure dφ(x , y) := 1
N
∑N

i=1 δx(i),f (x(i)) on
R2, by one pass over the data
� Compute the Christoffel function

x 7→ Λφ,εd (x , y)−1 := vd (x , y)T Md (φ+ ελ)−1 vd (x , y) .

Approximate f (x) by f̂d ,ε(x) := arg miny Λφ,εd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre∗ The Christoffel Function and some of its applications



Interpolation: � same story
So suppose that you are given point evaluations {f (xi)}i≤N of
an unknown function f on [0,1], and again let

vd (x , y) := (1, x , y , x2, x y , y2, . . . , x yd−1, yd ) .

� Compute the degree-d empirical moment matrix:

Md (φ) :=
N∑

i=1

vd ((xi , f (xi)) vd (xi , f (xi))T ,

of the empirical measure dφ(x , y) := 1
N
∑N

i=1 δx(i),f (x(i)) on
R2, by one pass over the data
� Compute the Christoffel function

x 7→ Λφ,εd (x , y)−1 := vd (x , y)T Md (φ+ ελ)−1 vd (x , y) .

Approximate f (x) by f̂d ,ε(x) := arg miny Λφ,εd (x , y)−1.
� minimize a univariate polynomial! (easy)

Jean B. Lasserre∗ The Christoffel Function and some of its applications



Choosing

ε := 23−
√

d

ensures convergence properties for bounded measurable
functions, e.g. pointwise on open sets with no point of
discontinuity.

Convergence properties as d ↑
� L1-convergence
� pointwise convergence on open sets with no point of
discontinuity, and so almost uniform convergence.
� L1-convergence at a rate O(d−1/2) for Lipschitz
continuous f .
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In non trivial exemples, the approximation is quite good with
small values of d , and with no Gibbs phenomenon .
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Application in dynamical systems

� When solving Optimal Control problems (OCP) or some
Nonlinear Partial Differential Equations (PDEs) via the
Moment-SOS hierarchy, one ends up with moments up to some
degree 2d , of a measure µ supported on the trajectories

t 7→ xi(t), uj(t) i = 1, . . . ,n ; j = 1, . . .m (OCP)

(t ,x) 7→ y(x, t) (PDEs)

So it remains to recover such functions from the sole
knowledge of moments of µ, as Md (µ) is available!.

� CD kernel associated with µ !
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Ex: Recovery
Below : Recovery of a (discontinuous) solution of the Burgers
Equation from knowledge of approximate moments of the
occupation measure supported on the solution.
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Again note the central role played by the Moment Matrix!

S. Marx, E. Pauwels, T. Weisser, D. Henrion, J.B. Lass.
Semi-algebraic approximation using Christoffel-Darboux kernel,
Constructive Approximation, 2021
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Connections
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Christoffel function and Positive polynomials

Let Ω ⊂ Rn be the basic semi-algebraic set (with nonempty
interior)

Ω := {x ∈ Rn : gj(x) ≥ 0 , j = 1, . . . ,m }

with gj ∈ R[x]dj and let sj = ddeg(gj)/2e. Let g0 = 1 with s0 = 0.

With t fixed, its associated quadratic module

Qt (Ω) := {
m∑

j=0

σj gj : σj ∈ Σ[x]t−sj } ⊂ R[x]

is a convex cone with nonempty interior,
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and with dual convex cone of pseudo-moments

Qt (Ω)∗ := { y ∈ Rs(t) : Mt−sj (gj y) � 0 , j = 0, . . . ,m },

where s(t) =
(n+t

n

)
.

� These two convex cones are at the core of the
moment-SOS hierarchy in Polynomial Optimization to solve

f ∗ = min
x
{ f (x) : x ∈ Ω } .

� One instead solves the hierarchy of semidefinite programs

ρt = sup
λ,σj

{λ : f − λ ∈ Qt (Ω) } , t ∈ R ,

and ρt ↑ f ∗ as t increases.
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Notice that if Mt (y)−1 � 0 for all t ,

then one may define a family of polynomials (Pα)α∈Nn ⊂ R[x]
orthonormal w.r.t. y , meaning that

Ly (Pα · Pβ) = δα=β , α, β ∈ Nn ,

and exactly as for measures, the Christoffel function Λy
t

x 7→ Λy
t (x)−1 :=

∑
|α|≤t

Pα(x)2 ,

is well-defined.
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Theorem
For every p ∈ int(Qt (Ω)) there exists a sequence of
pseudo-moments y ∈ int(Qt (Ω)∗) such that

p(x) =
m∑

j=0

(
vt−sj (x)T Mt (gj y)−1 vt−sj (x)

)
gj(x)

=
m∑

j=0

Λ
gj ·y
t−sj

(x)−1 gj(x)

where (g · y) is the sequence of pseudo-moments

(g · y)α :=
∑
γ

gγ yα+γ , α ∈ Nn (if g(x) =
∑

γ gγ xγ).

In addition Ly (p) =
∑m

j=0
(n+t−sj

n

)
.
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The proof combines

-� a result by Nesterov on a one-to-one correspondence
between int(Qt (Ω)) and int(Qt (Ω)∗), and

-� the fact that

vt−sj (x)T Mt (gj y)−1 vt−sj (x) = Λ
gj ·y
t−sj

(x)−1 .

.

� Lass (2022) A Disintegration of the Christoffel function,
Comptes Rendus Math. (2023)
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In other words:
If p ∈ int(Qt (Ω)) then in Putinar’s certificate

p =
m∑

j=0

σj gj , σj ∈ R[x]t−sj ,

of positivity of p on Ω,

� one may always choose the SOS weights σj in the form

σj(x) := Λ
gj ·y
t−sj

(x)−1 , j = 0, . . . ,m ,

for some sequence of pseudo-moments y ∈ int(Qt (Ω)∗).
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� In particular,
every SOS polynomial p of degree 2d , in the interior of the

SOS-cone, is the reciprocal of the CF of some linear functional
y ∈ R[x]∗2d . That is:

p(x) = vd (x)T Md (y)−1vx (x) = Λy
d

(x)−1 , ∀x ∈ Rn .
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CF – Pell’s equation – equilibrium measure

� What is the link between p ∈ int(Qt (Ω)) and the mysterious
linear functional y?

Theorem
For some sets Ω, 1 ∈ int(Qt (Ω)) and

1 =
1∑m

j=0 s(t − tj)

m∑
j=0

Λ
gj ·φ
t−sj

(x)−1 gj(x) (1)

where φ is the equilibrium measure of Ω.

� (1) can be called a generalized polynomial Pell’s equation
satisfied by the CFs Λ

gj ·φ
t−sj

(x)−1.
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A prototype example

Let Ω = [−1,1], x 7→ g(x) := 1− x2, and let

(Tn)n∈N, be the Chebyshev polynomials of first kind,
orthogonal w.r.t. µ = dx/

√
1− x2

(Un)n∈N) be the Chebyshev polynomials of second kind,
orthogonal w.r.t. g · µ :=

√
1− x2 dx .

Pell’s polynomial equation reads:

1 = Tn(x)2 + (1− x2) Un−1(x)2 , ∀n ∈ N , ∀x ∈ R .

� nothing less than Markov-Lukács decomposition of the
constant polynomial “1" nonnegative on [−1,1] !
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Then summing up yields

2t + 1 =
t∑

n=0

T̂n(x)2

︸ ︷︷ ︸
Λµt (x)−1

+(1− x2)
t−1∑
n=0

Ûn−1(x)2

︸ ︷︷ ︸
Λ

g·µ
t−1(x)−1

, ∀x , ∀n

= σ0(x) + (1− x2)σ1(x)

� So for the interval [−1,1] and p = 1, one obtains that µ is
the equilibrium measure dx√

1−x2
of the interval [−1,1] !
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� We have been able to extend this result to the unit box, the
Euclidean unit ball, and the simplex of Rd , but only for
t = 1,2,3. We conjecture that it is also true for all t ∈ N.

� Lass (2022) Pell’s equation, sum-of-squares and equlibrium
measure on a compact set, Comptes Rendus Math. (2023)
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Disintegration

Recall that if µ is a measure on a Borel set Ω := X × Y , then it
disintegrates as

dµ(x , y) = µ̂(dy | x)︸ ︷︷ ︸
conditional

φ(dx)︸ ︷︷ ︸
marginal

with marginal φ on X and conditional µ̂(dy |x) on Y given x ∈ X .

Theorem (Lass (2022))

The Christoffel function Λµd (x , y) disintegrates into

Λµd (x , y) = Λd
φ(x) · Λνx,d

d (y)

for some measure νx ,d on R.
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Crucial in the proof is the use of the previous duality result of
Nesterov.
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THANK YOU !
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