
Verified Arithmetic for Cryptography

John Harrison
Amazon Web Services

Certified and Symbolic-Numeric Computation, Lyon

Tue 23rd May 2023 (11:30–12:30)

Plan for the talk

▶ Arithmetic, bignums, cryptography

▶ Security, side-channels and “constant-time” code

▶ Proving machine code correct

Bignums in cryptography

Bignums (typically 256 – 4096 bits long) are pervasive in
public-key cryptography

▶ RSA: uses modular exponentiation ak mod n directly

▶ ECDH, ECDSA: point operations on elliptic curve over finite
fields

We will usually consider nonnegative numbers (main interest is in
modular operations), but use 2s complement where appropriate for
negation.

Elliptic curves

Often defined by equations of the form y2 = x3 + ax + b

Coordinate operations are just modular bignum arithmetic.

Elliptic curves

Often defined by equations of the form y2 = x3 + ax + b

Coordinate operations are just modular bignum arithmetic.

A few popular prime moduli for elliptic curves

▶ NIST P-256: 2256 − 2224 + 2192 + 296 − 1

▶ NIST P-384: 2384 − 2128 − 296 + 232 − 1

▶ NIST P-521: 2521 − 1

▶ Curve25519: 2255 − 19

▶ SM2: 2256 − 2224 − 296 + 264 − 1

RSA uses much bigger moduli, usually product of two primes.

Bignums in cryptography

Crypto bignums should have three properties:

▶ Efficient

▶ Correct

▶ Secure

Public crypto libraries aim for these goals, but sometimes don’t
achieve all of them.

Bignums in cryptography

Crypto bignums should have three properties:

▶ Efficient

▶ Correct

▶ Secure

Public crypto libraries aim for these goals, but sometimes don’t
achieve all of them.

Improving the public libraries

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security

▶ libcrypto: Cryptography

Efficient, correct and secure

The goal for s2n-bignum is to provide a basic foundational layer of
arithmetic on which libcrypto operations can be based, which is

▶ Efficient: hand-crafted machine code

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

All code is open-source:
https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

Efficient, correct and secure

The goal for s2n-bignum is to provide a basic foundational layer of
arithmetic on which libcrypto operations can be based, which is

▶ Efficient: hand-crafted machine code

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

All code is open-source:
https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

Efficient, correct and secure

The goal for s2n-bignum is to provide a basic foundational layer of
arithmetic on which libcrypto operations can be based, which is

▶ Efficient: hand-crafted machine code

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

All code is open-source:
https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

Efficient, correct and secure

The goal for s2n-bignum is to provide a basic foundational layer of
arithmetic on which libcrypto operations can be based, which is

▶ Efficient: hand-crafted machine code

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

All code is open-source:
https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

Efficient, correct and secure

The goal for s2n-bignum is to provide a basic foundational layer of
arithmetic on which libcrypto operations can be based, which is

▶ Efficient: hand-crafted machine code

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

All code is open-source:
https://github.com/awslabs/s2n-bignum

https://github.com/awslabs/s2n-bignum

Security, side-channels and
“constant-time” code

Cyber-attacks

https://www.economist.com/1843/2017/10/05/

the-crooked-timber-of-humanity

https://www.economist.com/1843/2017/10/05/the-crooked-timber-of-humanity
https://www.economist.com/1843/2017/10/05/the-crooked-timber-of-humanity

Security holes in arithmetic?

https://i.blackhat.com/us-18/Wed-August-8/

us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.

pdf

https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf

Timing and cache attacks (1996, 2005)

https://paulkocher.com/doc/TimingAttacks.pdf

https://papers.freebsd.org/2005/cperciva-cache_

missing.files/cperciva-cache_missing-paper.pdf

https://paulkocher.com/doc/TimingAttacks.pdf
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Side-channels

Just some of many side-channels by which systems may ‘leak’
secret info (like a private key) to an observer:

▶ Execution time

▶ Memory access pattern

▶ Power consumption

▶ Electromagnetic radiation emitted

▶ . . .

▶ Microarchitectural bugs

Main worries in typical multitasking OS on shared machine

Side-channels

Just some of many side-channels by which systems may ‘leak’
secret info (like a private key) to an observer:

▶ Execution time ←
▶ Memory access pattern ←
▶ Power consumption

▶ Electromagnetic radiation emitted

▶ . . .

▶ Microarchitectural bugs

Main worries in typical multitasking OS on shared machine

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you ‘always do the same thing’?

When there is control flow depending on secret data:

if (n >= p) n = n - p;

convert it into dataflow using masking, conditional moves etc.

b = (n < p) - 1;

n = n - (p & b);

How can you ‘always do the same thing’?

When there is control flow depending on secret data:

if (n >= p) n = n - p;

convert it into dataflow using masking, conditional moves etc.

b = (n < p) - 1;

n = n - (p & b);

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

But then the compiler may even recognize this and transform it
back.

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

But then the compiler may even recognize this and transform it
back.

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

But then the compiler may even recognize this and transform it
back.

Are the machine instructions constant-time?

▶ Some definitely not, e.g. division by zero is special

▶ General assumption that simple things like add, mul mostly are

▶ Almost never documented or guaranteed

▶ Interesting exception: ARM with DIT bit

Some empirical results on timing

Times for 384-bit modular inverse at bit densities 0–63,
nanoseconds on Intel® Xeon® Platinum 8175M, 2.5 GHz.

With constant time flag, OpenSSL function is much slower and is
still more variable.

Proving machine code correct

Life’s better in machine code!

Working directly with machine code suits this project:

▶ Access to special instructions, operations on flags

▶ Precise scheduling to maximize efficiency

▶ Fine control of instruction sequence for constant-time-ness

▶ Simpler semantics than mainstream high-level languages

But machine code has familiar big drawbacks too . . .

Life’s better in machine code!

Working directly with machine code suits this project:

▶ Access to special instructions, operations on flags

▶ Precise scheduling to maximize efficiency

▶ Fine control of instruction sequence for constant-time-ness

▶ Simpler semantics than mainstream high-level languages

But machine code has familiar big drawbacks too . . .

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification approach

We verify pre-existing machine code, rather than autogenerate it
‘correct by construction’:

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.

Coding and verification flow

Verifying the actual code

Formalization of code as byte sequence derived from the object file:

define_assert_from_elf "bignum_montmul_p256_mc"

"arm/p256/bignum_montmul_p256.o"

Automatically re-check when code and/or proof changes:

p256/%.correct: proofs/%.ml p256/%.o ;

Verifying the actual code

Formalization of code as byte sequence derived from the object file:

define_assert_from_elf "bignum_montmul_p256_mc"

"arm/p256/bignum_montmul_p256.o"

Automatically re-check when code and/or proof changes:

p256/%.correct: proofs/%.ml p256/%.o ;

Modeling instruction decoding and execution

Decoding instruction byte sequences to their semantics:

...

| [0b1101011001011111000000:22; Rn:5; 0:5] ->

SOME (arm_RET (XREG’ Rn))

| [0b10011011110:11; Rm:5; 0b011111:6; Rn:5; Rd:5] ->

SOME (arm_UMULH (XREG’ Rd) (XREG’ Rn) (XREG’ Rm))

| [1:1; x; 0b1110000:7; ld; 0:1; imm9:9; 0b01:2; Rn:5; Rt:5] ->

SOME (arm_ldst ld x Rt (XREG_SP Rn) (Postimmediate_Offset (word_sx imm9)))

...

Semantics details the state changes from each instruction:

arm_ADDS Rd Rm Rn s =

let m = read Rm s

and n = read Rn s in

let d = word_add m n in

(Rd := d ,,

NF := (ival d < &0) ,,

ZF := (val d = 0) ,,

CF := ~(val m + val n = val d) ,,

VF := ~(ival m + ival n = ival d)) s

Modeling instruction decoding and execution

Decoding instruction byte sequences to their semantics:

...

| [0b1101011001011111000000:22; Rn:5; 0:5] ->

SOME (arm_RET (XREG’ Rn))

| [0b10011011110:11; Rm:5; 0b011111:6; Rn:5; Rd:5] ->

SOME (arm_UMULH (XREG’ Rd) (XREG’ Rn) (XREG’ Rm))

| [1:1; x; 0b1110000:7; ld; 0:1; imm9:9; 0b01:2; Rn:5; Rt:5] ->

SOME (arm_ldst ld x Rt (XREG_SP Rn) (Postimmediate_Offset (word_sx imm9)))

...

Semantics details the state changes from each instruction:

arm_ADDS Rd Rm Rn s =

let m = read Rm s

and n = read Rn s in

let d = word_add m n in

(Rd := d ,,

NF := (ival d < &0) ,,

ZF := (val d = 0) ,,

CF := ~(val m + val n = val d) ,,

VF := ~(ival m + ival n = ival d)) s

Nondeterminism

The semantics is a relation between initial and final states that
might not be deterministic (= a function).

x86_IMUL3 dest (src1,src2) s =

let x = read src1 s and y = read src2 s in

let z = word_mul x y in

(dest := z ,,

CF := ~(ival x * ival y = ival z) ,,

OF := ~(ival x * ival y = ival z) ,,

UNDEFINED_VALUES[ZF;SF;PF;AF]) s

Correctness proved for all possible sequences of states from an
initial state.

Hoare logic + Symbolic simulation

The approach to verification tries to combine the best of two
previous methods:

▶ Machine code Hoare logic (as developed by Magnus Myreen)

▶ Symbolic simulation (as used in Galois’s SAW tool)

These are combined in two ways:

▶ Use Hoare logic for high-level invariants and breakpoints,
symbolic simulation for routine parts.

▶ Symbolic simulation can simulate through subroutines
atomically based on their Hoare triples.

Hoare logic + Symbolic simulation

The approach to verification tries to combine the best of two
previous methods:

▶ Machine code Hoare logic (as developed by Magnus Myreen)

▶ Symbolic simulation (as used in Galois’s SAW tool)

These are combined in two ways:

▶ Use Hoare logic for high-level invariants and breakpoints,
symbolic simulation for routine parts.

▶ Symbolic simulation can simulate through subroutines
atomically based on their Hoare triples.

Verification results

Correctness as elaborated Hoare triples with ‘frame condition’:

|- nonoverlapping (word pc,0x2de) (z,8 * 12) /\

(y = z \/ nonoverlapping (y,8 * 6) (z,8 * 12)) /\

nonoverlapping (x,8 * 6) (z,8 * 12)

==> ensures x86

(\s. bytes_loaded s (word pc) bignum_mul_6_12_mc /\

read RIP s = word(pc + 0x06) /\

C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,6) s = a /\

bignum_from_memory (y,6) s = b)

(\s. read RIP s = word (pc + 0x2d7) /\

bignum_from_memory (z,12) s = a * b)

(MAYCHANGE [RIP; RAX; RBP; RBX; RCX; RDX;

R8; R9; R10; R11; R12; R13] ,,

MAYCHANGE [memory :> bytes(z,8 * 12)] ,,

MAYCHANGE SOME_FLAGS)

Symbolic state representation

ENSURES_INIT_TAC "s0" THEN

BIGNUM_LDIGITIZE_TAC "x_" ‘bignum_from_memory (x,6) s0‘ THEN

Sets up a machine state s0 with initial assumptions and digitized
bignum.

...

3 [‘bytes_loaded s0 (word pc) bignum_mul_6_12_mc‘]

4 [‘read RIP s0 = word (pc + 6)‘]

5 [‘read RDI s0 = z‘]

6 [‘read RSI s0 = x‘]

7 [‘read RDX s0 = y‘]

8 [‘bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] = a‘]

9 [‘bignum_from_memory (y,6) s0 = b‘]

10 [‘MAYCHANGE [] s0 s0‘]

11 [‘read (memory :> bytes64 x) s0 = x_0‘]

...

16 [‘read (memory :> bytes64 (word_add x (word 40))) s0 = x_5‘]

Symbolic state representation

ENSURES_INIT_TAC "s0" THEN

BIGNUM_LDIGITIZE_TAC "x_" ‘bignum_from_memory (x,6) s0‘ THEN

Sets up a machine state s0 with initial assumptions and digitized
bignum.

...

3 [‘bytes_loaded s0 (word pc) bignum_mul_6_12_mc‘]

4 [‘read RIP s0 = word (pc + 6)‘]

5 [‘read RDI s0 = z‘]

6 [‘read RSI s0 = x‘]

7 [‘read RDX s0 = y‘]

8 [‘bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] = a‘]

9 [‘bignum_from_memory (y,6) s0 = b‘]

10 [‘MAYCHANGE [] s0 s0‘]

11 [‘read (memory :> bytes64 x) s0 = x_0‘]

...

16 [‘read (memory :> bytes64 (word_add x (word 40))) s0 = x_5‘]

Symbolic simulation

X86_ACCSTEPS_TAC BIGNUM_MUL_6_12_EXEC (1--132) (1--132) THEN

Effectively ‘executes’ code on the symbolic values

3 [‘bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] = a‘]

4 [‘bignum_of_wordlist [y_0; y_1; y_2; y_3; y_4; y_5] = b‘]

5 [‘2 pow 64 * (val mulhi_s4) + (val mullo_s4) = (val y_0) * (val x_0)‘]

6 [‘2 pow 64 * (val mulhi_s6) + (val mullo_s6) = (val y_0) * (val x_1)‘]

...

111 [‘2 pow 64 * (bitval carry_s126) + (val sum_s126) =

(val sum_s125) + (bitval carry_s124)‘]

115 [‘read (memory :> bytes64 (word_add z (word 48))) s132 = sum_s112‘]

116 [‘read OF s132 <=> carry_s125‘]

117 [‘read RAX s132 = mullo_s123‘]

118 [‘read R11 s132 = sum_s121‘]

119 [‘read R9 s132 = sum_s115‘]

120 [‘read RDX s132 = y_5‘]

...

Symbolic simulation

X86_ACCSTEPS_TAC BIGNUM_MUL_6_12_EXEC (1--132) (1--132) THEN

Effectively ‘executes’ code on the symbolic values

3 [‘bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] = a‘]

4 [‘bignum_of_wordlist [y_0; y_1; y_2; y_3; y_4; y_5] = b‘]

5 [‘2 pow 64 * (val mulhi_s4) + (val mullo_s4) = (val y_0) * (val x_0)‘]

6 [‘2 pow 64 * (val mulhi_s6) + (val mullo_s6) = (val y_0) * (val x_1)‘]

...

111 [‘2 pow 64 * (bitval carry_s126) + (val sum_s126) =

(val sum_s125) + (bitval carry_s124)‘]

115 [‘read (memory :> bytes64 (word_add z (word 48))) s132 = sum_s112‘]

116 [‘read OF s132 <=> carry_s125‘]

117 [‘read RAX s132 = mullo_s123‘]

118 [‘read R11 s132 = sum_s121‘]

119 [‘read R9 s132 = sum_s115‘]

120 [‘read RDX s132 = y_5‘]

...

Conclusion by algebra . . . almost

ENSURES_FINAL_STATE_TAC THEN ASM_REWRITE_TAC[] THEN

CONV_TAC(LAND_CONV BIGNUM_LEXPAND_CONV) THEN ASM_REWRITE_TAC[] THEN

MAP_EVERY EXPAND_TAC ["a"; "b"]

The desired conclusion becomes an algebraic equation:

...

150 [‘read (memory :> bytes64 (word_add z (word 88))) s132 = sum_s126‘]

151 [‘read RIP s132 = word (pc + 727)‘]

‘bignum_of_wordlist

[mullo_s4; sum_s20; sum_s42; sum_s64; sum_s86; sum_s108; sum_s112; sum_s115;

sum_s118; sum_s121; sum_s124; sum_s126] =

bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] *

bignum_of_wordlist [y_0; y_1; y_2; y_3; y_4; y_5]‘

Conclusion by algebra . . . almost

ENSURES_FINAL_STATE_TAC THEN ASM_REWRITE_TAC[] THEN

CONV_TAC(LAND_CONV BIGNUM_LEXPAND_CONV) THEN ASM_REWRITE_TAC[] THEN

MAP_EVERY EXPAND_TAC ["a"; "b"]

The desired conclusion becomes an algebraic equation:

...

150 [‘read (memory :> bytes64 (word_add z (word 88))) s132 = sum_s126‘]

151 [‘read RIP s132 = word (pc + 727)‘]

‘bignum_of_wordlist

[mullo_s4; sum_s20; sum_s42; sum_s64; sum_s86; sum_s108; sum_s112; sum_s115;

sum_s118; sum_s121; sum_s124; sum_s126] =

bignum_of_wordlist [x_0; x_1; x_2; x_3; x_4; x_5] *

bignum_of_wordlist [y_0; y_1; y_2; y_3; y_4; y_5]‘

Custom automation: absence of carries

Algebra plus bound reasoning to show some carries are zero, e.g.
a× b + c ≤ (264 − 1)2 + (264 − 1) = 264(264 − 1) < 2128

ACCUMULATOR_POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o DECARRY_RULE) THEN

DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REAL_ARITH_TAC

The goal is proved.

val it : goalstack = No subgoals

Custom automation: absence of carries

Algebra plus bound reasoning to show some carries are zero, e.g.
a× b + c ≤ (264 − 1)2 + (264 − 1) = 264(264 − 1) < 2128

ACCUMULATOR_POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o DECARRY_RULE) THEN

DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REAL_ARITH_TAC

The goal is proved.

val it : goalstack = No subgoals

Custom automation: irrelevance of carries

In some settings it’s easier to prove the range of the mathematical
result a priori, so that anything beyond a certain bit is irrelevant.
Analogous proof:

ACCUMULATOR_POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o DESUM_RULE) THEN

DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REAL_ARITH_TAC

The approach just proves y ′ ≡ y (mod 2b) by proving that
(y ′ − y)/2b ∈ Z
Sometimes one needs to combine with the other approach for
carries in lower bit positions . . .

Custom automation: irrelevance of carries

In some settings it’s easier to prove the range of the mathematical
result a priori, so that anything beyond a certain bit is irrelevant.
Analogous proof:

ACCUMULATOR_POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o DESUM_RULE) THEN

DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REAL_ARITH_TAC

The approach just proves y ′ ≡ y (mod 2b) by proving that
(y ′ − y)/2b ∈ Z

Sometimes one needs to combine with the other approach for
carries in lower bit positions . . .

Custom automation: irrelevance of carries

In some settings it’s easier to prove the range of the mathematical
result a priori, so that anything beyond a certain bit is irrelevant.
Analogous proof:

ACCUMULATOR_POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o DESUM_RULE) THEN

DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REAL_ARITH_TAC

The approach just proves y ′ ≡ y (mod 2b) by proving that
(y ′ − y)/2b ∈ Z
Sometimes one needs to combine with the other approach for
carries in lower bit positions . . .

Custom automation: irrelevance of modulus multiples

Exactly the same proof automation works for moduli other than
powers of 2, proving y ′ ≡ y (mod m) by proving that
(y ′ − y)/m ∈ Z.

|- nonoverlapping (word pc,0x242) (z,8 * 4)

==> ensures x86

(\s. bytes_loaded s (word pc) (BUTLAST bignum_montmul_p256_mc) /\

read RIP s = word(pc + 0x09) /\

C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,4) s = a /\

bignum_from_memory (y,4) s = b)

(\s. read RIP s = word (pc + 0x238) /\

(a * b <= 2 EXP 256 * p_256

==> bignum_from_memory (z,4) s =

(inverse_mod p_256 (2 EXP 256) * a * b) MOD p_256))

(MAYCHANGE [RIP; RAX; RBX; RCX; RDX;

R8; R9; R10; R11; R12; R13; R14; R15] ,,

MAYCHANGE [memory :> bytes(z,8 * 4)] ,,

MAYCHANGE SOME_FLAGS)

Custom automation: irrelevance of modulus multiples

Exactly the same proof automation works for moduli other than
powers of 2, proving y ′ ≡ y (mod m) by proving that
(y ′ − y)/m ∈ Z.

|- nonoverlapping (word pc,0x242) (z,8 * 4)

==> ensures x86

(\s. bytes_loaded s (word pc) (BUTLAST bignum_montmul_p256_mc) /\

read RIP s = word(pc + 0x09) /\

C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,4) s = a /\

bignum_from_memory (y,4) s = b)

(\s. read RIP s = word (pc + 0x238) /\

(a * b <= 2 EXP 256 * p_256

==> bignum_from_memory (z,4) s =

(inverse_mod p_256 (2 EXP 256) * a * b) MOD p_256))

(MAYCHANGE [RIP; RAX; RBX; RCX; RDX;

R8; R9; R10; R11; R12; R13; R14; R15] ,,

MAYCHANGE [memory :> bytes(z,8 * 4)] ,,

MAYCHANGE SOME_FLAGS)

Questions?

