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2~ We claim that a non-standard application of the CD kernel
provides a simple and easy to use tool (with no optimization
involved) which can help solve problems not only in data
analysis, but also in approximation and interpolation of
(possibly discontinuous) functions. In particular one is able to
recover a discontinuous function with no Gibbs phenomenon.

Outher detectlon Interpolation Recovery
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Consider the following cloud of 2D-points (data set) below

The red curve is the level set
Sy = {x: Qu(x) < v}, 7veERy

of a certain polynomial Q4 € R[xy, x2] of degree 2d.

¥ Notice that S, captures quite well the shape of the cloud. J

Jean B. Lasserre™® The Christoffel Function and some of its applications



Not a coincidence!

= , low degree d for Qy is often enough to get a
pretty good idea of the shape of Q2 (at least in dimension
p=23)
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Cook up your own convincing example

Perform the following simple operations on a preferred cloud of

2D-points: So let d =2, p = 2 and s(d) = (°}7).

o Letvg(x)" = (1,x1,x0, X2, x1 X2, ..., xgxZ ', x§). be the
vector of all monomials x| x} of total degree i + j < d
@ Form the real symmetric matrix of size s(d)

N
My = D Velx(i) va(x(i))
i=1

where the sum is over all points (X(/))j=1..n C RR? of the
data set.
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12" Note that My is the MOMENT-matrix My(1.") of the
empirical measure

N
N ._ l25 )
H’ T N X(I)
i=1

associated with a sample of size N, drawn according to an
unknown measure ..

’¥" The (usual) notation dy(; stands for the DIRAC measure
supported at the point x(/) of R2.
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Recall that the moment matrix My (1) is real symmetric with
rows and columns indexed by (xa)aeNZ, and with entries

My(1) (e, B) = /Qanrﬂ di = pasp, Yo,B€ NZ.

K& |llustrative example in dimension 2 with d = 1:

1 X X

_ | 1 moo o pot

M (1) o= X1 o peo M1
Xo ot H11 fo2

is the moment matrix of ;. of "degree d=1".
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@ Next, form the SOS polynomial:

X > Qu(X) = Va(x)T My (") va(x).

_ X;
= (1,x1, %, %2, ... xYMS (V) | 75

@ Plot some level sets

S, :={x€R?: Qy(x) = 7}

for some values of -, the thick one representing the

particular value y = (%37).
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The Christoffel function Ay : RP — R is the reciprocal
X— Qy(x)”", VxeRP
of the SOS polynomial Q.

IE" |t has a rich history in
and
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The Christoffel function Ay : RP — R is the reciprocal
X— Qy(x)”", VxeRP
of the SOS polynomial Q.

IE" |t has a rich history in
and

2" Among main contributors: Nevai, Totik, Kréo, Lubinsky,
Simon, ...
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Let Q C RP be the compact support of ;. with nonempty interior,
and (P,)aene be a family of orthonormal polynomials w.r.t. /.

The vector space R[x]y viewed as a subspace of L?(;) is a
Reproducing Kernel Hilbert Space (RKHS).
lts reproducing kernel

(x,y) = Ki(X,y) == > Pa(x , VYX,yERP,

la|<d

is called the Christoffel-Darboux kernel.
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The reproducing property

X q(x) = /Q KE(%Y) q(Y) du(y). Vg € R[Xa. J

I¥” useful to determinate the best degree-d polynomial
approximation

inf || —
qelllg[x]d || qHLZ(/L)

of fin L2(y). Indeed:

fd,a

X fy(X) = Y ([ H(¥) Paly) dp) Pa(X) € R[Xlg
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Just to visualize. On [—1, 1], the polynomial

x—K(y,x), xe[-1,1];y =0,05,1.

mimics the Dirac measure at y (same moments up to degree
5,10, 15.
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The Christoffel function N} : RP — R is defined by:

E= Ny = D Pal)? = K§(6,€), VEERP,

la]<d

and it also satisfies the variational property:

HE) = mi Zdp = RP.
Ni() = jmin { [ PR PO =1}, Ve
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Theorem
The Christoffel function N} : RP — R is defined by:

E= Ny = D Pal)? = K§(6,€), VEERP,

la]<d

and it also satisfies the variational property:

L) = mi 2du = RP.
Ni() = jmin { [ PR PO =1}, Ve

IE” Alternatively

N ™" = va() Mg(p) " vg(C), VEERP.
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B5" Importantly, and crucial for applications, the Christoffel
function identifies the support 2 of the underlying measure .

Theorem

Let the support Q) of 1. be compact with nonempty interior.
Then:

@ Forallx € int(Q2): K} (x,x) = O(dP).

@ Forallx € int(RP \ Q): KJ(x,X) = Q(exp(ad)) for some
a > 0.

IS" |n particular, as d — oo,

dP Niy(x) — 0 very fast whenever x ¢ Q.
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Growth rates for K/ (x,x) = Aly(x)~".

exp(aVd
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Some other properties

@ Under some (restrictive) assumption on Q and p
lim s(d) Ny(€) = £.(&)w(€)™
d—o0

where w is the density of an
intrinsically associated with €.

For instance with p = 1 and Q = [—1,1], w(¢) = /1 — €2
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Some other properties

@ Under some (restrictive) assumption on Q and p
Jim s(d)AG(€) = fu() (€)™

where w is the density of an

intrinsically associated with €.

For instance with p =1 and Q = [-1,1], w(&) = /1 — €2,
@ If x and v have same support Q2 and respective densities f,

and f, w.r.t. Lebesgue measure on €, positive on €2, then:

o MO ()
d=oo AG(€)  £(§)°

VEEQ.

1F" useful for
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2" For instance one may decide to classify as outliers all points

N =
¢ such that Ay (¢) < (P19) .
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2" For instance one may decide to classify as outliers all pointsJ

N 1
¢ such that Ay (¢) < (p;d) .

IE” Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques,
(the degree d), and
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¢ such that /\‘(;N(g) < (p+d)_1.

2" For instance one may decide to classify as outliers all pointsJ
p

IE” Such a strategy (even with relatively low degree d) is as
efficient as more elaborated techniques,
(the degree d), and

IE” | ass. & Pauwels (2016) Sorting out typicality via the
inverse moment matrix SOS polynomial, .

Lass. & Pauwels (2019) The empirical Christoffel function with
applications in data analysis,

Lass. (2022) On the Christoffel function and classification in
data analysis.
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Manifold learning

A measure ;. on compact set Q is completely determined by its
moments and therefore it should not be a surprise that its
moment matrix My(/.) contains a lot of information.

12" We have already seen that its inverse My(1.)~" defines the
Christoffel function.

5~ When 1. is degenerate and its support 2 is contained in a
zero-dimensional real algebraic variety \/ then the kernel of

M, (1) identifies the of a corresponding of R[x]
(the vanishing ideal of V).
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For instance let Q ¢ SP~1 (the Euclidean unit sphere of RP)
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Then the kernel of My4(1:) contains vectors of coefficients of
polynomials in the ideal generated by the quadratic polynomial
X g(x):=1— x|

In fact and remarkably,

rank Mg (1) = p(d)

for some univariate polynomial p (the Hilbert polynomial
associated with the algebraic variety) which is of degree ¢ if t is
the dimension of the variety.

For instance t = p — 1 if the support is contained in the sphere
SP—1 of RP.

I£” Pauwels E., Putinar M., Lass. J.B. (2021). Data analysis
from empirical moments and the Christoffel function, Found.
Comput. Math. 21, pp. 243-273.
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Intuitively, with

A" ()" & Vg(x)" (Mg (s2) + el)~"va(x)

- P.(x)? Pa(x)?

L 1 _ a

AT = ST X s
Aa=0 Aa>0
—_———— —_—

identifies the variety where on the variety
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).

%" They can be exploited to extract various useful information
on the data set.
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BS” Again this illustrates how quite sophisticated concepts of
algebraic geometry are hidden and encapsulated
in the moment matrix Mg(1).

%" They can be exploited to extract various useful information
on the data set.

¥ |n addition, extraction of this information can be done via
quite simple linear algebra techniques.
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I~ However

for non modest dimension of data, matrix inversion of M;1 does
not scale well ...

4

Jean B. Lasserre* The Christoffel Funct d some of its applications



I~ However

for non modest dimension of data, matrix inversion of M51 does
not scale well ...

B2~ On the other hand

for evaluation A(£) at a point ¢ € RP, the variational formulation

Bley — 2 RP
N(©) Péan[r;]d /P du: P( 1}, VeeRP.

is the simple quadratic programming problem.

min {p"Mgp : vg()Tp =1},
pE cRs(d)

which can be solved quite efficiently.
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The Christoffel function for approximation

A standard approach is to approximate f : [0, 1] — R in some
function space, e.g. its projection on R[x], c L2([0, 1]):

X To(x) - (/ f(y) ydy) (x)

with an orthonormal basis (/)jen of L2([0, 1]).

04

03

02

mbavév_
o

BUT.. °~ = "." " ° Ex: step function

5" Typical Gibbs phenomenon occurs.
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Alternative Positive Kernels with better convergence properties
have been proposed, still in the same framework:

Féjer, Jackson kernels, etc.

o of the CD kernel is LOST
° (e.g when approximating a density)
] than the CD kernel, in

particular uniform convergence (for continuous functions)
on arbitrary compact subsets

.
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An alternative via a non-standard use of CD-kernel

A counter-intuitive detour: Instead of considering f : [0,1] — R,
and the associated measure

du(x) = f(x)dx

on the real line, whose support is [0, 1] € R,
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An alternative via a non-standard use of CD-kernel

A counter-intuitive detour: Instead of considering f : [0,1] — R,
and the associated measure

du(x) = f(x)dx

on the real line, whose support is [0, 1] € R,

15" Rather consider the graph Q c R? of £, i.e., the set
Q= {(x,f(x)): x € [0,1]}.
and the measure

do(x,y) = dxx)(dy) 1j0,1(x) dx

on R? with degenerate support Q C R?.
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Why should we do that as it implies going to R? instead of
staying in R? J

I . because

@ The support of ¢ is the graph of f, and
@ The CF (x,y) — AJ(X, y) of ¢!

Jean B. Lasserre* The Christoffel Function and some of its applications



So suppose that we know the moments
(s‘bi,j = /Xl.yjd(/)(xvy) = / Xif(X)jdX’ I+/§2d7
[0.1]

and let ¢ > 0 and X be the Lebesgue measure on [0, 1].
@ ¥ Compute the degree-d moment matrix of ¢:

My (o) = / Va(x.¥) Va(x. )T do(x, y).

@ ¥ Compute the Christoffel function

X5 NGOG Y) T = g, y) TMa(6 4 2X) " va(x, y).-
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So suppose that we know the moments
(s‘bi,j = /Xl.yjd(/)(xvy) = / Xif(X)jdX’ I+/§2d7
[0.1]

and let ¢ > 0 and X be the Lebesgue measure on [0, 1].
@ ¥ Compute the degree-d moment matrix of ¢:

My (o) = / Va(x.¥) Va(x. )T do(x, y).

@ ¥ Compute the Christoffel function

X5 NGOG Y) T = g, y) TMa(6 4 2X) " va(x, y).-

@ Approximate f(x) by . (x) := arg min, AJ*(x,y)~".
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So suppose that we know the moments
(s‘bi,j = /Xl.yjd(/)(xvy) = / Xif(X)jdX’ I+/§2d7
[0.1]

and let ¢ > 0 and X be the Lebesgue measure on [0, 1].
@ ¥ Compute the degree-d moment matrix of ¢:

My (o) = / Va(x.¥) Va(x. )T do(x, y).

@ ¥ Compute the Christoffel function

X5 NGOG Y) T = g, y) TMa(6 4 2X) " va(x, y).-

@ Approximate f(x) by . (x) := arg min, AJ*(x,y)~".

" minimize a univariate polynomial! (easy)
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Interpolation: ¥~ same story

So suppose that you are given point evaluations {f(x;)}i<n of
an unknown function f on [0, 1], and again let

Va(x,y) == (1,%, 5, X%, xy,y%, ..., xy?= ' y9).

@ ¥ Compute the degree-d empirical moment matrix:
N

Ma(0) = > va((xi, F(x) va(xi, f(x))T,
i=1
of the empirical measure do(x, y) := 1N Zf\; Sx(i),f(x(i)) ON
R?,
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Interpolation: ¥~ same story

So suppose that you are given point evaluations {f(x;)}i<n of
an unknown function f on [0, 1], and again let

Va(x,y) == (1,%, 5, X%, xy,y%, ..., xy?= ' y9).

@ ¥ Compute the degree-d empirical moment matrix:
N

Ma(0) = > va((xi, F(x) va(xi, f(x))T,
i=1
of the empirical measure do(x, y) := 1N Zf\; Sx(i),f(x(i)) ON
R?,
@ ¥ Compute the Christoffel function

X NGE(y) " = va(X, ) Mg(6 4+ e0) " va(x, y) .
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Interpolation: ¥~ same story

So suppose that you are given point evaluations {f(x;)}i<n of
an unknown function f on [0, 1], and again let
Va(X,y) = (1,%,y, X%, xy,y%,...,xy? 1, y9).

@ ¥ Compute the degree-d empirical moment matrix:
N

Ma(0) == > Val(xi, F(x:)) Va(xi, )T,

i=1

of the empirical measure do(x, y) := 1N Zf\; Sx(i),f(x(i)) ON
R?,
@ ¥ Compute the Christoffel function

X NGE(y) " = va(X, ) Mg(6 4+ e0) " va(x, y) .

@ Approximate f(x) by s (x) := arg min, AJ*(x,y)~".
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Interpolation: ¥~ same story

So suppose that you are given point evaluations {f(x;)}i<n of
an unknown function f on [0, 1], and again let

Va(x,y) == (1,%, 5, X%, xy,y%, ..., xy?= ' y9).

@ ¥ Compute the degree-d empirical moment matrix:
N

Ma(0) = > va((xi, F(x) va(xi, f(x))T,
i=1
of the empirical measure do(x, y) := 1N Zf\; Sx(i),f(x(i)) ON
R?,
@ ¥ Compute the Christoffel function

X NGE(y) " = va(X, ) Mg(6 4+ e0) " va(x, y) .

@ Approximate f(x) by s (x) := arg min, AJ*(x,y)~".
5" minimize a univariate polynomial! (easy)
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e = 28~V

ensures convergence properties for bounded measurable
functions, e.g. pointwise on open sets with no point of
discontinuity.

Convergence properties as d 1

o=

o F on open sets with no point of
discontinuity, and so .

° I at a rate O(d~"/2) for Lipschitz
continuous f. )
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In non trivial exemples, the approximation is quite good with
small values of d, and with no Gibbs phenomenon .
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Application in dynamical systems

I¥" When solving Optimal Control problems (OCP) or some
Nonlinear Partial Differential Equations (PDEs) via the

Moment-SOS hierarchy, one ends up with moments up to some
degree 2d, of a measure . supported on the trajectories

t o= x(t), u(t) i=1,...,n;j=1,...m (OCP)
(t,x) — y(x,t) (PDEs)

So it remains to recover such functions from the sole
knowledge of moments of 1, as My(1:) is available!.

5~ CD kernel associated with /!
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Below : Recovery of a (discontinuous) solution of the Burgers
Equation from knowledge of approximate moments of the
occupation measure supported on the solution.

0.8 -

|

i \‘ w | |
“ :'u;.h' 7
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Again note the central role played by the Moment Matrix!

S. Marx, E. Pauwels, T. Weisser, D. Henrion, J.B. Lass.
Semi-algebraic approximation using Christoffel-Darboux kernel,
Constructive Approximation, 2021
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Connections
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Christoffel function and Positive polynomials

Let 2 C R" be the basic semi-algebraic set (with nonempty
interior)

Q:={xeR": gi(x) >0, j=1,...,m}

with g; € R[X]4 and let s; = [deg(g;)/2]. Let go = 1 with s = 0.

With t fixed, its associated quadratic module

Q(Q) = {Zo—jg,- ;o€ X[X]i—s } C R[X]
j=0

is a convex cone with nonempty interior,
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and with dual convex cone of pseudo-moments

Q(Q)* = {y e RSD M5 (gjy) =0, j=0,....m},

where s(t) = ("11).

2" One instead solves the hierarchy of semidefinite programs

pr =sup{\: f—XAe Q(Q)}, teR,

A0

and p; 1 * as t increases. )

= ——————=———= =
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and with dual convex cone of pseudo-moments

Q(Q)* = {y e RSD M5 (gjy) =0, j=0,....m},

where s(t) = ("11).

I¥" These two convex cones are at the core of the
moment-SOS hierarchy in Polynomial Optimization to solve

f* = mxin{f(x): xeQ}.

2" One instead solves the hierarchy of semidefinite programs

pr =sup{\: f—XAe Q(Q)}, teR,

A0

and p; 1 * as t increases.
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Notice that if M;( )~" ~ 0 for all t,

then one may define a family of polynomials (P,)aenr C R[X]
orthonormal w.r.t. y, meaning that

LY(PQ'PB):6a=ﬁ7 a,BGN",

and exactly as for measures, the Christoffel function A}

X N(X)7 =) Pa(x)?,

laf<t

is well-defined.
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Theorem

For every p € int(Q(2)) there exists a sequence of
pseudo-moments y € int(Q:(Q2)*) such that

p) = D (Ve 500 Mi(g;y) " i (%)) gi(x)

M= 104

I
o

NG gi(x)
J

where (g - y) is the sequence of pseudo-moments

G V)a =Y G Voty, a€N' (ifgx) =3, g,X).
Y

In addition L,(p) = Zj,lo (”“—Sj)_

n
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Q.©

Pro v N2
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The proof combines

-I¥" aresult by Nesterov on a one-to-one correspondence
between int(Q:(2)) and int(Q(Q2)*), and

- I the fact that

Vi () TM(gjy) " Ve (X) = AT G (x) "

IE” | ass (2022) A Disintegration of the Christoffel function,
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In other words:

If p € int(Q:(2)) then in Putinar’s certificate

m
p=>Y 09, o €RX s,
j=0

of positivity of p on €,

" one may always choose the SOS weights ¢; in the form

oj(x) = A", j=0,....m,

for some sequence of pseudo-moments y € int(Q;(2)*).
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IE" |n particular,

every SOS polynomial p of degree 2d, in the interior of the
SOS-cone, is the reciprocal of the CF of some linear functional
y € R[x]54. That is:

Px) = Va(X) Mg(y) "vx(x) = N/(x)", VxeR".
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CF — Pell’s equation — equilibrium measure

I¥" What is the link between p € int(Q:(2)) and the mysterious
linear functional y?

Theorem
For some sets Q, 1 € int(Q;(2)) and

1= mg/ 1
ZIOHIEQT_ (x) (1)

where ¢ is the equilibrium measure of Q.

=" (1) can be called a genera/ized polynomial Pell’'s equation
satisfied by the CFs /\?ﬁ‘; (x)~".

Jean B. Lasserre™® The Christoffel Function and some of its applications



A prototype example

Let Q = [-1,1], x = g(x) := 1 — x?, and let
@ (Tn)nen, be the Chebyshev polynomials of first kind,

orthogonal w.rt. © = dx/v1 — x?2

@ (Un)nen) be the Chebyshev polynomials of second kind,
orthogonal w.r.t. g - 1 := v/1 — x2 dx.

Pell’s polynomial equation reads:

1= Th(x)?+(1 —x®) Up_1(x)?, VneN, vx eR.
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A prototype example

Let Q = [-1,1], x = g(x) := 1 — x?, and let
@ (Tn)nen, be the Chebyshev polynomials of first kind,

orthogonal w.rt. © = dx/v1 — x?2

@ (Un)nen) be the Chebyshev polynomials of second kind,
orthogonal w.r.t. g - 1 := v/1 — x2 dx.

Pell’s polynomial equation reads:

1= Th(x)?+(1 —x®) Up_1(x)?, VneN, vx eR.

I¥" nothing less than Markov-Lukacs decomposition of the
constant polynomial “1" nonnegative on [—1,1] !
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Then summing up yields

t t—1
2t+1 = Y T(xP+(1 =x3) > Up1(x)?, Vx,Vn
n=0

n=0
S——— —
A () ATH ()1

= 0o(x) + (1 = x*) 71(x)

IE” So for the interval [-1,1] and p = 1, one obtains that 1 is
the equilibrium measure —%— of the interval [—1,1] !

V1-x2
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5" We have been able to extend this result to the unit box, the
Euclidean unit ball, and the simplex of R, but only for
t =1,2,3. We conjecture that it is also true for all t € N.

IE” Lass (2022) Pell’s equation, sum-of-squares and equlibrium
measure on a compact set,
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Disintegration

Recall that if ;2 is @a measure on a Borel set 2 := X x Y, then it
disintegrates as

du(x,y) = a(dy|x) ¢(dx)

conditional marginal

with marginal ¢ on X and conditional /i(dy|x) on Y given x € X.
v
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Disintegration

Recall that if ;2 is @a measure on a Borel set 2 := X x Y, then it
disintegrates as

du(x,y) = a(dy|x) ¢(dx)

conditional marginal

with marginal ¢ on X and conditional /i(dy|x) on Y given x € X.
v

Theorem (Lass (2022))

The Christoffel function N(x, y) disintegrates into

Na(x,y) = Ng®(x) - A2 (y)

for some measure vy 4 on R.
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Crucial in the proof is the use of the previous duality result of
Nesterov. J
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THANK YOU !
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