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Goal of the talk

In this talk I plan to show some of the results we have been able to
develop in the context of validating the existence of invariant tori
in different contexts: from hyperbolic tori in skew product systems,
to KAM (Kolmogorov-Arnold-Moser) tori in both twist maps and
hamiltonian systems.

All our results are looking at being able to prove the existence of
these objects for systems far from the perturbative regime.

Finally, if time permits, I want to share with you some thoughts
that I collected from different discussions with different people
around CAPs (Computer Assisted Proofs).
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A prelude to a prelude

I am very aware of the fact that in this audience ALL of you are
experts in the field and that know what a CAP is, but let me waste
your time showing you some slides I am using nowadays when I
talk about CAPs in front of a more common audience.

I also think that this exercise could contribute to some of the
discussions we are here this week: which relation exists between
CAPs and mathematicians and what do we want to achieve.
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A mathematical prelude: CAP (Computer Assisted Proofs)

In this talk it is crucial that the audience understands how CAPs
are performed in analysis and, for this, Interval Analysis plays a
crucial role.
Short and simple:

Fundamental Principle of CAPs in Analysis

Given any function that is expressable as a finite combination
(+,−, ·, /, ◦) of standard functions (pol, trigo, logs, exps...) plus
bounded unknown functions (reminders of expansions), and given a
bounded interval, then a computer gives you back another interval
containing the image of the former.
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A mathematical prelude: CAP (Computer Assisted Proofs)

With the previous Fundamental Principle one can do a lot. For
example, proving that a finite list of inequalities defined on
compact domains in Rn is true when all sides are of the previous
form.
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A mathematical prelude: CAP (Computer Assisted Proofs)

Remark: if a problem suits the Fundamental Principle, then it can
be proved via CAPs. But, if we don’t see how to accomodate it,
then CAPs are not the way.

Some people dismiss CAPs with sentences like: But a CAP will
never be able to prove this specific result while...
Well, we are now at the level of Nash-Moser schemes are useless
because they don’t help us proving Fermat’s last theorem.
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Our approach in validating
invariant tori
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Focus on our results: CAP (Computer Assisted Proofs)

We produce theorems that suit to the Fundamental Principle. We
write our theorems and, later on, check their hypotheses on
specific problems with the help of CAPs.

We have in mind that the initial data that we have for checking
the hypotheses are an approximation of the invariant torus and, of
course, the dynamical system (explicitly).

Our methods fall in the cathegory of a-posteriori results.
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Classical vs a-posteriori approach

The original approach is in the
perturbative setting.

Like studying f (x , ε) = 0 for ε
close to zero by using power
series.

Or like performing an ε-close to
identity transformation to obtain
a solvable equation.

Our approach is to reconstruct
the necessary statements with
quantitative estimates that
require only to have a good
numerical guess of the solution.

Like studying solutions of
g(x) = f (x , ε0) = 0 by using
Newton-Kantorovich.
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Interlude: CAPs on zeros of functions

If I want to validate the existence and uniqueness of a zero for a
differentiable function f on the interval [0, 1] the easiest way is:

Obtain enclosure of f ([0, 0]) and check that zero is not there.

Obtain enclosure of f ([1, 1]) and check that zero is not there.

Check that the previous 2 enclosures are of opposite sign.

Obtain enclosure of f ′([0, 1]) and check that zero is not there.

Compare this approach with: Given a function g(x , y) such that
g(12 , 0) = 0 and ∂xg(12 , 0) 6= 0 then I know that g(x , ε) has a zero
with (unknown) small ε.
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Reducing the existence to a functional equation

We reduce the problem of invariance of a torus to finding a zero of
a functional equation

F [f ](x) = 0 .

The particular form of this equation is not important now. What
matters is that we have a guess

F [f0](x) = e(x) .

The Newton method consists in obtaining a better solution

F [f0 + h0] = F [f0] + DF [f0] h0 + O2(h0) = 0

Linearized equation

DF [f0] h0 = −e , fk = fk−1 + hk−1
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Reducing the existence to a functional equation

Then we need to prove that the above procedure converges. In the
case of uniformly hyperbolic invariant tori we set a suitable
Banach space X , with F : X → X , and use that fk ∈ X . Then the
existence is derived by Banach Fixed Point Theorem.

Warning

However, in the context of KAM solutions the previous does not
work since the map

DF−1 : X → X is unbounded

Due to the effect of small divisors we need to consider a scale of
Banach spaces X1 ⊂ Xρ ⊂ Xρ−δ ⊂ X0 and work with estimates∥∥∥DF [f ] ◦ L − id

∥∥∥
ρ−δ
≤

∥∥∥F [f ]
∥∥∥
ρ

This is a Nash-Moser scheme (Generalized IFT).
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Flavour of our theorems

Our theorems require the following ingredients:

Good candidates ω ∈ R2n and K : Tn → R2n for solutions
(Given by numerical computations).

A quantitative theorem that asks bounds on the given
candidate that can be computed rigorously with a computer in
finite time.

ω is non-resonant: |k · ω| ≥ γ/|k |τ . (only for KAM tori).

K is an embedding: ‖(K *g)−1‖ρ.

Error of invariance small enough: ‖F [K ]‖ρ.

Twist condition. (only for KAM tori).
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Normally Hyperbolic tori
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The system

We are interested in looking for invariant tori for the skew-product
system F : Td × Rn −→ Rd × Rn of the form

F (θ, x) =

{
θ + ω
f (θ, x)
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Invariance equations

The invariant torus is parameterized by K : Td −→ Rn and
satisfies the invariance equation

f (θ,K (θ)) = K (θ + ω).

Since we are interested in looking for hyperbolic invariant tori, they
must also satisfy there exists maps P : Td −→ GL(Rn), and
Λu : Td −→ GL(Rnu) and Λs : Td −→ GL(Rns ), nu + ns = n such
that

P(θ + ω)−1Dx f (θ,K (θ))P(θ) =

(
Λu(θ) 0

0 Λs(θ)

)
with these Λi being hyperbolically expanding or contracting.

With these two equations and unknowns (K and P), and a
Newton-Kantorovich type argument we can build a theorem
suitable for validation.
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A Validation Theorem

Figure: (from book The parameterization method for Invariant Manifolds, Haro et altri.)
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KAM for twist maps
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Twist maps

Twist maps are maps on T× R such that |∂yF1| ≥ c > 0 (as you
increase the height the map sends you further in th x direction).

A paradigm of them is the Chirikov Standard Map.

F : T× R −→ T× R
(x , y) 7−→ (x + y − ε

2π
sin(2πx), y − ε

2π
sin(2πx)).
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Invariant Tori for Twist Maps

An invariant torus for twists maps is the pair (ω,K ),
K : T −→ T× R satisfying

F (K (θ)) = K (θ + ω).

In this case the linearized dynamics around the torus is not
hyperbolic, but conjugated to(

1 a
0 1

)
a 6= 0. This makes all the business more difficult, since the
linearized operator is noninvertible!
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One step correction

The idea is to correct a quasi-invariant torus K0 with ∆ so

F (K0(θ) + ∆(θ))− K0(θ + ω)−∆(θ + ω) = 0.

Linealizing this last equation and discarding h.o.t. we obtain

F (K0(θ))− K0(θ + ω) + DF (K0(θ))∆(θ)−∆(θ + ω) = 0.

For solving this last linear equation we perform a change of
variables P = (DK0||N) (∆ = Pξ) and obtain the (almost)
constant linear equation(

1 T (θ)
0 1

)(
ξL(θ)
ξN(θ)

)
−
(
ξL(θ + ω)
ξN(θ + ω)

)
= 0.

These are the famous small divisors.
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Interlude about small divisors.

Let me stop here with the hope that we get the flavour of
why KAM schemes are a level higher in difficulty (needing to
combine diophantine conditions on ω with reducing analycity
at each step).
The fundamental linear equation one solves is

f (θ + ω)− f (θ) = g(θ).

In Fourier this is

f̂k =
ĝk

e2πikω − 1
.

To have a formal solution we need that ω is irrational, and
if we want that f̂k decays almost as fast as ĝk we need that
the denominator does not approach to 0 to fast (so ω Dio-
phantine).
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Theorem suitable for validation

I don’t dare to write down the theorem that assures the existence
of invariance of a torus given an approximate one but, the main
ingredients are:

Control of the error in a complex band
e = ‖F (K (θ))− K (θ + ω)‖ρ.

Control on the diophantine constants of ω.

Control on the map around the torus (In particular of T , the
torsion around the torus).

Then we obtain that, if
C1e
γ4δ4τ

≤ 1

then the torus exists. The constant C1 depends on a looooooot of
intermediate computations (norm of the map, its derivative,
torsion estimates...)
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More details of the Computer Assisted Proof part

An important tool needed in our proofs is the use of Computer
Assisted Analysis: How to encode Banach spaces (of periodic
functions) and operate with them.

In particular, we are interested with the following questions:

How to encode analytic periodic functions.

How to bound the error of operating with them (addition,
multiplication...)

How to bound the error of compositions, e.g. sin(f (x)).

How to control analytic norms.
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Encoding Banach spaces in a computer

Let Aρ be the space of analytic periodic functions with radius of
analyticity ρ. This is a Banach space.

Theorem

Let f : Tρ̂ → C be analytic in the complex strip Tρ̂ of size
ρ̂ > 0. Let us consider a regular grid of T of N points. Then,
for 0 ≤ ρ < ρ̂:

‖f − FFT(f )‖ρ ≤ CN(ρ, ρ̂)‖f ‖ρ̂.

where CN(ρ, ρ̂) is exponentially small.

FFT is computed using interval arithmetics (MPFI).

I will not get more into details here because Jason Mireles James promised me he will talk about it
tomorrow at 9:30. Don’t miss the talk!
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An example
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The Chirikov Standard Map

Let us consider the standard map

F : T× R −→ T× R
(x , y) 7−→ (x + y − ε

2π
sin(2πx), y − ε

2π
sin(2πx)).

For ε = 0 we have invariant tori parametrized by

K (θ) =

(
θ
ω

)
,

For ε > 0 (sufficiently small) KAM theory concludes that most of
these curves persist, although they are slightly deformed. These
curves are successively destroyed as ε is increased.

From now on, we pay attention to ω =

√
5− 1

2
.
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Figure: Phase-space of the standard map for ε = 0.97.
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We proof that the golden curve persists for ε ≤ 0.9716.

It is known that for ε = 0.9718 the curve does not exist.

Numerical computations suggest that the breakdown occurs
at εc ' 0.97163540.

We require to do 222 evaluations of the map, and we obtain
that

‖Ktrue − Kapprox‖ρ∗ ≤ 4 · 10−22 .

To numerically observe that there is no curve for
ε = 0.971636, one needs to compute N = 226 iterates
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Further advances
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One important problem in Hamiltonian Mechanics, and Dynamical
Systems in general, is to identify stability (and instability) regions
in phase and parameter space.

Given a particular system with non-perturbative pa-
rameters, and given a particular region of interest
in phase/parameter space, what is the abundance of
quasiperiodic smooth solutions in that region?

The only results in this direction were expressed as asymptotic
bounds with respect to the size of the perturbation.
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Given any family α ∈ A 7→ fα of analytic circle diffeomorphisms, we
answer the following problem:

Obtain (almost optimal) lower bounds for the Lebesgue
measure of parameters α ∈ A such that the map fα is
analytically conjugated to a rigid rotation.

This enlarges our vision about how stability can be effectively
measured.
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We have also produced the Theorem for Hamiltonian systems with
sharp constants γ2 instead of γ4 in the denominator. Moreover,
this result also deals for systems with first integrals without the
need of removing them or the need of dealing with the full
lagrangian torus, only with the dimension of the nonintegrable part.

CAP-NHIM-KAM 34 / 42



Where do we find all these

F., Haro, Reliable Computation of Robust Response Tori on
the Verge of Breakdown, SIADS 2012.

Haro. et altri The parameterization Method for Invariant Tori,
Springer, 2016.

F., Haro, Luque, Rigorous Computer-Assisted Application of
KAM Theory: A Modern Approach, FOCM 2016.

Haro, Luque, A-posteriori KAM theory with optimal estimates
for partially integrable systems, JDE 2019.

F., Haro, Luque, Effective bounds for the measure of
rotations, Nonlinearity 2020.

F., Haro, A Modified Parameterization Method for Invariant
Lagrangian Tori for Partially Integrable Hamiltonian Systems,
(submitted).
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Some reflections about CAPs
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Some points that make KAM heavy in terms of computer
power

In real (but low dimensional) applications the dimension of
the tori are 2, 3, or more. This implies that we have
10243 = 1.073.741.824 Fourier modes. This is memory
expensive (4 teras) and computational expensive. (Evaluating
the error can take 64 days).

The previous point rises the following questions: How do you
send a file that big to a journal? Who will referee something
like this? Also, there is the need of big computers for doing
these computations.

Related to this: Don’t we need to push for some kind of
standards so the referee process is smoother, helps to guide
the editors (who are not always knowledgeable about CAPs)?
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A personal experience refereeing papers

The more papers I referee the longer and convoluted are the
computations they involve. Some of them require that I run them
a week under 120 parallel processes and the installation is not
trivial. So, I have a question?

Shouldn’t we standarize all these?

Sometimes it seems that we are still in an experimental phase
where non-standarization is allowed.

Do we need to submit code? How long will survive the code? In 30
years, will it be possible to run these codes?
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The CAPs Manifesto (even better: The Lyon Manifesto)

It will be nice to see that experts like all of you gather around a
document and write some basic guidelines about how to submit a
CAP.

A spectre is haunting Mathematics – the spectre of Com-
puter Assisted Proofs.

Some few suggestions (very debatable):

There must be a standard one-to-one between statements on
the paper and their computer proofs on the code. Easy to
locate and easy to distinguish between pencil-and-paper
proofs and CAPS; and code-proofs and auxiliar code.

A suggested structure of the files and folders will be desirable,
easy to navigate and know what is what.

A demand to journals to keep the file codes.

The Manifesto should propose a minimum number of times
and different machines to run the code.
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The End
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Thank you very much!

Jordi-Llúıs Figueras figueras@math.uu.se
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