Numerical periods and effective algebraic geometry

Pierre Lairez

MATHEXP, Université Paris-Saclay, Inria, France

joint work with Marc Mezzarobba, Eric Pichon-Pharabod, Mohab Safey El Din, Emre Sertöz, and Pierre Vanhove

March 28, 2023 RTCA / Effective aspects in Diophantine approximation

Section 1

Picard–Fuchs equations

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * γ is a complex *n*-cycle on which *F* is continuous
- \mathcal{G} contains information about the geometry of the denominator of F

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous

contains information about the geometry of the denominator of F
often not computable exactly, need hundreds or thousands of digits

Periods

$$\alpha = \int_{\gamma} F(x_1,\ldots,x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous

contains information about the geometry of the denominator of F
often not computable exactly, need hundreds or thousands of digits
in this regime, direct numerical recipes do not work well

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \ldots, x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

- * F_t is a rational function of t and x_1, \ldots, x_n
- * γ is a complex *n*-cycle on which F_t is continuous ($t \in U$)
- \Im contains information about the geometry of the denominator of F_t , as a familiy depending on t
- Somputable exactly up to finitely many constants

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \ldots, x_n) \mathrm{d} x_1 \cdots \mathrm{d} x_n$$

* F_t is a rational function of t and x_1, \ldots, x_n

- * γ is a complex *n*-cycle on which F_t is continuous ($t \in U$)
- \bigcirc contains information about the geometry of the denominator of F_t , as a familiy depending on t
- 💡 computable exactly up to finitely many constants

Picard–Fuchs equations

There are polynomials $p_0(t), \ldots, p_r(t) \neq 0$ such that

 $p_r(t)\alpha^{(r)}(t)+\cdots+p_1(t)\alpha'(t)+p_0(t)\alpha(t)=0.$

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion
- * equality testing, given differential equations and initial condtions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- power series expansion
- * equality testing, given differential equations and initial condtions
- numerical analytic continuation with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- power series expansion
- * equality testing, given differential equations and initial condtions
- numerical analytic continuation with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

* numerical integration

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{1 - \frac{1 - t^2 x^2}{(1 - x^2)y^2}} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{1 - \frac{1 - t^2 x^2}{(1 - x^2)y^2}} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Proof. Observe that

$$(t - t^3) \frac{\partial^2 F}{\partial t^2} + (1 - t^2) \frac{\partial F}{\partial t} + tF = \frac{\partial}{\partial x} \left(-\frac{t(-1 - x + x^2 + x^3)y^2(-3 + 2x + y^2 + x^2(-2 + 3t^2 - y^2))}{(-1 + y^2 + x^2(t^2 - y^2))^2} \right) + \frac{\partial}{\partial y} \left(\frac{2t(-1 + t^2)x(1 + x^3)y^3}{(-1 + y^2 + x^2(t^2 - y^2))^2} \right) = 0$$

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)

Section 2

Computing volume of semi-algebraic sets

joint work with Marc Mezzarobba and Mohab Safey El Din

The semiring of volumes

 $\mathbb{V} \triangleq \left\{ \operatorname{vol}(A) \mid A \subset \mathbb{R}^n \text{ compact semialgebraic defined over } \mathbb{Q} \right\}$

- * $\operatorname{vol}(A) + \operatorname{vol}(B) = \operatorname{vol}(A \times [0, 1] \cup B \times [1, 2])$
- * $vol(A) vol(B) = vol(A \times B)$
- $\Rightarrow \mathbb{V}$ is a semiring.
- \blacksquare Kontsevich–Zagier periods $\triangleq (\mathbb{V} \mathbb{V}) + (\mathbb{V} \mathbb{V})i$

Theorem (Lairez, Mezzarobba, & Safey El Din, 2019)

On input $A = \{f_1 \ge 0, \dots, f_r \ge 0\}$ and p > 0, we can compute $vol(A) \pm 2^{-p}$ in time $f(A)p \log(p)^{3+\epsilon}$.

Case of one equation, smooth boundary

*
$$f \in \mathbb{R}[x_1, \dots, x_n]$$

* $X \triangleq \{x \in \mathbb{C}^n | f(x) = 0\}$
Assumption: X is smooth.
* $A \triangleq \{x \in \mathbb{R}^n | f(x) \ge 0\}$
* $\partial A = \{x \in \mathbb{R}^n | f(x) = 0\} = X \cap \mathbb{R}^n$

Case of one equation, smooth boundary

*
$$f \in \mathbb{R}[x_1, \dots, x_n]$$

* $X \triangleq \{x \in \mathbb{C}^n | f(x) = 0\}$
Assumption: X is smooth.
* $A \triangleq \{x \in \mathbb{R}^n | f(x) \ge 0\}$
* $\partial A = \{x \in \mathbb{R}^n | f(x) = 0\} = X \cap \mathbb{R}^n$

$$\operatorname{vol}(A) = \int_{A} 1 dx_{1} \cdots dx_{n} \stackrel{\text{Stokes}}{=} \int_{\partial A} x_{1} dx_{2} \cdots dx_{n}$$

$$\stackrel{\text{Cauchy}}{=} \int_{\partial A} \left(\frac{1}{2\pi i} \oint_{\text{circle around } p} \frac{x_{1}}{f} \frac{\partial f}{\partial x_{1}} d\nu \right) dx_{2} \cdots dx_{n}$$

$$= \frac{1}{2\pi i} \oint_{\text{Tube}(\partial A)} \frac{x_{1}}{f} \frac{\partial f}{\partial x_{1}} dx_{1} \cdots dx_{n}. \quad \P \text{ This is a period!}$$

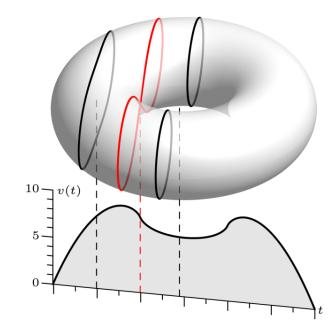
Volume of a slice

*
$$f \in \mathbb{R}[x_1, \dots, x_n]$$

* $A_t \triangleq A \cap \{x_n = t\} \subset \mathbb{R}^{n-1}$

*
$$t \mapsto \operatorname{vol}(A_t)$$
 is continuous and piecewise analytic
* $\operatorname{vol}(A) = \int_{-\infty}^{\infty} \operatorname{vol}(A_t) dt$
* $\operatorname{vol}(A_t) = \underbrace{\frac{1}{2\pi i} \oint_{\operatorname{Tube}(\partial A_t)} \frac{x_1}{f|_{x_n=t}} \frac{\partial f|_{x_n=t}}{\partial x_1} dx_1 \cdots dx_{n-1}}_{\mathcal{Tube}(\partial A_t)}}$

satisfies a Picard-Fuchs equation!

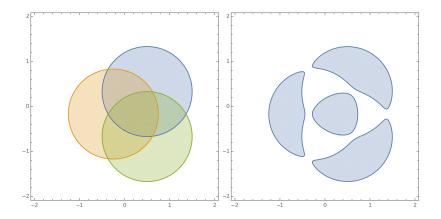


Algorithm (single equation, compact case)

def $volume(\{f \ge 0\})$:
[symbolic integration]
compute a differential equation (E) for $\oint \frac{x_1}{f _{x_n=t}} \frac{\partial f _{x_n=t}}{\partial x_1} dx_1 \cdots dx_{n-1}$
[real algebraic geometry]
compute $\Sigma \subset \mathbb{R}$ such that $\operatorname{vol}(A_ullet)$ is analytic on $\mathbb{R} \setminus \Sigma$
$v \leftarrow 0$
for each <i>I</i> bounded component of $\mathbb{R} \setminus \Sigma$:
[induction on dimension]
evaluate $vol(A_{\bullet})$ at sufficiently many points in I
deduce initial conditions for $vol(A_{\bullet})$
$v \leftarrow v + \int_I \operatorname{vol}(A_t) \mathrm{d}t$
return v

Several inequalities

* $f_1, \dots, f_r \in \mathbb{Q}[x_1, \dots, x_n]$ vol { $f_1 \ge 0, \dots, f_r \ge 0$ } = $\lim_{\epsilon \to 0^+}$ vol (some c.c. of { $f_1 \cdots f_r \ge \epsilon$ })



Section 3

Periods of quartic surfaces

joint work with Emre Sertöz

Periods of a quartic surface

Let $f \in \mathbb{C}[w, x, y, z]_4 \simeq \mathbb{C}^{35}$ such that $X = V(f) \subseteq \mathbb{P}^3$ is smooth.

Let $\gamma_1, \ldots, \gamma_{22}$ be a basis of $H_2(X, \mathbb{Z})$, and let $\omega_X \in \Omega^2(X)$ be the unique holomorphic 2-form on *X*.

The *periods* of *X* are the complex numbers $\alpha_1, \ldots, \alpha_{22}$ defined – up to scaling and choice of basis – by

$$\alpha_i \stackrel{\text{def}}{=} \oint_{\gamma_i} \omega_X = \frac{1}{2\pi i} \oint_{\text{Tube}(\gamma_i)} \frac{dxdydz}{f|_{w=1}}$$

Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice of $H_2(X, \mathbb{Z})$ generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

$$\mathrm{NS}(X) = \left\{ \gamma \in H_2(X, \mathbb{Z}) \ \middle| \ \int_{\gamma} \omega_X = 0 \right\}$$

In coordinates, $NS(X) \simeq \{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1\alpha_1 + \cdots + u_{22}\alpha_{22} = 0 \}$. This is the lattice of *integer relations between the periods*.

The NS group determine the possible degree and genus of all the algebraic curves lying on *X*.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then $NS(X_f) = \mathbb{Z} \cdot (\text{hyperplane section})$.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then $NS(X_f) = \mathbb{Z} \cdot (\text{hyperplane section})$.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then $NS(X_f) = \mathbb{Z} \cdot (\text{hyperplane section})$.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Theorem (van Luijk, 2007)

Let
$$f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$$

Then $NS(X_f) = \mathbb{Z} \cdot h$.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus (\text{countable union of algebraic hypersurfaces})$. Then $NS(X_f) = \mathbb{Z} \cdot (\text{hyperplane section})$.

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Theorem (van Luijk, 2007)

Let
$$f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$$

Then $NS(X_f) = \mathbb{Z} \cdot h$.

Theorem (Lairez & Sertöz, 2019)

Let $f = wx^3 + w^3y + xz^3 + y^4 + z^4$. Then $NS(X_f) = \mathbb{Z} \cdot h$.

The Fermat hypersurface

rank $NS(X_f) = 22 - \dim Vect_{\mathbb{Q}} \{periods\} = 20.$

Indeed there are 48 lines on X_f spanning a sublattice of $H_2(X, \mathbb{Z})$ of rank 20.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

Let $f \in \mathbb{C}[w, x, y, z]_4$ and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

Afflicted by the size of the PF equation (generically order 21 and degree \geq 1000), the algorithm does not always terminate in reasonnable time.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm: 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\},\$

this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\}$, this is a rank 22 lattice. Short vectors are expected to come from
 - integer relations between the periods.
- 3. Compute a LLL-reduced basis of L

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_i [10^{1000} \alpha_i] = x + y\sqrt{-1} \right\}$,

this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

- 3. Compute a LLL-reduced basis of *L*
- 4. Output the *short* vectors

What is a short vector?

Let $f = 3x^3z - 2x^2y^2 + xz^3 - 8y^4 - 8w^4$. With 100 digits of precision on the periods, here is a LLL-reduced basis of the lattice *L* (last 5 columns omitted).

ſ	0 0	0 0	0 0 0 0	0 0	0 0	0 0	•	~	~	~	0 0	•	~	-16690832	12117	79059	1365:		16690	83212	21179	05913	(3652734		937019641 937019641	10000	0000010			
Ł	1	0	0-1	0	0	0	1	1	0	0	0	0	0	-1465118	29903	1954	4367	1789	844	78429	0445	87822	2467823	3 -	365980228	36906	301049	919296		Ł
Ł	0	0	0 0	1	0	0	0	0	0	0	0	0	0	-3371677	20252	26783	1025	8177	2241	10151	9734	03946	5221421	1 -	743116955	9364	872799	910552		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	1.	-1	3570314	79253	35223	11483	3650	7680	66337	76663	51099	9432748	3	940525994	17193	910799	98435		Ł
Ł	0	0	0 0	0	1	0	0	1	0	1	0	0	0	-5527566	71828	38541	53114	4905 -	-1260	18248	32795	83585	5486071	1	535095811	9531	659172	210863		Ł
Ł	0 -	-1	1 0	0	0	0	0	1	0	0	-1	0	0	1043354	31129	99086	4582	5133 -	-2316	16284	15853	18363	3570849)	502730408	35859	624110	25306		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	0 -	-1	-6491595	86430)2031	7369	2632	7707	84867	79670	71100	0945665	5-2	152014469	97379	993155	531272		Ł
Ł	0	0	0 0	0	0	0	0	0	1	1	0	0	0	2777479	83934	17976	9083	5205	-286	25739	98730	61372	2966384	1 -	638732179	4083	584799	90097		Ł
Ł	1	0	0 0	0	0	0	0	0	0	0	1	0	0	1465118	29903	1954	4367	1790	-844	78429	0445	87822	2467823	3	365980228	36906	301049	919296		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	-1	1	1	2508991	46775	54066	4593	6761	5756	15030	0112	56031	1395007	7 -	114830012	24261	040782	247291		Ł
Ł	0	1	0 0	0	0	0	1	0	0	-1	0	0	0	1043354	31129	99086	4582	5133 -	-2316	16284	15853	818363	3570849	-	502730408					Ł
Ł	0	0	0 0	0	0 -	-1	0	0	0	0	0	1.	-1	-1406449	00110	10 10	0001	100	0000	00100				·	429933080		002002	.01007		Ł
Ł	0	0	0 0	0	0	0	0	1	0	0	0	0	0	5949330	,		0000	1001	2,01	00100	0000		0000000		671845991	10 10 1	0000000	10071		Ł
Ł	0	0	0 0	1	0	0 -	-1	0	0	0	0	0	0	3371677	20252	26783	1025	8177 -	-2241	10151	9734	03946	5221421	1	743116955	59364	872799	010552		Ł
Ł	0	0	0 0	0	0	0	0	0	0	0	0	0	1	-8243171	0 1000		0100	1001		10,00					236792300		107 107	00100		Ł
	0	0	0 0	0	0	0	1	0	0	1	0	0	0	3793441									5118395	-	606366776					L
Į.	0	0	0 0	0	1	0	0	0	0	0	0	0	0	5527566					1000	10010			5486070		535095811					Ł
L	0	0	0 0	0	0	1	0	0	0	0	0	0 -	-1	-1406449	00110	10 10	0001		0000	00100				•	429933080					L
L	0	0	1 0	0	0	0	0	0	0	0	0	0	0	-1043354	01100		1001	100	2010	1010.		10000	3570849	·	502730408	0000	001110	10000		L
L	0	0	0 0	0	0	0	0	0	0	0	0	1	0	10/2000	,0000			0071	0000		1005			-	255629063		1, 2100			L
L	0	0	0 1	0	0	0	0	0	0	0	0	č	0	1100110		1001	1007	1,00					2467823	-	365980228					L
	0	0	0 0	0	0	0	0	0	1	0	-1	0	č	2777173	0000								2966384	-	638732179					L
L	0	0	0 0	0	0	0	0	0	0	0	1	0	0	-690252	35930)67784	4274	5100	4571	02914	13435	86863	3258366	5	660652346	68775	867078	348817	· · · .	

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- F Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree ~ $\beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

Separation of periods

Let $f \in \mathbb{Q}[w, x, y, z]_4$ and let $\alpha_1, \dots, \alpha_{22}$ be the periods.

Theorem (Lairez & Sertöz, 2022)

There exist a computable constant c > 0 depending only on f and the choice of the homology basis, such that for any $\mathbf{u} \in \mathbb{Z}^{22}$,

$$|u_1\alpha_1 + \cdots + u_{22}\alpha_{22}| < 2^{-c^{\max_i |u_i|^9}} \Rightarrow u_1\alpha_1 + \cdots + u_{22}\alpha_{22} = 0.$$

Section 4

How to compute periods faster? Effective homology computation

joint work with Eric Pichon-Pharabod and Pierre Vanhove

Double integrals via Fubini

- * $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)
- $\ast \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$
- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)

$$* \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$$

- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Main id<u>ea</u>

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} \underbrace{\oint_{\text{cycle in } X_t} \frac{\omega_X}{dt}}_{\text{satisfies a Picard-Fuchs equation!}}.$$

Double integrals via Fubini

* $f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)

$$* \ X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$$

- * $X_t \triangleq X \cap \left\{\frac{w}{x} = t\right\}$ (hyperplane section)
- **?** Consider the surface as a family of curves

Main idea

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} \underbrace{\oint_{\text{cycle in } X_t} \frac{\omega_X}{dt}}_{\text{cycle in } X_t}.$$

f satisfies a Picard–Fuchs equation!

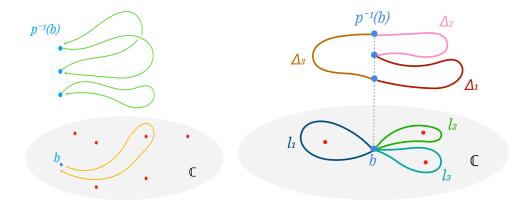
Construction To be implemented, requires a concrete description of γ . We need to *compute* $H_2(X, \mathbb{Z})$

The homology of curves (Tretkoff & Tretkoff, 1984)

- * X a complex algebraic curve
- * $p: X \to \mathbb{P}^1(\mathbb{C})$ nonconstant map
- * $\Sigma \triangleq \{ \text{critical values} \}$
- * Given a loop in $\mathbb{P}^1(\mathbb{C}) \setminus \Sigma$, starting from a base point *b*, and a point in the fiber $p^{-1}(b)$, the loop lifts in *X* uniquely.
- Compute loops in $\mathbb{P}^1(\mathbb{C})$ that lift in a basis of $H_1(X, \mathbb{Z})$

(Costa et al., 2019; Deconinck & van Hoeij, 2001)

Principle of the method



- 1. compute pieces of paths in *X* by lifting loops
- 2. connect them to form loops

Homology of surfaces

	dimension 1	dimension 2
monodromy action lift in <i>X</i> computable with	permute the fiber path path tracking	linear action on $H_1(X)$ <i>hosepipe</i> numerical ODE solving
p ⁻¹ (b)	p ⁻¹ (b)	
b	••••••••••••••••••••••••••••••••••••••	

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

XXX

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

XXX

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Thank you!

References I

Chudnovsky, D. V., & Chudnovsky, G. V. (1990). Computer algebra in the service of mathematical physics and number theory. In *Computers in mathematics (Stanford, CA, 1986)* (pp. 109–232). Dekker, New York.

- Chyzak, F. (2000). An extension of Zeilberger's fast algorithm to general holonomic functions. *Discrete Math.*, *217*(1-3), 115–134. https://doi.org/10/drkkn6
- Costa, E., Mascot, N., Sijsling, J., & Voight, J. (2019). Rigorous computation of the endomorphism ring of a Jacobian. *Math. Comput.*, 88(317), 1303–1339. https://doi.org/10/ggck8g
- Deconinck, B., & van Hoeij, M. (2001). Computing Riemann matrices of algebraic curves. *Physica D: Nonlinear Phenomena*, 152–153, 28–46. https://doi.org/10/c95vnb

References II

Euler, L. (1733). Specimen de constructione aequationum differentialium sine indeterminatarum separatione. *Comment. Acad. Sci. Petropolitanae*, 6, 168–174.

- Koutschan, C. (2010). A fast approach to creative telescoping. *Math. Comput. Sci.*, 4(2-3), 259–266. https://doi.org/10/bhb6sv
- Lairez, P. (2016). Computing periods of rational integrals. *Math. Comput.*, *85*(300), 1719–1752. https://doi.org/10/ggck95
- Lairez, P., Mezzarobba, M., & Safey El Din, M. (2019). Computing the volume of compact semi-algebraic sets. *Proc. ISSAC 2019*, 259–266. https://doi.org/10/ggck7w
- Lairez, P., & Sertöz, E. C. (2019). A numerical transcendental method in algebraic geometry: Computation of Picard groups and related invariants. *SIAM J. Appl. Algebra Geom.*, *3*(4), 559–584. https://doi.org/10/ggck6n

References III

Lairez, P., & Sertöz, E. C. (2022). Separation of periods of quartic surfaces. *Algebra Number Theory* To appear.

- Lefschetz, S. (1924). *L'analysis situs et la géométrie algébrique*. Gauthier-Villars.
- Mezzarobba, M. (2010). NumGFun: A package for numerical and analytic computation with D-finite functions. *Proc. ISSAC 2010*, 139–146. https://doi.org/10/cg7w72
- Mori, S. (1984). On degrees and genera of curves on smooth quartic surfaces in P³. Nagoya Math. J., 96, 127–132. https://doi.org/10/grk9rj
- Pham, F. (1965). Formules de Picard-Lefschetz généralisées et ramification des intégrales. *B. Soc. Math. Fr.*, 79, 333–367. https://doi.org/10/ggck9f

References IV

Picard, É. (1902). Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. *Comptes Rendus Hebd. Séances Académie Sci.*, 134, 69–71.

- Sertöz, E. C. (2019). Computing periods of hypersurfaces. *Math. Comp.*, 88(320), 2987–3022. https://doi.org/10/ggck7t
- Terasoma, T. (1985). Complete intersections with middle Picard number 1 defined over Q. *Math. Z., 189*(2), 289–296.

https://doi.org/10/bhf8gv

Tretkoff, C. L., & Tretkoff, M. D. (1984). Combinatorial group theory, Riemann surfaces and differential equations. In *Contributions to* group theory (pp. 467–519). Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/033/767125

van der Hoeven, J. (1999). Fast evaluation of holonomic functions. *Theoret. Comput. Sci., 210*(1), 199–215. https://doi.org/10/b95scc van Luijk, R. (2007). K3 surfaces with Picard number one and infinitely many rational points. *Algebra Number Theory*, *1*(1), 1–15. https://doi.org/10/dx3cmr