A Lindemann–Weierstrass theorem for *E*-functions

Effective Aspects in Diophantine Approximation

Éric Delaygue

Camille Jordan Institute, Lyon, France

Lyon, March 30, 2023

Structure of the talk

- Classical results and questions
- 2 Hermite–Lindemann and *E*-functions
- 3 Lindemann–Weierstrass and *E*-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

Structure of the talk

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Completely effectively solved by Adamczewski–Rivoal (2018) with refinements by Bostan–Rivoal–Salvy (2022). Based on

- André's theory of E-operators (2000)
- Beukers' refinement of Siegel-Shidlovskii theorem (2006)

Lindemann-Weierstrass (1882-1885)

If $\alpha_1,\ldots,\alpha_n\in\overline{\mathbb{Q}}$ are distinct, then $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Lindemann-Weierstrass (1882–1885)

If $\alpha_1,\ldots,\alpha_n\in\overline{\mathbb{Q}}$ are distinct, then $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Question 2

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

Lindemann-Weierstrass (1882-1885)

If $\alpha_1,\ldots,\alpha_n\in\overline{\mathbb{Q}}$ are distinct, then $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Question 2

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

Lindemann-Weierstrass

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} .

Lindemann-Weierstrass (1882–1885)

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are distinct, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Question 2

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

Lindemann-Weierstrass

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} .

Question 3

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ be \mathbb{Q} -linearly independent. Are $f(\alpha_1), \ldots, f(\alpha_n)$ algebraically independent over \mathbb{Q} ?

Foundational results

Foundational results

André (2000) : E-operators

Every *E*-function is annihilated by a differential operator which has only 0 and ∞ as possible singularities.

Foundational results

André (2000) : E-operators

Every *E*-function is annihilated by a differential operator which has only 0 and ∞ as possible singularities.

Beukers (2006): Refinement of the Siegel-Shidlovskii theorem

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of *E*-functions satisfying Y' = AY where *A* is an $n \times n$ -matrix with entries in $\overline{\mathbb{Q}}(z)$. Denote the common denominator of the entries of *A* by T(z).

Let $\alpha \in \overline{\mathbb{Q}}$ satisfying $\alpha T(\alpha) \neq 0$.

Then, for any homogeneous polynomial $P \in \overline{\mathbb{Q}}[X_1, \ldots, X_n]$ such that $P(f_1(\alpha), \ldots, f_n(\alpha)) = 0$, there exists a polynomial $Q \in \overline{\mathbb{Q}}[Z, X_1, \ldots, X_n]$, homogeneous in the variables X_1, \ldots, X_n , such that $Q(\alpha, X_1, \ldots, X_n) = P(X_1, \ldots, X_n)$ and $Q(z, f_1(z), \ldots, f_n(z)) = 0$.

Structure of the talk

- Classical results and questions
- 2 Hermite–Lindemann and *E*-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

We say that f is purely transcendental if Exc(f) is empty.

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

We say that f is purely transcendental if Exc(f) is empty.

• Hermite–Lindemann : exp is purely transcendental.

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

We say that f is purely transcendental if Exc(f) is empty.

- Hermite-Lindemann : exp is purely transcendental.
- Siegel (1929) : Bessel function J_0 is purely transcendental :

$$J_0(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{z}{2}\right)^{2n}.$$

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental?

Exceptional set

$$\operatorname{Exc}(f) = \{ \alpha \in \overline{\mathbb{Q}}^{\times} : f(\alpha) \in \overline{\mathbb{Q}} \}.$$

We say that f is purely transcendental if Exc(f) is empty.

- Hermite-Lindemann : exp is purely transcendental.
- Siegel (1929) : Bessel function J_0 is purely transcendental :

$$J_0(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{z}{2}\right)^{2n}.$$

• Bostan–Rivoal–Salvy (2022) : $|\operatorname{Exc}(f)| = d$

$$f(x) = \sum_{n=0}^{\infty} \binom{n+d}{d} \frac{1}{(a+d+1)_n} z^n, \quad (a \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}).$$

• An algebraic *E*-function is polynomial.

- An algebraic *E*-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.

- An algebraic *E*-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions!

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions!

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental *E*-function f can be written in a unique way as f=p+qg with $p,q\in \overline{\mathbb{Q}}[z], q$ monic, $q(0)\neq 0$, $\deg(p)<\deg(q)$ and g is a purely transcendental *E*-function.

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions!

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental E-function f can be written in a unique way as f=p+qg with $p,q\in \overline{\mathbb{Q}}[z], q$ monic, $q(0)\neq 0$, $\deg(p)<\deg(q)$ and g is a purely transcendental E-function.

HL algorithm by Adamczewski-Rivoal (2018)

It takes an *E*-function f as input. It first says whether f is transcendental or not. Then it returns $\operatorname{Exc}(f)$ if f is transcendental.

- An algebraic *E*-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+qf)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental *E*-functions!

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental *E*-function f can be written in a unique way as f=p+qg with $p,q\in \overline{\mathbb{Q}}[z], q$ monic, $q(0)\neq 0$, $\deg(p)<\deg(q)$ and g is a purely transcendental *E*-function.

HL algorithm by Adamczewski-Rivoal (2018)

It takes an *E*-function f as input. It first says whether f is transcendental or not. Then it returns $\operatorname{Exc}(f)$ if f is transcendental.

Remark: improved by Bostan–Rivoal–Salvy (2022). This yields an algorithm to compute canonical decompositions.

Structure of the talk

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

• First obstruction : $\alpha_1, \ldots, \alpha_n$ must be non-exceptional values for f.

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

- First obstruction : $\alpha_1, \ldots, \alpha_n$ must be non-exceptional values for f.
- Second obstruction : difference equations such as $J_0(-x) = J_0(x)$.

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ distinct. Are $f(\alpha_1), \ldots, f(\alpha_n)$ $\overline{\mathbb{Q}}$ -linearly independent?

- First obstruction : $\alpha_1, \ldots, \alpha_n$ must be non-exceptional values for f.
- Second obstruction : difference equations such as $J_0(-x) = J_0(x)$.

Siegel (1929)

If $\alpha_1^2, \ldots, \alpha_n^2$ are pairwise distinct non-zero algebraic numbers, then $J_0(\alpha_1), \ldots, J_0(\alpha_n)$ are algebraically independent over \mathbb{Q} .

On Beukers' lifting result

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent *E*-functions.

On Beukers' lifting result

Let $Y=(f_1,\ldots,f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

On Beukers' lifting result

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

When $\alpha T(\alpha) \neq 0$

Then $f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

When $\alpha T(\alpha) \neq 0$

Then $f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

When $T(\alpha) = 0$

There exists a non-trivial $\overline{\mathbb{Q}}$ -linear relation between $f_1(\alpha), \ldots, f_n(\alpha)$.

Let $Y=(f_1,\ldots,f_n)^{ op}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

When $\alpha T(\alpha) \neq 0$

Then $f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

When $T(\alpha) = 0$

There exists a non-trivial $\overline{\mathbb{Q}}$ -linear relation between $f_1(\alpha), \ldots, f_n(\alpha)$.

Indeed, write B(z) = T(z)A(z). Then T(z)Y'(z) = B(z)Y(z) yields $0 = B(\alpha)Y(\alpha)$.

Let $Y = (f_1, \dots, f_n)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$ -linearly independent E-functions.

$$Y' = AY$$
.

Write T(z) for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

When $\alpha T(\alpha) \neq 0$

Then $f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

When $T(\alpha) = 0$

There exists a non-trivial $\overline{\mathbb{Q}}$ -linear relation between $f_1(\alpha), \ldots, f_n(\alpha)$.

Indeed, write B(z) = T(z)A(z). Then T(z)Y'(z) = B(z)Y(z) yields $0 = B(\alpha)Y(\alpha)$.

<u>Even more</u>: Every such relation can be explicitely given by the system through a desingularization process by Beukers.

Lindemann-Weierstrass

Let $\alpha_1, \ldots, \alpha_n$ be distinct algebraic numbers and consider $f_i(z) = e^{\alpha_i z}$.

$$\begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}' = \begin{pmatrix} \alpha_1 \\ & \ddots \\ & & \alpha_n \end{pmatrix} \begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}.$$

We have T(z)=1 so $T(1)\neq 0$ and $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Lindemann-Weierstrass

Let $\alpha_1, \ldots, \alpha_n$ be distinct algebraic numbers and consider $f_i(z) = e^{\alpha_i z}$.

$$\begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}' = \begin{pmatrix} \alpha_1 \\ & \ddots \\ & & \alpha_n \end{pmatrix} \begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}.$$

We have T(z)=1 so $T(1)\neq 0$ and $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Problem</u>: Given an *E*-function f and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$:

• Are $f(\alpha_1 z), \ldots, f(\alpha_n z)$ linearly independent over $\overline{\mathbb{Q}}(z)$?

Lindemann-Weierstrass

Let $\alpha_1, \ldots, \alpha_n$ be distinct algebraic numbers and consider $f_i(z) = e^{\alpha_i z}$.

$$\begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}' = \begin{pmatrix} \alpha_1 \\ & \ddots \\ & & \alpha_n \end{pmatrix} \begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}.$$

We have T(z)=1 so $T(1)\neq 0$ and $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Problem</u>: Given an *E*-function f and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$:

- Are $f(\alpha_1 z), \ldots, f(\alpha_n z)$ linearly independent over $\overline{\mathbb{Q}}(z)$?
- Is *T*(1) non-zero?

Lindemann-Weierstrass

Let $\alpha_1, \ldots, \alpha_n$ be distinct algebraic numbers and consider $f_i(z) = e^{\alpha_i z}$.

$$\begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}' = \begin{pmatrix} \alpha_1 \\ & \ddots \\ & & \alpha_n \end{pmatrix} \begin{pmatrix} e^{\alpha_1 z} \\ \vdots \\ e^{\alpha_n z} \end{pmatrix}.$$

We have T(z)=1 so $T(1)\neq 0$ and $e^{\alpha_1},\ldots,e^{\alpha_n}$ are $\overline{\mathbb{Q}}$ -linearly independent.

Problem : Given an *E*-function f and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$:

- Are $f(\alpha_1 z), \ldots, f(\alpha_n z)$ linearly independent over $\overline{\mathbb{Q}}(z)$?
- Is *T*(1) non-zero?

How to choose n and $\alpha_1, \ldots, \alpha_n$ to answer yes twice?

To every *E*-function corresponds a *G*-series $\psi(f)$ defined by

$$\psi\left(\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n\right)=\sum_{n=0}^{\infty}a_nz^n.$$

To every *E*-function corresponds a *G*-series $\psi(f)$ defined by

$$\psi\left(\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n\right)=\sum_{n=0}^{\infty}a_nz^n.$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,

To every *E*-function corresponds a *G*-series $\psi(f)$ defined by

$$\psi\left(\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n\right)=\sum_{n=0}^{\infty}a_nz^n.$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,
- has finitely many singularities at finite distance, the set of which we denote by $\mathfrak{S}(f)$.

To every *E*-function corresponds a *G*-series $\psi(f)$ defined by

$$\psi\left(\sum_{n=0}^{\infty}\frac{a_n}{n!}z^n\right)=\sum_{n=0}^{\infty}a_nz^n.$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,
- has finitely many singularities at finite distance, the set of which we denote by $\mathfrak{S}(f)$.

Examples

- $\psi(\exp) = 1/(1-z)$ and $\mathfrak{S}(\exp) = \{1\}.$
- $\psi(J_0) = 1/\sqrt{1+z^2}$ and $\mathfrak{S}(J_0) = \{-i, i\}$.

A Lindemann–Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ non-zero such that

- for all i, $\alpha_i \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_1, \rho_2 \in \mathfrak{S}(f)$, $\alpha_i/\alpha_j \neq \rho_1/\rho_2$.

Then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

A Lindemann–Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ non-zero such that

- for all i, $\alpha_i \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_1, \rho_2 \in \mathfrak{S}(f)$, $\alpha_i/\alpha_i \neq \rho_1/\rho_2$.

Then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Exponential function

exp is purely transcendental and $\mathfrak{S}(\exp) = \{1\}$. The second condition reads $\alpha_i \neq \alpha_j$: we retrieve the Lindemann–Weierstrass theorem.

A Lindemann–Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ non-zero such that

- for all i, $\alpha_i \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_1, \rho_2 \in \mathfrak{S}(f)$, $\alpha_i/\alpha_j \neq \rho_1/\rho_2$.

Then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Exponential function

exp is purely transcendental and $\mathfrak{S}(\exp) = \{1\}$. The second condition reads $\alpha_i \neq \alpha_j$: we retrieve the Lindemann–Weierstrass theorem.

Bessel function

 J_0 is purely transcendental and $\mathfrak{S}(J_0) = \{-i, i\}$. The second condition reads $\alpha_i^2 \neq \alpha_j^2$. We retrieve the linear part of Siegel's result.

Structure of the talk

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s>r and rational parameters. Let α_1,\ldots,α_n be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1,F(\alpha_1),\ldots,F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s>r and rational parameters. Let α_1,\ldots,α_n be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1,F(\alpha_1),\ldots,F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Hints</u>: Write k = s - r and consider the *E*-function $f(z) = F(z^k)$.

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s>r and rational parameters. Let α_1,\ldots,α_n be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1,F(\alpha_1),\ldots,F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Hints</u>: Write k = s - r and consider the *E*-function $f(z) = F(z^k)$.

• $\psi(f) = H(kz^k)$ where H is a hypergeometric G-function.

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s>r and rational parameters. Let α_1,\ldots,α_n be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1,F(\alpha_1),\ldots,F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Hints</u>: Write k = s - r and consider the *E*-function $f(z) = F(z^k)$.

- $\psi(f) = H(kz^k)$ where H is a hypergeometric G-function.
- Elements of $\mathfrak{S}(f)$ are of the form ρ/k where ρ is a k-th root of unity.

We consider (entire) hypergeometric functions

$$F(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $s > r \ge 0$, $a_i, b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ and $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ for $n \ge 1$.

D. (2022)

Let F be a non-polynomial hypergeometric function with s>r and rational parameters. Let α_1,\ldots,α_n be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1,F(\alpha_1),\ldots,F(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

<u>Hints</u>: Write k = s - r and consider the *E*-function $f(z) = F(z^k)$.

- $\psi(f) = H(kz^k)$ where H is a hypergeometric G-function.
- Elements of $\mathfrak{S}(f)$ are of the form ρ/k where ρ is a k-th root of unity.
- if $\alpha_i = \beta_i^k$, then $\alpha_i \neq \alpha_j$ implies $\beta_i/\beta_j \neq \rho_1/\rho_2$.

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^{n}.$$

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^{n}.$$

The following calculations were done by Alin Bostan:

• A linear differential equation satisfied by f.

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^{n}.$$

The following calculations were done by Alin Bostan:

- A linear differential equation satisfied by f.
- Application of the Bostan–Rivoal–Salvy implementation of Adamczewski–Rivoal algorithm: f is purely transcendental.

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^{n}.$$

The following calculations were done by Alin Bostan:

- A linear differential equation satisfied by f.
- Application of the Bostan–Rivoal–Salvy implementation of Adamczewski–Rivoal algorithm: f is purely transcendental.
- A differential operator annihilating $\psi(f)$ with a minimal number of singularities: the roots ρ_1, ρ_2 and ρ_3 of

$$23z^3 + 128z^2 + 128z - 256$$
.

Consider

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2n/3 \rfloor} \frac{(1/4)_{n-m}}{(2n-3m)!(2m)!} z^{n}.$$

The following calculations were done by Alin Bostan:

- A linear differential equation satisfied by f.
- Application of the Bostan–Rivoal–Salvy implementation of Adamczewski–Rivoal algorithm: f is purely transcendental.
- A differential operator annihilating $\psi(f)$ with a minimal number of singularities: the roots ρ_1, ρ_2 and ρ_3 of

$$23z^3 + 128z^2 + 128z - 256$$
.

• If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are non-zero and such that $\alpha_i/\alpha_j \neq \rho_k/\rho_\ell$, then $1, f(\alpha_1), \ldots, f(\alpha_n)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Structure of the talk

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary: $f_i(x) = f(\alpha_i x)$ with $\alpha_i/\alpha_j \neq \rho_1/\rho_2$ and $\alpha = 1$.

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary: $f_i(x) = f(\alpha_i x)$ with $\alpha_i/\alpha_j \neq \rho_1/\rho_2$ and $\alpha = 1$.

<u>Hints</u>: By contradiction. Set $f_0 = 1$ and:

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary:
$$f_i(x) = f(\alpha_i x)$$
 with $\alpha_i/\alpha_j \neq \rho_1/\rho_2$ and $\alpha = 1$.

<u>Hints</u>: By contradiction. Set $f_0 = 1$ and:

• Consider a non-trivial relation $\lambda_0 f_0(\alpha) + \cdots + \lambda_n f_n(\alpha) = 0$.

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary: $f_i(x) = f(\alpha_i x)$ with $\alpha_i/\alpha_j \neq \rho_1/\rho_2$ and $\alpha = 1$.

<u>Hints</u>: By contradiction. Set $f_0 = 1$ and:

- Consider a non-trivial relation $\lambda_0 f_0(\alpha) + \cdots + \lambda_n f_n(\alpha) = 0$.
- André's theory of *E*-operators : f_0, \ldots, f_n together with some derivatives form a vector solution of a system Y' = AY with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.

General statement

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are $\overline{\mathbb{Q}}$ -linearly independent.

Corollary: $f_i(x) = f(\alpha_i x)$ with $\alpha_i/\alpha_j \neq \rho_1/\rho_2$ and $\alpha = 1$.

<u>Hints</u>: By contradiction. Set $f_0 = 1$ and:

- Consider a non-trivial relation $\lambda_0 f_0(\alpha) + \cdots + \lambda_n f_n(\alpha) = 0$.
- André's theory of *E*-operators : f_0, \ldots, f_n together with some derivatives form a vector solution of a system Y' = AY with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.
- Beuker's lifting result : there are linear differential operators \mathcal{L}_i with coeff. in $\overline{\mathbb{Q}}[z]$ s.t. $\mathcal{L}_0 f_0 + \cdots + \mathcal{L}_n f_n = 0$ and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

General statement

D. (2022)

Let f_1, \ldots, f_n be *E*-functions with pairwise disjoint sets $\mathfrak{S}(f_i)$. Let $\alpha \in \mathbb{Q}$ non-zero be such that $\alpha \notin \operatorname{Exc}(f_i)$ for all i. Then $1, f_1(\alpha), \ldots, f_n(\alpha)$ are O-linearly independent.

Corollary : $f_i(x) = f(\alpha_i x)$ with $\alpha_i/\alpha_i \neq \rho_1/\rho_2$ and $\alpha = 1$.

Hints: By contradiction. Set $f_0 = 1$ and:

- Consider a non-trivial relation $\lambda_0 f_0(\alpha) + \cdots + \lambda_n f_n(\alpha) = 0$.
- André's theory of *E*-operators : f_0, \ldots, f_n together with some derivatives form a vector solution of a system Y' = AY with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.
- Beuker's lifting result: there are linear differential operators \mathcal{L}_i with coeff. in $\overline{\mathbb{Q}}[z]$ s.t. $\mathcal{L}_0 f_0 + \cdots + \mathcal{L}_n f_n = 0$ and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.
- Laplace transform : $\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$.

$$\psi(\mathcal{L}_0 f_0) + \dots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

<u>Hint</u>: By induction on the order and the degree of \mathcal{L}_i :

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

• The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_i f_i \in \overline{\mathbb{Q}}[z]$ for all i.

$$\psi(\mathcal{L}_0 f_0) + \cdots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_i f_i \in \overline{\mathbb{Q}}[z]$ for all i.
- for all i, $\lambda_i f_i(\alpha) = (\mathcal{L}_i f_i)(\alpha) \in \overline{\mathbb{Q}}$.

$$\psi(\mathcal{L}_0 f_0) + \dots + \psi(\mathcal{L}_n f_n) = 0$$
 and $(\mathcal{L}_i f_i)(\alpha) = \lambda_i f_i(\alpha)$.

The singularities of $\psi(\mathcal{L}_i f_i)$ are singularities of $\psi(f_i)$.

$$\psi(zf(z)) = \left(z^2 \frac{d}{dz} + z\right) \psi(f)$$
 and $\psi\left(\frac{d}{dz}f(z)\right) = \frac{\psi(f)(z) - f(0)}{z}$.

- The $\psi(\mathcal{L}_i f_i)$ have distinct singularities at finite distance.
- So $\psi(\mathcal{L}_i f_i)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_i f_i \in \overline{\mathbb{Q}}[z]$ for all i.
- for all i, $\lambda_i f_i(\alpha) = (\mathcal{L}_i f_i)(\alpha) \in \overline{\mathbb{O}}$.
- $\lambda_i \neq 0$ for at least one $i: f_i(\alpha) \in \overline{\mathbb{Q}}$, a contradiction.

Structure of the talk

- Classical results and questions
- 2 Hermite-Lindemann and E-functions
- 3 Lindemann–Weierstrass and E-functions
- 4 Applications
- Sketch of the proof
- 6 Linear dependence

What about linear dependence?

Question

What about linear dependence?

Question

How to determine all $\overline{\mathbb{Q}}$ -linear relations between values of 1, exp, cos and sin at algebraic points?

We shall show that they all come from specializations of

$$\sin(-z) = -\sin(z)$$

$$\cos(-z) = \cos(z)$$

$$e^{iz}=\cos(z)+i\sin(z).$$

Let f_1, \ldots, f_n be *E*-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

Let f_1, \ldots, f_n be E-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

• Let G be the multiplicative group spanned by the ratios ρ_1/ρ_2 for $\rho_1 \in \mathfrak{S}(f_i)$ and $\rho_2 \in \mathfrak{S}(f_j)$, $i \neq j$.

Let f_1, \ldots, f_n be E-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_1/ρ_2 for $\rho_1 \in \mathfrak{S}(f_i)$ and $\rho_2 \in \mathfrak{S}(f_j)$, $i \neq j$.
- Consider the equivalence relation on $\{1, ..., n\}$ given by $i \sim j \iff \alpha_i/\alpha_i \in G$.

Let f_1, \ldots, f_n be E-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_1/ρ_2 for $\rho_1 \in \mathfrak{S}(f_i)$ and $\rho_2 \in \mathfrak{S}(f_j)$, $i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by $i \sim j \iff \alpha_i/\alpha_i \in G$.
- For each equivalence class C_k , set

$$F_k(z) = \sum_{i \in C_k} \beta_i f_i(\alpha_i z).$$

Let f_1, \ldots, f_n be E-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_1/ρ_2 for $\rho_1 \in \mathfrak{S}(f_i)$ and $\rho_2 \in \mathfrak{S}(f_j)$, $i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by $i \sim j \iff \alpha_i/\alpha_i \in G$.
- For each equivalence class C_k , set

$$F_k(z) = \sum_{i \in C_k} \beta_i f_i(\alpha_i z).$$

• The sets $\mathfrak{S}(F_k)$ are pairwise disjoints.

Let f_1, \ldots, f_n be E-functions and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ such that $f_i(\alpha_i)$ is transcendental and $\beta_1 f_1(\alpha_1) + \cdots + \beta_n f_n(\alpha_n) \in \overline{\mathbb{Q}}$, for algebraic numbers β_1, \ldots, β_n not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_1/ρ_2 for $\rho_1 \in \mathfrak{S}(f_i)$ and $\rho_2 \in \mathfrak{S}(f_j)$, $i \neq j$.
- \bullet Consider the equivalence relation on $\{1,\dots,n\}$ given by

$$i \sim j \iff \alpha_i/\alpha_j \in G.$$

• For each equivalence class C_k , set

$$F_k(z) = \sum_{i \in C_k} \beta_i f_i(\alpha_i z).$$

• The sets $\mathfrak{S}(F_k)$ are pairwise disjoints.

Consequence

For every k, we have $F_k(1) \in \overline{\mathbb{Q}}$, that is

$$\sum_{i\in C_{k}}\beta_{i}f_{i}(\alpha_{i})\in\overline{\mathbb{Q}}.$$

By Beukers' lifting result and André's theory of E-operators, a $\overline{\mathbb{Q}}$ -linear relation between transcendental values of $1, f_1, \ldots, f_n$ at algebraic points $\alpha_1, \ldots, \alpha_n$ are spanned by specializations of $\overline{\mathbb{Q}}(z)$ -linear relations between 1 and functions

$$f_i^{(k)}(gz)$$

with $1 \le i \le n$, $1 \le k \le r_i - 1$ and $g \in G$, where r_i is the differential order of f_i .

How to determine all $\overline{\mathbb{Q}}$ -linear relations between values of 1, exp, cos and sin at algebraic points?

• Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.

- Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.
- $\mathfrak{S}(\exp(iz)) = \{-i\}$ and $\mathfrak{S}(\cos) = \mathfrak{S}(\sin) = \{-i, i\}$.

- Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.
- $\mathfrak{S}(\exp(iz)) = \{-i\}$ and $\mathfrak{S}(\cos) = \mathfrak{S}(\sin) = \{-i, i\}$.
- $G = \{-1, 1\}.$

- Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.
- $\mathfrak{S}(\exp(iz)) = \{-i\}$ and $\mathfrak{S}(\cos) = \mathfrak{S}(\sin) = \{-i, i\}$.
- $G = \{-1, 1\}.$
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^*$ of $\overline{\mathbb{Q}}(z)$ -linear relations between $1, \exp(iz), \exp(-iz), \cos(-z), \cos(z), \sin(-z), \sin(z)$.

How to determine all $\overline{\mathbb{Q}}$ -linear relations between values of 1, exp, cos and sin at algebraic points?

- Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.
- $\mathfrak{S}(\exp(iz)) = \{-i\}$ and $\mathfrak{S}(\cos) = \mathfrak{S}(\sin) = \{-i, i\}$.
- $G = \{-1, 1\}.$
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^*$ of $\overline{\mathbb{Q}}(z)$ -linear relations between $1, \exp(iz), \exp(-iz), \cos(-z), \cos(z), \sin(-z), \sin(z)$.
- Modulo $\exp(iz) = \cos(z) + i\sin(z)$, $\cos(-z) = \cos(z)$ and $\sin(-z) = -\sin(z)$, we search for a relation

$$P_1(z) + P_2(z)\cos(z) + P_3(z)\sin(z) = 0,$$

with $P_i(z)$ in $\overline{\mathbb{Q}}[z]$. It yields $P_1 = P_2 = P_3 = 0$.

How to determine all $\overline{\mathbb{Q}}$ -linear relations between values of 1, exp, cos and sin at algebraic points?

- Consider $\exp(iz)$, $\cos(z)$ and $\sin(z)$.
- $\mathfrak{S}(\exp(iz)) = \{-i\}$ and $\mathfrak{S}(\cos) = \mathfrak{S}(\sin) = \{-i, i\}$.
- $G = \{-1, 1\}.$
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^*$ of $\overline{\mathbb{Q}}(z)$ -linear relations between $1, \exp(iz), \exp(-iz), \cos(-z), \cos(z), \sin(-z), \sin(z)$.
- Modulo $\exp(iz) = \cos(z) + i\sin(z)$, $\cos(-z) = \cos(z)$ and $\sin(-z) = -\sin(z)$, we search for a relation

$$P_1(z) + P_2(z)\cos(z) + P_3(z)\sin(z) = 0,$$

with $P_i(z)$ in $\overline{\mathbb{Q}}[z]$. It yields $P_1 = P_2 = P_3 = 0$.

• All relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^*$ of $\exp(iz) = \cos(z) + i\sin(z)$, $\cos(-z) = \cos(z)$ and $\sin(-z) = -\sin(z)$.

What about the second formulation?

Question 3

Let f be an E-function and $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ linearly independent over \mathbb{Q} . Are $f(\alpha_1), \ldots, f(\alpha_n)$ algebraically independent over \mathbb{Q} ?

In the case of $f = \exp$, the Siegel–Shidlovskii theorem is sufficient because $\exp(\alpha_1 z), \ldots, \exp(\alpha_n z)$ are algebraically independent over $\overline{\mathbb{Q}}[z]$.

Thank you for your attention!