A Lindemann-Weierstrass theorem for E-functions

Effective Aspects in Diophantine Approximation

Éric Delaygue

Camille Jordan Institute, Lyon, France

Lyon, March 30, 2023

Structure of the talk

(1) Classical results and questions
(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions

(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

Diophantine properties of the exponential function

Diophantine properties of the exponential function

Hermite-Lindemann (1873-1882)
 If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Diophantine properties of the exponential function

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?

Diophantine properties of the exponential function

Hermite-Lindemann (1873-1882)

If $\alpha \in \overline{\mathbb{Q}}$ is non-zero, then e^{α} is transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?
Completely effectively solved by Adamczewski-Rivoal (2018) with refinements by Bostan-Rivoal-Salvy (2022). Based on

- André's theory of E-operators (2000)
- Beukers' refinement of Siegel-Shidlovskii theorem (2006)

Diophantine properties of the exponential function

Lindemann-Weierstrass (1882-1885)
If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{\mathbb { Q }}$ are distinct, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Diophantine properties of the exponential function

Lindemann-Weierstrass (1882-1885)

If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{\mathbb { Q }}$ are distinct, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ \mathbb{Q}-linearly independent?

Diophantine properties of the exponential function
Lindemann-Weierstrass (1882-1885)
If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{\mathbb { Q }}$ are distinct, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ $\overline{\mathbb{Q}}$-linearly independent?

Lindemann-Weierstrass

If $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent over \mathbb{Q}.

Diophantine properties of the exponential function Lindemann-Weierstrass (1882-1885) If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{\mathbb { Q }}$ are distinct, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ $\overline{\mathbb{Q}}$-linearly independent?

Lindemann-Weierstrass

If $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent over \mathbb{Q}.

Question 3

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ be \mathbb{Q}-linearly independent. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ algebraically independent over \mathbb{Q} ?

Foundational results

Foundational results

André (2000) : E-operators
Every E-function is annihilated by a differential operator which has only 0 and ∞ as possible singularities.

Foundational results

André (2000) : E-operators

Every E-function is annihilated by a differential operator which has only 0 and ∞ as possible singularities.

Beukers (2006) : Refinement of the Siegel-Shidlovskii theorem

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of E-functions satisfying $Y^{\prime}=A Y$ where A is an $n \times n$-matrix with entries in $\overline{\mathbb{Q}}(z)$. Denote the common denominator of the entries of A by $T(z)$.

Let $\alpha \in \overline{\mathbb{Q}}$ satisfying $\alpha T(\alpha) \neq 0$.
Then, for any homogeneous polynomial $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ such that $P\left(f_{1}(\alpha), \ldots, f_{n}(\alpha)\right)=0$, there exists a polynomial $Q \in \overline{\mathbb{Q}}\left[Z, X_{1}, \ldots, X_{n}\right]$, homogeneous in the variables X_{1}, \ldots, X_{n}, such that $Q\left(\alpha, X_{1}, \ldots, X_{n}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ and $Q\left(z, f_{1}(z), \ldots, f_{n}(z)\right)=0$.

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?
Exceptional set

$$
\operatorname{Exc}(f)=\left\{\alpha \in \overline{\mathbb{Q}}^{\times}: f(\alpha) \in \overline{\mathbb{Q}}\right\} .
$$

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?
Exceptional set

$$
\operatorname{Exc}(f)=\left\{\alpha \in \overline{\mathbb{Q}}^{\times}: f(\alpha) \in \overline{\mathbb{Q}}\right\} .
$$

We say that f is purely transcendental if $\operatorname{Exc}(f)$ is empty.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?
Exceptional set

$$
\operatorname{Exc}(f)=\left\{\alpha \in \overline{\mathbb{Q}}^{\times}: f(\alpha) \in \overline{\mathbb{Q}}\right\} .
$$

We say that f is purely transcendental if $\operatorname{Exc}(f)$ is empty.

- Hermite-Lindemann : exp is purely transcendental.

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?
Exceptional set

$$
\operatorname{Exc}(f)=\left\{\alpha \in \overline{\mathbb{Q}}^{\times}: f(\alpha) \in \overline{\mathbb{Q}}\right\} .
$$

We say that f is purely transcendental if $\operatorname{Exc}(f)$ is empty.

- Hermite-Lindemann : exp is purely transcendental.
- Siegel (1929) : Bessel function J_{0} is purely transcendental :

$$
J_{0}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!^{2}}\left(\frac{z}{2}\right)^{2 n}
$$

Question 1

Let f be an E-function and $\alpha \in \overline{\mathbb{Q}}$ non-zero. Is $f(\alpha)$ transcendental ?

Exceptional set

$$
\operatorname{Exc}(f)=\left\{\alpha \in \overline{\mathbb{Q}}^{\times}: f(\alpha) \in \overline{\mathbb{Q}}\right\} .
$$

We say that f is purely transcendental if $\operatorname{Exc}(f)$ is empty.

- Hermite-Lindemann : exp is purely transcendental.
- Siegel (1929) : Bessel function J_{0} is purely transcendental :

$$
J_{0}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!^{2}}\left(\frac{z}{2}\right)^{2 n} .
$$

- Bostan-Rivoal-Salvy (2022) : $|\operatorname{Exc}(f)|=d$

$$
f(x)=\sum_{n=0}^{\infty}\binom{n+d}{d} \frac{1}{(a+d+1)_{n}} z^{n}, \quad\left(a \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right) .
$$

Canonical decomposition

Canonical decomposition

- An algebraic E-function is polynomial.

Canonical decomposition

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+q f)$ is the set of the non-zero roots of q.

Canonical decomposition

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+q f)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions!

Canonical decomposition

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+q f)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions !

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental E-function f can be written in a unique way as $f=p+q g$ with $p, q \in \overline{\mathbb{Q}}[z], q$ monic, $q(0) \neq 0, \operatorname{deg}(p)<\operatorname{deg}(q)$ and g is a purely transcendental E-function.

Canonical decomposition

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+q f)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions !

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental E-function f can be written in a unique way as $f=p+q g$ with $p, q \in \overline{\mathbb{Q}}[z], q$ monic, $q(0) \neq 0, \operatorname{deg}(p)<\operatorname{deg}(q)$ and g is a purely transcendental E-function.

HL algorithm by Adamczewski-Rivoal (2018)

It takes an E-function f as input. It first says whether f is transcendental or not. Then it returns $\operatorname{Exc}(f)$ if f is transcendental.

Canonical decomposition

- An algebraic E-function is polynomial.
- If f is purely transcendental and $p, q \in \overline{\mathbb{Q}}[z]$, then $\operatorname{Exc}(p+q f)$ is the set of the non-zero roots of q.
- This is in fact the only way to construct non-purely transcendental E-functions!

Rivoal (2016), Bostan-Rivoal-Salvy (2022)

Every transcendental E-function f can be written in a unique way as $f=p+q g$ with $p, q \in \overline{\mathbb{Q}}[z], q$ monic, $q(0) \neq 0, \operatorname{deg}(p)<\operatorname{deg}(q)$ and g is a purely transcendental E-function.

HL algorithm by Adamczewski-Rivoal (2018)

It takes an E-function f as input. It first says whether f is transcendental or not. Then it returns $\operatorname{Exc}(f)$ if f is transcendental.

Remark: improved by Bostan-Rivoal-Salvy (2022). This yields an algorithm to compute canonical decompositions.

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications

(5) Sketch of the proof

6 Linear dependence

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ \mathbb{Q}-linearly independent?

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ \mathbb{Q}-linearly independent?

- First obstruction : $\alpha_{1}, \ldots, \alpha_{n}$ must be non-exceptional values for f.

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ $\overline{\mathbb{Q}}$-linearly independent?

- First obstruction : $\alpha_{1}, \ldots, \alpha_{n}$ must be non-exceptional values for f.
- Second obstruction : difference equations such as $J_{0}(-x)=J_{0}(x)$.

Question 2

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ distinct. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ $\overline{\mathbb{Q}}$-linearly independent?

- First obstruction : $\alpha_{1}, \ldots, \alpha_{n}$ must be non-exceptional values for f.
- Second obstruction : difference equations such as $J_{0}(-x)=J_{0}(x)$.

Siegel (1929)

If $\alpha_{1}^{2}, \ldots, \alpha_{n}^{2}$ are pairwise distinct non-zero algebraic numbers, then $J_{0}\left(\alpha_{1}\right), \ldots, J_{0}\left(\alpha_{n}\right)$ are algebraically independent over \mathbb{Q}.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y
$$

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y
$$

Write $T(z)$ for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y .
$$

Write $T(z)$ for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.
When $\alpha T(\alpha) \neq 0$
Then $f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\mathbb{\mathbb { Q }}$-linearly independent.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y .
$$

Write $T(z)$ for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.
When $\alpha T(\alpha) \neq 0$
Then $f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\mathbb{\mathbb { Q }}$-linearly independent.

When $T(\alpha)=0$

There exists a non-trivial $\overline{\mathbb{Q}}$-linear relation between $f_{1}(\alpha), \ldots, f_{n}(\alpha)$.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y .
$$

Write $T(z)$ for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.
When $\alpha T(\alpha) \neq 0$
Then $f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\mathbb{\mathbb { Q }}$-linearly independent.

When $T(\alpha)=0$

There exists a non-trivial $\overline{\mathbb{Q}}$-linear relation between $f_{1}(\alpha), \ldots, f_{n}(\alpha)$.
Indeed, write $B(z)=T(z) A(z)$. Then $T(z) Y^{\prime}(z)=B(z) Y(z)$ yields $0=B(\alpha) Y(\alpha)$.

On Beukers' lifting result

Let $Y=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ be a vector of $\overline{\mathbb{Q}}(z)$-linearly independent E-functions.

$$
Y^{\prime}=A Y .
$$

Write $T(z)$ for the common denominator of the entries of A. Let $\alpha \in \overline{\mathbb{Q}}$.
When $\alpha T(\alpha) \neq 0$
Then $f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

When $T(\alpha)=0$

There exists a non-trivial $\overline{\mathbb{Q}}$-linear relation between $f_{1}(\alpha), \ldots, f_{n}(\alpha)$. Indeed, write $B(z)=T(z) A(z)$. Then $T(z) Y^{\prime}(z)=B(z) Y(z)$ yields $0=B(\alpha) Y(\alpha)$.
Even more : Every such relation can be explicitely given by the system through a desingularization process by Beukers.

Lindemann-Weierstrass and Beukers' lifting result

Lindemann-Weierstrass and Beukers' lifting result

Lindemann-Weierstrass

Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct algebraic numbers and consider $f_{i}(z)=e^{\alpha_{i} z}$.

$$
\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)
$$

We have $T(z)=1$ so $T(1) \neq 0$ and $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Lindemann-Weierstrass and Beukers' lifting result

Lindemann-Weierstrass

Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct algebraic numbers and consider $f_{i}(z)=e^{\alpha_{i} z}$.

$$
\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)
$$

We have $T(z)=1$ so $T(1) \neq 0$ and $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Problem : Given an E-function f and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$:

- Are $f\left(\alpha_{1} z\right), \ldots, f\left(\alpha_{n} z\right)$ linearly independent over $\overline{\mathbb{Q}}(z)$?

Lindemann-Weierstrass and Beukers' lifting result

Lindemann-Weierstrass

Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct algebraic numbers and consider $f_{i}(z)=e^{\alpha_{i} z}$.

$$
\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)
$$

We have $T(z)=1$ so $T(1) \neq 0$ and $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Problem : Given an E-function f and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$:

- Are $f\left(\alpha_{1} z\right), \ldots, f\left(\alpha_{n} z\right)$ linearly independent over $\overline{\mathbb{Q}}(z)$?
- Is $T(1)$ non-zero?

Lindemann-Weierstrass and Beukers' lifting result

Lindemann-Weierstrass

Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct algebraic numbers and consider $f_{i}(z)=e^{\alpha_{i} z}$.

$$
\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
\alpha_{1} & & \\
& \ddots & \\
& & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
e^{\alpha_{1} z} \\
\vdots \\
e^{\alpha_{n} z}
\end{array}\right)
$$

We have $T(z)=1$ so $T(1) \neq 0$ and $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent.

Problem : Given an E-function f and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$:

- Are $f\left(\alpha_{1} z\right), \ldots, f\left(\alpha_{n} z\right)$ linearly independent over $\overline{\mathbb{Q}}(z)$?
- Is $T(1)$ non-zero?

How to choose n and $\alpha_{1}, \ldots, \alpha_{n}$ to answer yes twice?

Singularities of the underlying G-function

Singularities of the underlying G-function

To every E-function corresponds a G-series $\psi(f)$ defined by

$$
\psi\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Singularities of the underlying G-function

To every E-function corresponds a G-series $\psi(f)$ defined by

$$
\psi\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,

Singularities of the underlying G-function

To every E-function corresponds a G-series $\psi(f)$ defined by

$$
\psi\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,
- has finitely many singularities at finite distance, the set of which we denote by $\mathfrak{S}(f)$.

Singularities of the underlying G-function

To every E-function corresponds a G-series $\psi(f)$ defined by

$$
\psi\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}\right)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

In particular, $\psi(f)$

- satisfies a linear differential equation over $\overline{\mathbb{Q}}[z]$,
- has a positive radius of convergence,
- has finitely many singularities at finite distance, the set of which we denote by $\mathfrak{S}(f)$.

Examples

- $\psi(\exp)=1 /(1-z)$ and $\mathfrak{S}(\exp)=\{1\}$.
- $\psi\left(J_{0}\right)=1 / \sqrt{1+z^{2}}$ and $\mathfrak{S}\left(J_{0}\right)=\{-i, i\}$.

A Lindemann-Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ non-zero such that

- for all $i, \alpha_{i} \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_{1}, \rho_{2} \in \mathfrak{S}(f), \alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$.

Then $1, f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ are $\mathbb{\mathbb { Q }}$-linearly independent.

A Lindemann-Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ non-zero such that

- for all $i, \alpha_{i} \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_{1}, \rho_{2} \in \mathfrak{S}(f), \alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$.

Then $1, f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ are \mathbb{Q}-linearly independent.

Exponential function

exp is purely transcendental and $\mathfrak{S}(\exp)=\{1\}$. The second condition reads $\alpha_{i} \neq \alpha_{j}$: we retrieve the Lindemann-Weierstrass theorem.

A Lindemann-Weierstrass theorem for E-functions

D. (2022)

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ non-zero such that

- for all $i, \alpha_{i} \notin \operatorname{Exc}(f)$,
- for all $i \neq j$ and all $\rho_{1}, \rho_{2} \in \mathfrak{S}(f), \alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$.

Then $1, f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ are $\mathbb{\mathbb { Q }}$-linearly independent.

Exponential function

exp is purely transcendental and $\mathfrak{S}(\exp)=\{1\}$. The second condition reads $\alpha_{i} \neq \alpha_{j}$: we retrieve the Lindemann-Weierstrass theorem.

Bessel function

J_{0} is purely transcendental and $\mathfrak{S}\left(J_{0}\right)=\{-i, i\}$. The second condition reads $\alpha_{i}^{2} \neq \alpha_{j}^{2}$. We retrieve the linear part of Siegel's result.

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n}
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n},
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.
D. (2022)

Let F be a non-polynomial hypergeometric function with $s>r$ and rational parameters. Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n},
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.
D. (2022)

Let F be a non-polynomial hypergeometric function with $s>r$ and rational parameters. Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Hints: Write $k=s-r$ and consider the E-function $f(z)=F\left(z^{k}\right)$.

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n},
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.
D. (2022)

Let F be a non-polynomial hypergeometric function with $s>r$ and rational parameters. Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Hints: Write $k=s-r$ and consider the E-function $f(z)=F\left(z^{k}\right)$.

- $\psi(f)=H\left(k z^{k}\right)$ where H is a hypergeometric G-function.

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n},
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.
D. (2022)

Let F be a non-polynomial hypergeometric function with $s>r$ and rational parameters. Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Hints: Write $k=s-r$ and consider the E-function $f(z)=F\left(z^{k}\right)$.

- $\psi(f)=H\left(k z^{k}\right)$ where H is a hypergeometric G-function.
- Elements of $\mathfrak{S}(f)$ are of the form ρ / k where ρ is a k-th root of unity.

Entire hypergeometric functions

We consider (entire) hypergeometric functions

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{r}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{s}\right)_{n}} z^{n},
$$

where $s>r \geq 0, a_{i}, b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ and $(a)_{n}$ denotes the Pochhammer symbol defined by $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots(a+n-1)$ for $n \geq 1$.
D. (2022)

Let F be a non-polynomial hypergeometric function with $s>r$ and rational parameters. Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise non-zero distinct algebraic numbers which are not exceptional values for F. Then $1, F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Hints: Write $k=s-r$ and consider the E-function $f(z)=F\left(z^{k}\right)$.

- $\psi(f)=H\left(k z^{k}\right)$ where H is a hypergeometric G-function.
- Elements of $\mathfrak{S}(f)$ are of the form ρ / k where ρ is a k-th root of unity.
- if $\alpha_{i}=\beta_{i}^{k}$, then $\alpha_{i} \neq \alpha_{j}$ implies $\beta_{i} / \beta_{j} \neq \rho_{1} / \rho_{2}$.

A non-hypergeometric E-function by Fresán and Jossen

A non-hypergeometric E-function by Fresán and Jossen
Consider

$$
f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2 n / 3\rfloor} \frac{(1 / 4)_{n-m}}{(2 n-3 m)!(2 m)!} z^{n}
$$

A non-hypergeometric E-function by Fresán and Jossen

Consider

$$
f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2 n / 3\rfloor} \frac{(1 / 4)_{n-m}}{(2 n-3 m)!(2 m)!} z^{n} .
$$

The following calculations were done by Alin Bostan :

- A linear differential equation satisfied by f.

A non-hypergeometric E-function by Fresán and Jossen

Consider

$$
f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2 n / 3\rfloor} \frac{(1 / 4)_{n-m}}{(2 n-3 m)!(2 m)!} z^{n} .
$$

The following calculations were done by Alin Bostan :

- A linear differential equation satisfied by f.
- Application of the Bostan-Rivoal-Salvy implementation of Adamczewski-Rivoal algorithm : f is purely transcendental.

A non-hypergeometric E-function by Fresán and Jossen

Consider

$$
f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2 n / 3\rfloor} \frac{(1 / 4)_{n-m}}{(2 n-3 m)!(2 m)!} z^{n} .
$$

The following calculations were done by Alin Bostan :

- A linear differential equation satisfied by f.
- Application of the Bostan-Rivoal-Salvy implementation of Adamczewski-Rivoal algorithm : f is purely transcendental.
- A differential operator annihilating $\psi(f)$ with a minimal number of singularities: the roots ρ_{1}, ρ_{2} and ρ_{3} of

$$
23 z^{3}+128 z^{2}+128 z-256
$$

A non-hypergeometric E-function by Fresán and Jossen

Consider

$$
f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\lfloor 2 n / 3\rfloor} \frac{(1 / 4)_{n-m}}{(2 n-3 m)!(2 m)!} z^{n} .
$$

The following calculations were done by Alin Bostan :

- A linear differential equation satisfied by f.
- Application of the Bostan-Rivoal-Salvy implementation of Adamczewski-Rivoal algorithm : f is purely transcendental.
- A differential operator annihilating $\psi(f)$ with a minimal number of singularities: the roots ρ_{1}, ρ_{2} and ρ_{3} of

$$
23 z^{3}+128 z^{2}+128 z-256
$$

- If $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ are non-zero and such that $\alpha_{i} / \alpha_{j} \neq \rho_{k} / \rho_{\ell}$, then $1, f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ are $\overline{\mathbb{Q}}$-linearly independent.

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.
Hints : By contradiction. Set $f_{0}=1$ and :

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.
Hints : By contradiction. Set $f_{0}=1$ and :

- Consider a non-trivial relation $\lambda_{0} f_{0}(\alpha)+\cdots+\lambda_{n} f_{n}(\alpha)=0$.

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.
Hints: By contradiction. Set $f_{0}=1$ and :

- Consider a non-trivial relation $\lambda_{0} f_{0}(\alpha)+\cdots+\lambda_{n} f_{n}(\alpha)=0$.
- André's theory of E-operators : f_{0}, \ldots, f_{n} together with some derivatives form a vector solution of a system $Y^{\prime}=A Y$ with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.
Hints: By contradiction. Set $f_{0}=1$ and :

- Consider a non-trivial relation $\lambda_{0} f_{0}(\alpha)+\cdots+\lambda_{n} f_{n}(\alpha)=0$.
- André's theory of E-operators : f_{0}, \ldots, f_{n} together with some derivatives form a vector solution of a system $Y^{\prime}=A Y$ with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.
- Beuker's lifting result : there are linear differential operators \mathcal{L}_{i} with coeff. in $\overline{\mathbb{Q}}[z]$ s.t. $\mathcal{L}_{0} f_{0}+\cdots+\mathcal{L}_{n} f_{n}=0$ and $\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha)$.

General statement

D. (2022)

Let f_{1}, \ldots, f_{n} be E-functions with pairwise disjoint sets $\mathfrak{S}\left(f_{i}\right)$. Let $\alpha \in \overline{\mathbb{Q}}$ non-zero be such that $\alpha \notin \operatorname{Exc}\left(f_{i}\right)$ for all i. Then $1, f_{1}(\alpha), \ldots, f_{n}(\alpha)$ are $\overline{\mathbb{Q}}$-linearly independent.

Corollary: $f_{i}(x)=f\left(\alpha_{i} x\right)$ with $\alpha_{i} / \alpha_{j} \neq \rho_{1} / \rho_{2}$ and $\alpha=1$.
Hints: By contradiction. Set $f_{0}=1$ and :

- Consider a non-trivial relation $\lambda_{0} f_{0}(\alpha)+\cdots+\lambda_{n} f_{n}(\alpha)=0$.
- André's theory of E-operators : f_{0}, \ldots, f_{n} together with some derivatives form a vector solution of a system $Y^{\prime}=A Y$ with only 0 and ∞ as singularities : $\alpha T(\alpha) \neq 0$.
- Beuker's lifting result : there are linear differential operators \mathcal{L}_{i} with coeff. in $\overline{\mathbb{Q}}[z]$ s.t. $\mathcal{L}_{0} f_{0}+\cdots+\mathcal{L}_{n} f_{n}=0$ and $\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha)$.
- Laplace transform : $\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0$.
$\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad$ and $\quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha)$.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma
The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma
The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z}
$$

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z}
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z} .
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.
- So $\psi\left(\mathcal{L}_{i} f_{i}\right)$ has no singularity at finite distance !

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z}
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.
- So $\psi\left(\mathcal{L}_{i} f_{i}\right)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z} .
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.
- So $\psi\left(\mathcal{L}_{i} f_{i}\right)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_{i} f_{i} \in \overline{\mathbb{Q}}[z]$ for all i.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z}
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.
- So $\psi\left(\mathcal{L}_{i} f_{i}\right)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_{i} f_{i} \in \overline{\mathbb{Q}}[z]$ for all i.
- for all $i, \lambda_{i} f_{i}(\alpha)=\left(\mathcal{L}_{i} f_{i}\right)(\alpha) \in \overline{\mathbb{Q}}$.

$$
\psi\left(\mathcal{L}_{0} f_{0}\right)+\cdots+\psi\left(\mathcal{L}_{n} f_{n}\right)=0 \quad \text { and } \quad\left(\mathcal{L}_{i} f_{i}\right)(\alpha)=\lambda_{i} f_{i}(\alpha) .
$$

Lemma

The singularities of $\psi\left(\mathcal{L}_{i} f_{i}\right)$ are singularities of $\psi\left(f_{i}\right)$.
Hint : By induction on the order and the degree of \mathcal{L}_{i} :

$$
\psi(z f(z))=\left(z^{2} \frac{d}{d z}+z\right) \psi(f) \quad \text { and } \quad \psi\left(\frac{d}{d z} f(z)\right)=\frac{\psi(f)(z)-f(0)}{z} .
$$

- The $\psi\left(\mathcal{L}_{i} f_{i}\right)$ have distinct singularities at finite distance.
- So $\psi\left(\mathcal{L}_{i} f_{i}\right)$ has no singularity at finite distance!
- G-functions with no singularity at finite distance are polynomial.
- Hence $\mathcal{L}_{i} f_{i} \in \overline{\mathbb{Q}}[z]$ for all i.
- for all $i, \lambda_{i} f_{i}(\alpha)=\left(\mathcal{L}_{i} f_{i}\right)(\alpha) \in \overline{\mathbb{Q}}$.
- $\lambda_{i} \neq 0$ for at least one $i: f_{i}(\alpha) \in \overline{\mathbb{Q}}$, a contradiction.

Structure of the talk

(1) Classical results and questions

(2) Hermite-Lindemann and E-functions
(3) Lindemann-Weierstrass and E-functions

4 Applications
(5) Sketch of the proof
(6) Linear dependence

What about linear dependence?

Question
 How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

What about linear dependence?

Question

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

We shall show that they all come from specializations of

$$
\begin{gathered}
\sin (-z)=-\sin (z) \\
\cos (-z)=\cos (z) \\
e^{i z}=\cos (z)+i \sin (z)
\end{gathered}
$$

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_{1} / ρ_{2} for $\rho_{1} \in \mathfrak{S}\left(f_{i}\right)$ and $\rho_{2} \in \mathfrak{S}\left(f_{j}\right), i \neq j$.

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_{1} / ρ_{2} for $\rho_{1} \in \mathfrak{S}\left(f_{i}\right)$ and $\rho_{2} \in \mathfrak{S}\left(f_{j}\right), i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by

$$
i \sim j \Longleftrightarrow \alpha_{i} / \alpha_{j} \in G
$$

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_{1} / ρ_{2} for $\rho_{1} \in \mathfrak{S}\left(f_{i}\right)$ and $\rho_{2} \in \mathfrak{S}\left(f_{j}\right), i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by

$$
i \sim j \Longleftrightarrow \alpha_{i} / \alpha_{j} \in G
$$

- For each equivalence class C_{k}, set

$$
F_{k}(z)=\sum_{i \in C_{k}} \beta_{i} f_{i}\left(\alpha_{i} z\right)
$$

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_{1} / ρ_{2} for $\rho_{1} \in \mathfrak{S}\left(f_{i}\right)$ and $\rho_{2} \in \mathfrak{S}\left(f_{j}\right), i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by

$$
i \sim j \Longleftrightarrow \alpha_{i} / \alpha_{j} \in G
$$

- For each equivalence class C_{k}, set

$$
F_{k}(z)=\sum_{i \in C_{k}} \beta_{i} f_{i}\left(\alpha_{i} z\right)
$$

- The sets $\mathfrak{S}\left(F_{k}\right)$ are pairwise disjoints.

Restrictions on linear relations

Let f_{1}, \ldots, f_{n} be E-functions and $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $f_{i}\left(\alpha_{i}\right)$ is transcendental and $\beta_{1} f_{1}\left(\alpha_{1}\right)+\cdots+\beta_{n} f_{n}\left(\alpha_{n}\right) \in \overline{\mathbb{Q}}$, for algebraic numbers $\beta_{1}, \ldots, \beta_{n}$ not all zero.

- Let G be the multiplicative group spanned by the ratios ρ_{1} / ρ_{2} for $\rho_{1} \in \mathfrak{S}\left(f_{i}\right)$ and $\rho_{2} \in \mathfrak{S}\left(f_{j}\right), i \neq j$.
- Consider the equivalence relation on $\{1, \ldots, n\}$ given by

$$
i \sim j \Longleftrightarrow \alpha_{i} / \alpha_{j} \in G
$$

- For each equivalence class C_{k}, set

$$
F_{k}(z)=\sum_{i \in C_{k}} \beta_{i} f_{i}\left(\alpha_{i} z\right)
$$

- The sets $\mathfrak{S}\left(F_{k}\right)$ are pairwise disjoints.

Consequence

For every k, we have $F_{k}(1) \in \overline{\mathbb{Q}}$, that is

$$
\sum_{i \in c_{k}} \beta_{i} f_{i}\left(\alpha_{i}\right) \in \overline{\mathbb{Q}}
$$

Restrictions on linear relations

By Beukers' lifting result and André's theory of E-operators, a $\overline{\mathbb{Q}}$-linear relation between transcendental values of $1, f_{1}, \ldots, f_{n}$ at algebraic points $\alpha_{1}, \ldots, \alpha_{n}$ are spanned by specializations of $\overline{\mathbb{Q}}(z)$-linear relations between 1 and functions

$$
f_{i}^{(k)}(g z)
$$

with $1 \leq i \leq n, 1 \leq k \leq r_{i}-1$ and $g \in G$, where r_{i} is the differential order of f_{i}.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.
- $\mathfrak{S}(\exp (i z))=\{-i\}$ and $\mathfrak{S}(\cos)=\mathfrak{S}(\sin)=\{-i, i\}$.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.
- $\mathfrak{S}(\exp (i z))=\{-i\}$ and $\mathfrak{S}(\cos)=\mathfrak{S}(\sin)=\{-i, i\}$.
- $G=\{-1,1\}$.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.
- $\mathfrak{S}(\exp (i z))=\{-i\}$ and $\mathfrak{S}(\cos)=\mathfrak{S}(\sin)=\{-i, i\}$.
- $G=\{-1,1\}$.
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^{*}$ of $\overline{\mathbb{Q}}(z)$-linear relations between $1, \exp (i z), \exp (-i z), \cos (-z), \cos (z), \sin (-z), \sin (z)$.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.
- $\mathfrak{S}(\exp (i z))=\{-i\}$ and $\mathfrak{S}(\cos)=\mathfrak{S}(\sin)=\{-i, i\}$.
- $G=\{-1,1\}$.
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^{*}$ of $\overline{\mathbb{Q}}(z)$-linear relations between $1, \exp (i z), \exp (-i z), \cos (-z), \cos (z), \sin (-z), \sin (z)$.
- Modulo $\exp (i z)=\cos (z)+i \sin (z), \cos (-z)=\cos (z)$ and $\sin (-z)=-\sin (z)$, we search for a relation

$$
P_{1}(z)+P_{2}(z) \cos (z)+P_{3}(z) \sin (z)=0,
$$

with $P_{i}(z)$ in $\overline{\mathbb{Q}}[z]$. It yields $P_{1}=P_{2}=P_{3}=0$.

Restrictions on linear relations

How to determine all $\overline{\mathbb{Q}}$-linear relations between values of 1 , exp, cos and sin at algebraic points?

- Consider $\exp (i z), \cos (z)$ and $\sin (z)$.
- $\mathfrak{S}(\exp (i z))=\{-i\}$ and $\mathfrak{S}(\cos)=\mathfrak{S}(\sin)=\{-i, i\}$.
- $G=\{-1,1\}$.
- Relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^{*}$ of $\overline{\mathbb{Q}}(z)$-linear relations between $1, \exp (i z), \exp (-i z), \cos (-z), \cos (z), \sin (-z), \sin (z)$.
- Modulo $\exp (i z)=\cos (z)+i \sin (z), \cos (-z)=\cos (z)$ and $\sin (-z)=-\sin (z)$, we search for a relation

$$
P_{1}(z)+P_{2}(z) \cos (z)+P_{3}(z) \sin (z)=0,
$$

with $P_{i}(z)$ in $\overline{\mathbb{Q}}[z]$. It yields $P_{1}=P_{2}=P_{3}=0$.

- All relations come from specializations at $\alpha \in \overline{\mathbb{Q}}^{*}$ of $\exp (i z)=\cos (z)+i \sin (z), \cos (-z)=\cos (z)$ and $\sin (-z)=-\sin (z)$.

What about the second formulation?

Question 3

Let f be an E-function and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Q}$ linearly independent over \mathbb{Q}. Are $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)$ algebraically independent over \mathbb{Q} ?

In the case of $f=\exp$, the Siegel-Shidlovskii theorem is sufficient because $\exp \left(\alpha_{1} z\right), \ldots, \exp \left(\alpha_{n} z\right)$ are algebraically independent over $\overline{\mathbb{Q}}[z]$.

Thank you for your attention!

