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What is Isabelle/HOL

• Isabelle: An interactive theorem prover / proof assistant (like Coq, Lean, Mizar)

• Can do multiple logics in principle; mostly Higher-Order Logic (HOL)
• Focus on good automation and high performance
• Unlike e.g. Coq: no dependent types, no attempt to avoid classical logic
• Large library of mathematics (especially analysis)
• Archive of Formal Proofs: Growing collection of entries on Mathematics,

Computer Science, Logic; 748 articles, 457 authors
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Some Examples

A typical structure Isabelle proof: If one of a and b is even, then a ·b is even.
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Some Examples

Dirichlet’s Theorem: Given coprime integers h and n, there are infinitely many
primes congruent h modulo n:
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Some Examples

A famous equality involving the Riemann ζ function:

ζ(2n)= (−1)n+1B2n(2π)2n

2(2n)!
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Some Examples

Stirling’s formula: n!∼ p
2πn

(n
e

)n
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Some Examples

Stirling’s formula for the complex Γ function:

Γ(s)∼
√

2π
s

(s
e

)s
uniformly for |s|→∞ with |Arg s| ≤α<π

Re

Im
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Some Examples

The “Sophomore’s Dream”:
∫ 1

0
x−x dx =

∞∑
k=1

k−k
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A look back

Formalising mathematics tends to be a very tedious and exhausting process, so I
think it is worth stressing how far we have come:

• 40 years ago, formalising the analytic proof of the Prime Number Theorem
was a distant dream.
Larry Paulson: “I don’t know that I expected to see it in my lifetime.”

• 20 years ago it still seemed like an extremely daunting task:
Robert Solovay: “It will take decades until ITPs are up to the task.”

• 15 years ago, John Harrison did it in HOL Light (for fun).
• 5 years ago, I formalised an entire textbook (for fun), with PNT as a part of it.
• Now we are tackling graduate-level maths (elliptic functions, modular forms).
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A look back

(Almost) an entire undergraduate maths textbook formalised

Contents: Dirichlet series, characters, Gauss sums, Riemann ζ function,
L functions, lots of facts about prime numbers
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Current work

About 50 % formalised.
Already done: Elliptic functions, Klein’s j function, basic properties of modular
forms, Dedekind’s η function
Up next: Rademacher’s formula for the partition function, advanced results about
modular forms
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Current work

Formalising graduate-level mathematics like this is challenging:
• builds on a great body of underlying mathematics (e.g. complex analysis)

If your library does not have all of it, you’re out of luck

• non-trivial results from other sources are only referenced instead of proven
• great liberties with notation are taken, proofs left very vague, cases and side

conditions omitted
• subtle issues such as cancellation of poles and zeros are ignored

Sometimes page after page can be formalised in a straightfoward way.
But sometimes a single line causes difficulties for days.

But my impression is that things are getting better.
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Current work

The analytic proof of the PNT seemed impossible 30 years ago, very daunting (but
doable) 15 years ago. 5 years ago it was routine and today it is almost trivial!

Why did things get so much easier? Good libraries and good tool support

I will mention four such tools in particular:
• Multiseries expansion
• Laurent series expansions
• Evaluation of winding numbers
• Deformation of integration contours
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Multiseries expansions



“Obvious” Limits

“Routine” limit problems are ubiquitous and mathematicians often do not even
bother giving proofs for them:

• For any y > 0, the following function is bounded for all x ∈R:

sin2(1
2x)+ sinh2(1

2xy)
cosh(xy)+cos(x)

• For any n ∈N, the series

∞∑
k=1

(
log(k )n

k
− log(k +1)n+1 − log(k )n+1

n+1

)

converges due to the comparison test, since the summand is ∼ k−2 log(k )n−1.

14 / 37



“Obvious” Limits

“Routine” limit problems are ubiquitous and mathematicians often do not even
bother giving proofs for them:

• For any y > 0, the following function is bounded for all x ∈R:

sin2(1
2x)+ sinh2(1

2xy)
cosh(xy)+cos(x)

• For any n ∈N, the series

∞∑
k=1

(
log(k )n

k
− log(k +1)n+1 − log(k )n+1

n+1

)

converges due to the comparison test, since the summand is ∼ k−2 log(k )n−1.

14 / 37



“Obvious” Limits

“Routine” limit problems are ubiquitous and mathematicians often do not even
bother giving proofs for them:

• For any y > 0, the following function is bounded for all x ∈R:

sin2(1
2x)+ sinh2(1

2xy)
cosh(xy)+cos(x)

• For any n ∈N, the series

∞∑
k=1

(
log(k )n

k
− log(k +1)n+1 − log(k )n+1

n+1

)

converges due to the comparison test, since the summand is ∼ k−2 log(k )n−1.

14 / 37



“Obvious” Limits

“Routine” limit problems are ubiquitous and mathematicians often do not even
bother giving proofs for them:

• For any y > 0, the following function is bounded for all x ∈R:

sin2(1
2x)+ sinh2(1

2xy)
cosh(xy)+cos(x)

• For any n ∈N, the series

∞∑
k=1

(
log(k )n

k
− log(k +1)n+1 − log(k )n+1

n+1

)

converges

due to the comparison test, since the summand is ∼ k−2 log(k )n−1.

14 / 37



“Obvious” Limits

“Routine” limit problems are ubiquitous and mathematicians often do not even
bother giving proofs for them:

• For any y > 0, the following function is bounded for all x ∈R:

sin2(1
2x)+ sinh2(1

2xy)
cosh(xy)+cos(x)

• For any n ∈N, the series

∞∑
k=1

(
log(k )n

k
− log(k +1)n+1 − log(k )n+1

n+1

)

converges due to the comparison test, since the summand is ∼ k−2 log(k )n−1.

14 / 37



“Obvious” Limits

Proving even much simpler asymptotic estimates in a theorem prover is a
mind-numbingly tedious exercise.

(trust me on this)

But if you type them into Wolfram Alpha, you often get an answer
(usually even the right one).

How do computer algebra systems achieve this?

By computing Multiseries expansions (or something very similar)!
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The real_asymp Method

I looked through the papers from the 90s that explained how these algorithms
work and implemented them in Isabelle.

This is code is proof-producing: You do not need to trust it. To create theorems, it
has to go through the Isabelle kernel.

Applicable to a big class of real-valued functions consisting of arithmetic, log, exp,
trigonometric functions, absolute value, . . .

Not competitive with Mathematica/Maple in scope or performance.

But good enough to help with all asymptotic problems I encountered in “real-world”
formalisation.
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Work in Progress: Laurent series expansions

Complex limits are (as far as I know) harder: many possible directions of
approach, branch cuts, . . .

But one important class of complex functions are actually easy:
meromorphic functions

• meromorphic ↔ differentiable everywhere except for a discrete set of poles.
• A meromorphic function f :C→C can locally be expanded as

f(z)=∑
n≥n0 an(z−z0)

n for some n0 ∈Z
• The exact same techniques that we used for real_asymp still work, but many

things are actually easier.
The theory is all there, but a lot of code has to be written to make it nicely usable.
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Application: Elliptic Functions

Definition
Let ω1,ω2 be two complex numbers. These span a lattice Λ= {aω1 +bω2 | a,b ∈Z}.

• A meromorphic function f is called elliptic if f(z+ω)= f(z) for any ω ∈Λ.

• ℘(z)= 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
is the “simplest” non-constant elliptic function.

• It has the Laurent series expansion ℘(z)= z−2 +∑∞
n=2(n+1)Gn+2zn at z = 0.

19 / 37



Application: Elliptic Functions

Definition
Let ω1,ω2 be two complex numbers. These span a lattice Λ= {aω1 +bω2 | a,b ∈Z}.

• A meromorphic function f is called elliptic if f(z+ω)= f(z) for any ω ∈Λ.

• ℘(z)= 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
is the “simplest” non-constant elliptic function.

• It has the Laurent series expansion ℘(z)= z−2 +∑∞
n=2(n+1)Gn+2zn at z = 0.

19 / 37



Application: Elliptic Functions

Definition
Let ω1,ω2 be two complex numbers. These span a lattice Λ= {aω1 +bω2 | a,b ∈Z}.

• A meromorphic function f is called elliptic if f(z+ω)= f(z) for any ω ∈Λ.

• ℘(z)= 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
is the “simplest” non-constant elliptic function.

• It has the Laurent series expansion ℘(z)= z−2 +∑∞
n=2(n+1)Gn+2zn at z = 0.

19 / 37



Application: Elliptic Functions

Definition
Let ω1,ω2 be two complex numbers. These span a lattice Λ= {aω1 +bω2 | a,b ∈Z}.

• A meromorphic function f is called elliptic if f(z+ω)= f(z) for any ω ∈Λ.

• ℘(z)= 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
is the “simplest” non-constant elliptic function.

• It has the Laurent series expansion ℘(z)= z−2 +∑∞
n=2(n+1)Gn+2zn at z = 0.

19 / 37



Application: Elliptic Functions

20 / 37



Application: Elliptic Functions

20 / 37



Application: Elliptic Functions

Theorem

℘′(z)2 = 4℘(z)3 −60G4℘(z)−140G6

Proof.

Define g(z)=℘′(z)2 −4℘(z)3 +60G4℘(z). Our goal is to show that g(z)=−140G6.
Compute the Laurent expansion of g and find that all the poles cancel.
Because g is elliptic, this means that the image of g is bounded.
By Liouville’s Theorem, g is then constant.
That constant −140G6 can be read off from the Laurent series expansion. □

The proof is trivial – we only have to compute a Laurent series expansion.
But doing this in Isabelle requires a good library for reasoning about poles,
Laurent series, meromorphicity, etc. Which we now have!
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Evaluating Winding Numbers



Winding Numbers

In complex analysis one integrates along contours or “paths”, i.e. smooth functions
[0,1]→C.

Many results require us to
• focus on a certain set of “points of interest”, e.g. the singularities or zeros of

some function f :C→C

• determine the winding number of some contour γ around each such point z
i.e. how often does γ wind around z and in what direction

We are mainly interested in simple closed counter-clock-wise curves.
i.e. all points have winding number 1 or 0
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Winding Numbers

Determining winding numbers is intuitively obvious: you draw the curve on paper
and you can see what the winding number is.

Unfortunately, theorem provers do not have intuition.

Even for relatively simple contours, proving winding numbers is very annoying.
Luckily, Wenda Li developed a tool based on Cauchy Indices that

• works on a proof obligation of the form winding_number γ z = c
• where γ is a concatenation of straight lines and circular arcs
• and reduces the proof obligation to (mostly) algebraic statements
• which can often be solved using Isabelle’s general purpose automation

Definitely not a fully automatic tool, but it does help immensely.
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Deforming Integration Contours



Deforming Integration Contours

Lastly, I will talk in some more detail about the latest addition to our bag of tricks.

This concerns another common problem encountered when formalising a
complex-analytic argument:

Deforming an integration contour in order to avoid “bad” points.
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Counting Points

The following is a problem that arises in proving the
valence formula for modular functions.

Modular functions are complex functions that satisfy
f(z+1)= f(z) and f(−1/z)= f(z).
We want to count the number of zeroes and poles of
f inside the curve γ.

This is done by evaluating
∫
γ

f ′(z)
f(z) dz.

Problem: This integral is not defined if there are
zeros/poles directly on γ!

Solution: Deform γ to a contour γε by adding small
circular arcs of radius ε, then let ε→ 0.
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A Complicated Integration Contour

The following geometric facts here are obvious to
humans:

• γε is still a simple counter-clockwise closed
contour.

• There are no more “bad points” directly on γε.
• Some of the avoided points are inside, others

outside (we need to know which).
• All the bad points not directly on the border are

unaffected.
A rigorous explicit proof of all of these obvious facts
would be so painful it would be unfeasible.

So let’s try something smarter!
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The Wiggle Relation

Our intuition tells us that small deformations do not “significantly” change γ.

We would like to have some relation γ≈ γε that
• captures the notion that γε is equal to γ except for insignificant small local

deformations
• is compositional, i.e. we can prove ≈ for a complicated contour by proving it

locally for its constituent contours
• all relevant properties of γ transfer to γε if we have γ≈ γε
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The Wiggle Relation

Define a relation γ ≈
I/X
γε where

• γ is a simple closed contour and (γε)ε>0 is a family of paths

• I and X are sets of points on γ to avoid
such that for all suff. small ε> 0:

• γε is a simple closed contour and homotopic to γ

• γε only differs from γ within a ε-neighbourhood of I∪X
• all points in I are inside γε and all points in X outside

But: For compositionality, we need to generalise to non-closed contours.
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The Generalised Wiggle Relation

Problem: The words “inside” and “outside” only make sense for closed contours.

ind=0 ind=−1
ind=1

Solution: Don’t ask whether the bad point lies inside γ or outside!
Instead ask whether γ avoids the bad point by swerving left or right .

If γ is a loop, we can easily recover the inside/outside information from this:
For a counter-clockwise loop, left = inside and right = outside.
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The Generalised Wiggle Relation

Okay, so we want a relation γ ≈
L/R

γε that says that γε avoids all points in L by
swerving left and those in R by swerving right

Problem: How do we formally define “γ avoids z by swerving left”?
Solution: Additionally keep track of a dual contour γ̂ε that does the opposite of γε!

γε

γ̂ε

L R R L

cw ccw ccw cw
γε� γ̂ rev

ε

indγε�γ̂ rev
ε
(z)=

{
−1 if z ∈ L

1 if z ∈R
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The Generalised Wiggle Relation

Definition
γ ≈

L/R
γε : γ̂ε if for all sufficiently small ε> 0:

• γε and γ̂ε are simple contours
• γε and γ̂ε are homotopic to γ within an ε-neighbourhood of L ∪R

• indγε�γ̂rev
ε

= indγε(z)− indγ̂ε(z)=
{
−1 if z ∈ L

1 if z ∈R

Theorem
If γ ≈

L/R
γε : γ̂ε and γ is closed, then γ ≈

L/R
γε if γ is clockwise and γ ≈

L/R
γ̂ε if γ is

counter-clockwise.
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The Generalised Wiggle Relation

Our new ternary ≈ relation is compositional:

γ ≈
;/;

γ : γ refl

γ ≈
R/L

γε : γ̂ε

γ ≈
L/R

γ̂ε : γε
flip

γ ≈
L/R

γε : γ̂ε

γrev ≈
L/R

γ̂ rev
ε : γrev

ε

reverse

end(γ)= start(η) γ ≈
L1/R1

γε : γ̂ε η ≈
L2/R2

ηε : η̂ε

γ� η ≈
L1∪L2/R1∪R2

γε� ηε : γ̂ε� η̂ε
Join

This reduces proving ≈ for a concrete complicated path to proving it locally for its
simple constituent paths!
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Basic Avoidance Patterns

Straight line: ≈
{ }/;

:

Circular arc: ≈
{ }/;

:

Straight line corner: ≈
{ }/;

:

Line/arc corner: ≈
{ }/;

:

Non-isolated: ≈
/;

:

These rules have only trivial side conditions and are thus very easy to apply.
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Back to our example

1 Prove that original contour γ is a simple
counter-clockwise loop

2 Cut γ at arbitrary point between any pair of adjacent
bad points

3 Prove ≈ relation for each part using the basic rules
4 Put everything together using join/refl/flip rules
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One last complication

C1

C2

One trick Apostol uses to evaluate the integral:
• C2 is the image of C1 under z 7→ −1/z.

• Since f(−1/z)= f(z), the integrals
∫

C1 and
∫

C2
cancel.

• But: Our C2 is not actually the image of C1!
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the argument work.
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• C2 is not a circular arc around the bad point but

rather the image of C1 under z 7→ −1
z

Does the ≈ relation still hold?
Yes, because ≈ is closed under nice functions.
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Composition

Theorem
Let img(γ)⊆A and h :A →C be a continuous function of degree 1.

Then:
γ ≈

L/R
γε : γ̂ε

h ◦γ ≈
h(L)/h(R)

h ◦γε : h ◦ γ̂ε image

For degree −1 one needs to additionally swap left and right.

In particular, this works for all affine injective functions and all holomorphic
injective functions.
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Conclusion

• Formalisation makes some things that are easy on paper quite difficult.

• This forces us to come up with new tricks to get around these difficulties.
• It can be useful to look at what other mathematical software does

(→ multiseries)
• . . . or two try to somehow translate human intuition into a rigorous justification

(→ the “wiggle relation”)
In any case, thanks to our tools and libraries we are now at a point where a small
team can routinely tackle graduate-level maths “for fun”.
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