Problem Statement

Problem Approach

Sweeping backwards

Experiment

Conclusions

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot Certified and Symbolic-Numeric Computation Workshop

> <u>Maria Luiza Costa Vianna</u>^{1,2} Eric Goubault ¹ Luc Jaulin ² Sylvie Putot ¹

¹ Laboratoire d'Informatique de l'École Polytechnique (LIX)

²ENSTA Bretagne, Lab-STICC

May 23, 2023

Sweeping backwards

Ex**periment**

Conclusions

Introduction

- 2 Problem Statement
- **3** Problem Approach
- Sweeping backwards
- 6 Experiment
- 6 Conclusions

Sweeping backwards

Ex**periment**

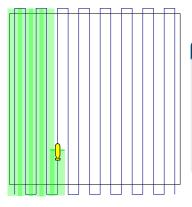
Conclusions

Introduction

- 2 Problem Statement
- B Problem Approach
- **4** Sweeping backwards
- **5** Experiment
- 6 Conclusions

э

Problem Statement


Problem Approach

Sweeping backwards

Experiment

Conclusions

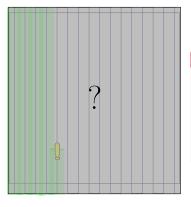
Case of Study

Context

- Unknown environment,
- area covering mission,
- revisiting,
- region avoidance,
- line-sweep exploration.

 $\underset{00 \bullet 0}{\text{Introduction}}$

Problem Statement


Problem Approach

Sweeping backwards

Experiment

Conclusions

Case of Study

Objectives

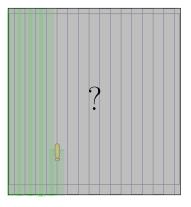
Using only proprioceptive data, to estimate:

- Explored area
- Number of views (coverage measure)

э

Introduction Prol

Problem Statement


Problem Approach

Sweeping backwards

Experiment

Conclusions

Case of Study

Applications:

- Assess area-covering missions,
- plan other missions to fill possible gaps,
- assess revisiting missions,
- optimal trajectory planning,
- localization in homogeneous environments.

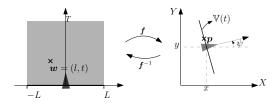
Sweeping backwards

Ex**periment**

Conclusions

Introduction

- 2 Problem Statement
- B Problem Approach
- Sweeping backwards
- **5** Experiment
- 6 Conclusions


A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

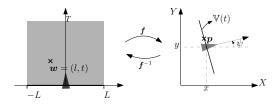
э

Introduction 0000	Problem Statement 0●000	Problem Approach	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Visible Area

 $\mathbb{V}:[0,T]\to\mathcal{P}(\mathbb{R}^2)$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot


물 🛌 🗄

合 ▶ ◀

Introduction 0000	Problem Statement 0●000	Problem Approach	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Visible Area

 $\mathbb{V}:[0,T]\to\mathcal{P}(\mathbb{R}^2)$

Waterfall Space and Sweep Function

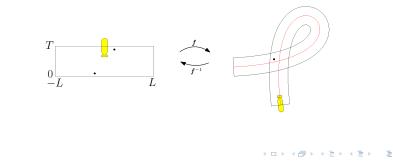
$$W = [-L, L] \times [0, T]$$
$$f: W \to \mathbb{R}^2$$

æ

Introduction	Problem Statement 00●00	Problem Approach 0000	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Robot's Trajectory

- $\boldsymbol{x}: [0, T] \rightarrow \mathbb{R}^2$,
- \boldsymbol{x} is differentiable in [0, T].



Introduction 0000	Problem Statement 000●0	Problem Approach 0000	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Explored Area

- $W = [-L, L] \times [0, T]$,
- $\mathbb{A}_{\mathbb{E}} = \boldsymbol{f}(W)$,
- Sensor's Contour $\gamma = f(\partial W)$.

Introduction 0000	Problem Statement 0000●	Problem Approach 0000	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Coverage Measure

$$c_m(\boldsymbol{p}) = \# Ker(\boldsymbol{f} - \boldsymbol{p})$$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

Introduction 0000	Problem Statement 0000●	Problem Approach	Sweeping backwards	Experiment 000	Conclusions
Problem	Statement				

Coverage Measure

$$c_m(\boldsymbol{p}) = \# Ker(\boldsymbol{f} - \boldsymbol{p})$$

$$\mathbb{A}_{\mathbb{E}} = \{oldsymbol{p} \in \mathbb{R}^2 | c_m(oldsymbol{p}) \geq 1\}$$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

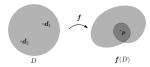
Sweeping backwards

Ex**periment**

Conclusions

Introduction

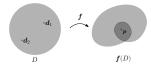
- 2 Problem Statement
- O Problem Approach
- Sweeping backwards
- **5** Experiment
- 6 Conclusions



Introduction 0000	Problem Statement	Problem Approach 0●00	Sweeping backwards	Experiment 000	Conclusions
Problem	Approach				

Topological Degree

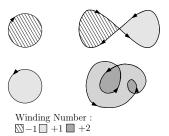
- D is an open subset of \mathbb{R}^n ,
- $\boldsymbol{f}:\overline{D}\to\mathbb{R}^n$ is continuous,
- $\boldsymbol{p} \in \mathbb{R}^n \backslash \boldsymbol{f}(\partial D)$
- deg : $(\boldsymbol{f}, D, \boldsymbol{p}) \rightarrow \mathbb{Z}$.



Introduction 0000	Problem Statement	Problem Approach ○●○○	Sweeping backwards	Experiment 000	Conclusions
Problem	Approach				

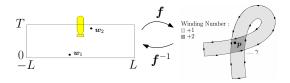
Topological Degree

- D is an open subset of \mathbb{R}^n ,
- $\boldsymbol{f}:\overline{D}\to\mathbb{R}^n$ is continuous,
- $\boldsymbol{p} \in \mathbb{R}^n \backslash \boldsymbol{f}(\partial D)$
- deg : $(\boldsymbol{f}, D, \boldsymbol{p}) \rightarrow \mathbb{Z}$.


If det(f'(d)) is non-zero on each d such that f(d) = p,

$$deg(\boldsymbol{f}, D, \boldsymbol{p}) = \sum_{\boldsymbol{d} \in \boldsymbol{f}^{-1}(\boldsymbol{p})} sign(det(\boldsymbol{f}'(\boldsymbol{d})))$$

Winding Number


- *D* is an open subset of \mathbb{R}^2 ,
- $\boldsymbol{f}:\overline{D}
 ightarrow\mathbb{R}^2$ is continuous,
- $\boldsymbol{p} \in \mathbb{R}^2 \setminus \boldsymbol{f}(\partial D)$,
- $\eta(\boldsymbol{f}(\partial D), \boldsymbol{p}) \in \mathbb{Z}.$

Introduction 0000	Problem Statement	Problem Approach 000●	Sweeping backwards	Experiment 000	Conclusions
Problem	Approach				

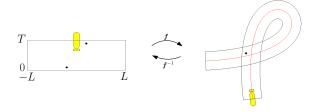
For any
$$\boldsymbol{p} \in \mathbb{R}^2$$
, $c_m(\boldsymbol{p}) = \eta(\gamma, \boldsymbol{p})$

If det(f'(w)) is positive on each $w \in W$ such that f(w) = p,

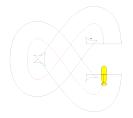
$$\eta(\gamma, \boldsymbol{p}) = \sum_{\boldsymbol{w} \in \boldsymbol{f}^{-1}(\boldsymbol{p})} \textit{sign}(\textit{det}(\boldsymbol{f}'(\boldsymbol{w}))) = \#\textit{Ker}(\boldsymbol{f} - \boldsymbol{p})$$

Costa Vianna M.L., Goubault E., Jaulin L., Putot S. (2022). Estimating the Coverage Measure and the Area Explored by a Side-Scan Sonar. *OCEANS 2022*

Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards ●00000	Experiment	Conclusions

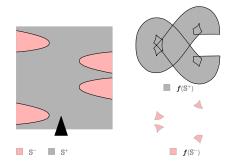

- 2 Problem Statement
- **3** Problem Approach
- Sweeping backwards
- **6** Experiment

6 Conclusions


If det(f'(w)) is positive on each $w \in W$ such that f(w) = p,

$$c_m(\boldsymbol{p}) = \eta(\gamma, \boldsymbol{p})$$

Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards ○○●○○○	Experiment 000	Conclusions
Sweeping	backwards				



$$\eta(\gamma, \boldsymbol{p}) = \sum_{\boldsymbol{w} \in \boldsymbol{f}^{-1}(\boldsymbol{p})} sign(det(\boldsymbol{f}'(\boldsymbol{w}))) = +1 - 1 + 1 = +1 \neq \# Ker(\boldsymbol{f} - \boldsymbol{p})$$

ntroduction	Problem	Stateme

 $\underset{000 \bullet 00}{\text{Sweeping backwards}}$

Sweeping backwards

$$\mathbb{S}^+ = \{ oldsymbol{w} \in W | det(oldsymbol{f}'(oldsymbol{w})) > 0) \}, \ \gamma^+ = oldsymbol{f}(\partial \mathbb{S}^+)$$

 $\mathbb{S}^- = \{ oldsymbol{w} \in W | det(oldsymbol{f}'(oldsymbol{w})) < 0) \}, \ \gamma^- = oldsymbol{f}(\partial \mathbb{S}^-)$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

ъ

Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards 0000●0	Experiment 000	Conclusions
Sweepin	g backwards				

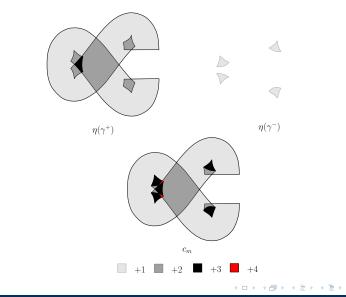
$$c_m(oldsymbol{p}) = \# {\it Ker}(oldsymbol{f}-oldsymbol{p}) = \# {\it Ker}\ (oldsymbol{f}-oldsymbol{p})_{|\mathbb{S}^+} + \# {\it Ker}\ (oldsymbol{f}-oldsymbol{p})_{|\mathbb{S}^-}$$

$$c_m(\boldsymbol{p}) = \sum_{\boldsymbol{w} \in \boldsymbol{f}_{|\mathbb{S}^+}^{-1}(\boldsymbol{p})} + 1 + \sum_{\boldsymbol{w} \in \boldsymbol{f}_{|\mathbb{S}^-}^{-1}(\boldsymbol{p})} + 1 = \eta(\gamma^+, \boldsymbol{p}) + \eta(\gamma^-, \boldsymbol{p})$$

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

roblem Statement


Problem Approac

 $\underset{000000}{\textsf{Sweeping backwards}}$

Experiment

Conclusions

Sweeping backwards

A Geometric Approach to the Coverage Measure of the Area Explored by a Robot

æ

Sweeping backwards

Experiment

Introduction

- Problem Statement
- O Problem Approach
- 4 Sweeping backwards
- **6** Experiment

6 Conclusions

ъ

Problem Statement

Problem Approach

Sweeping backwards

Experiment

Conclusions

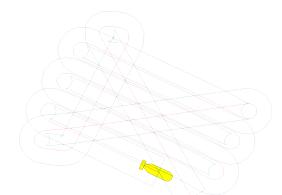
Daurade

Data

- DVL,
- IMU,
- Pressure.

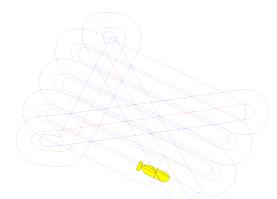
Mission

- Classical survey path (law-mowing pattern),
- Roadstead of Brest (France, Brittany),
- 47 minutes.


Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards	Experiment 00●	Conclusions
Daurade					

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Introduction 0000	Problem Statement	Problem Approach 0000	Sweeping backwards	Experiment 00●	Conclusions
Daurade					

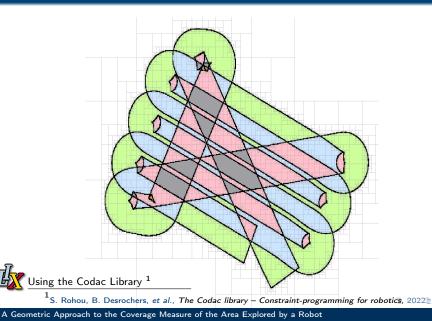


ROBEX

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Introduction 0000	Problem Statement	Problem Approach 0000	Sweeping backwards	Experiment 00●	Conclusio 000
Daurade					

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

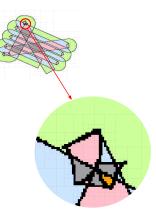

Problem Statemen 20000 Problem Approa

Sweeping backwards

Experiment

Conclusions

Daurade


Problem Statement

Problem Approa 0000 Sweeping backwards

Experiment

Conclusions

Daurade

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Problem Statement

P**roblem Approa** 0000 Sweeping backwards

Experiment

Conclusions

Daurade

RODEX

¹S. Rohou, B. Desrochers, et al., The Codac library – Constraint-programming for robotics, 2022

Sweeping backwards

Experiment 000 Conclusions ●00

Introduction

- 2 Problem Statement
- B Problem Approach
- **4** Sweeping backwards
- **5** Experiment

6 Conclusions

ъ

Introduction 0000	Problem Statement	Problem Approach 0000	Sweeping backwards	Experiment 000	Conclusions ○●○
Conclusic	ons				

- Relation between topological degree and exploration problem,
- coverage measure,
- algorithm for area characterization in terms of winding number.

Introduction 0000	Problem Statement	Problem Approach	Sweeping backwards	Experiment 000	Conclusions ○○●
Future W	/ork				

Extensions of the current method:

- Patch Exploration,
- uncertainty in the robot's trajectory using thick sets.

