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Introduction I

Joint with Frits Beukers.

Recall the Euler–Gauss hypergeometric function:

2F1(a,b; c; z) =
∑
n≥0

(a)n(b)n

(c)n

zn

n!

for |z| < 1 and suitably extended analytically to C, with
(a)n = a(a + 1) · · · (a + n − 1), the Pochammer symbol.

Special evaluations:
• Gauss: if <(c − a− b) > 0

2F1(a,b; c; 1) =
Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)
.

Simple integral manipulations.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Introduction I

Joint with Frits Beukers.

Recall the Euler–Gauss hypergeometric function:

2F1(a,b; c; z) =
∑
n≥0

(a)n(b)n

(c)n

zn

n!

for |z| < 1 and suitably extended analytically to C, with
(a)n = a(a + 1) · · · (a + n − 1), the Pochammer symbol.

Special evaluations:
• Gauss: if <(c − a− b) > 0

2F1(a,b; c; 1) =
Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)
.

Simple integral manipulations.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Introduction II

• Fricke: when τ is in the fundamental domain of the modular
group (else multiply the RHS by a suitable ik (cτ + d))

2F1(1/12,5/12; 1; 1728/j(τ)) = E1/4
4 (τ) .

Modular interpretation, differential equations.

• Beukers–Wolfart:

2F1(1/12,5/12; 1/2; 1323/1331) = (3/4)111/4 .

CM theory.

p-adic analogue for p = 7 (note 72 | 1323):

2F1(1/12,5/12; 1/2; 1323/1331)7 = (1/4)111/4 .
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Goals

Ultimate goal: find the largest possible generalizations of all
this. More precisely:

• Generalizing Gauss’ 3-parameter evaluation at z = 1: Find all
2-parameter, 1-parameter, and even 0-parameter evaluations of
a specific kind: conjecturally they can all be given in finitely
many infinite families.

• Generalizing Fricke’s E4 evaluation: find all functional modular
evaluations, in particular corresponding to hyperbolic arithmetic
triangle groups.

• Generalizing Beukers–Wolfart’s algebraic evaluation: find all
algebraic evaluations of 2F1(a,b; c; z). Hopeless in general, but
may be possible if we assume a, b, c, and also z rational. Note
that all have p-adic analogs.
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Special Cases

If a, b, c − a, or c − b is integral, 2F1(a,b; c; z) is degenerate in
a suitable sense. For instance

2F1(a,−1; c; c/a) = 2F1(a, c + 1; c; c/(c − a)) = 0

2F1(a,2; c; (c − 2)/(a− 1)) = (a− 1)(c − 1)/(a− c + 1)

2F1(1− a,b; b + 2; b/(a + b)) = (b + 1)(a/(a + b))a .

We exclude those.

Slightly more subtle: 2F1(a,b; c; z) may be an algebraic
function of z. Easy criterion due to Schwarz. Examples:

2F1(t , t+m/2; n/2; z), 2F1(t ,−t+p; n/2; z), 2F1(t , t+m/2; 2t+p; z)

with m and n odd integers and p integer. If we exclude a, b,
c − a, c − b integral as above, may be the only examples with
a, b, and c linear in one parameter t . We also exclude those.
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Gamma Evaluations I

Well-known: there exist four two-parameter evaluations: one for
z = −1, two for z = 1/2, and one for z = 2:

2F1(a,b; a− b + 1;−1) =
1
2

Γ(a/2)Γ(a− b + 1)

Γ(a)Γ(a/2− b + 1)
,

2F1(a,b; (a + b + 1)/2; 1/2) =
Γ(1/2)Γ((a + b + 1)/2)

Γ((a + 1)/2)Γ((b + 1)/2)
,

2F1(a,1− a; c; 1/2) =
Γ(c/2)Γ((c + 1)/2)

Γ((c + a)/2)Γ((1 + c − a)/2)
,

2F1(a,b/2; b; 2) = eπia/2 Γ(1/2)Γ((b + 1)/2)

Γ((a + 1)/2)Γ((b − a + 1)/2)
.
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Gamma Evaluations II

Less well-known: these belong in fact to four infinite families,
obtained non-trivially from the contiguity relations:
More precisely, they are evaluations as finite linear
combinations of gamma quotients of:

2F1(a,b; n + a− b;−1) ,

2F1(a,b; n + (a + b + 1)/2; 1/2) ,

2F1(a,n − a; c; 1/2) , and

2F1(a,b; n + 2b; 2) ,

where n ∈ Z.
Conjecturally, there are no other two-parameter evaluations.
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Gamma Evaluations III

We now focus on one-parameter evaluations.
A pure Γ-expression E(t) is of the type
E(t) = φ(t)ut ∏

1≤i≤g Γ(t + ri)
ei with φ(t) periodic of period 1

with finitely many Fourier coefficients (we can trivially replace
t + ri by ai t + ri , period 1 by another period, and generalize to
more variables). A mixed Γ-expression is a finite linear
combination of pure ones.
A Γ-evaluation is of the type 2F1(a(t),b(t); c(t); z) = E(t) with
E a (pure or mixed) Γ-expression, and where we assume that
a(t), b(t), and c(t) are linear in t . Trivial equivalences, for
instance t 7→ ut + v , and notion of primitivity.
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Gamma Evaluations IV

Example:

2F1(t ,−2t + 2; 4/3; 8/9) =
1 + e−2πit

2
(−1/3)t Γ(t − 1/2)

Γ(t + 1/6)
.

Systematic search using contiguity relations. Conjecture: up to
equivalence and primitivity, there is only a finite number of pure
Γ-evaluations, more precisely 120 with z ∈ Q, 48 with
z ∈ Q(

√
5), 36 with z ∈ Q(

√
3), 24 with z ∈ Q(

√
2), 4 with

z ∈ Q(
√
−3), and no others, for a total of 232 pure

Γ-evaluations.

In addition, one can show that all these 232 pure Γ-evaluations
can be extended to 232 doubly infinite families of mixed
Γ-evaluations (with m and n ∈ Z as above, such as
2F1(t ,−2t + 2 + m; 4/3 + n; 8/9)). But...
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Gamma Evaluations V

There exist mixed Γ-evaluations which are not obtained by
extending a pure one, for example

2F1(3t ,3t + 1/2; 4t + 1; 8/9) = 108t
(√

2/3
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/3)Γ(t + 2/3)

−
√

2
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/6)Γ(t + 5/6)

)
.

We do not yet know how to classify those.

Some (exactly eight) Γ-evaluations do not involve gamma
factors at all, and two are in fact periodic:

2F1(2t ,1/2; 1− t ; 4) = (1 + 2e2πit )/3

2F1(3t ,1/2; t + 2/3; 4/3) = (
√
−3 + (3−

√
−3)e2πit )/3 .

In particular, in connection with our third subject, this gives
eight infinite families of algebraic evaluations of 2F1(a,b; c; z)
with all four variables rational.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Gamma Evaluations V

There exist mixed Γ-evaluations which are not obtained by
extending a pure one, for example

2F1(3t ,3t + 1/2; 4t + 1; 8/9) = 108t
(√

2/3
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/3)Γ(t + 2/3)

−
√

2
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/6)Γ(t + 5/6)

)
.

We do not yet know how to classify those.

Some (exactly eight) Γ-evaluations do not involve gamma
factors at all, and two are in fact periodic:

2F1(2t ,1/2; 1− t ; 4) = (1 + 2e2πit )/3

2F1(3t ,1/2; t + 2/3; 4/3) = (
√
−3 + (3−

√
−3)e2πit )/3 .

In particular, in connection with our third subject, this gives
eight infinite families of algebraic evaluations of 2F1(a,b; c; z)
with all four variables rational.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Gamma Evaluations V

There exist mixed Γ-evaluations which are not obtained by
extending a pure one, for example

2F1(3t ,3t + 1/2; 4t + 1; 8/9) = 108t
(√

2/3
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/3)Γ(t + 2/3)

−
√

2
Γ(t + 1/4)Γ(t + 3/4)

Γ(t + 1/6)Γ(t + 5/6)

)
.

We do not yet know how to classify those.

Some (exactly eight) Γ-evaluations do not involve gamma
factors at all, and two are in fact periodic:

2F1(2t ,1/2; 1− t ; 4) = (1 + 2e2πit )/3

2F1(3t ,1/2; t + 2/3; 4/3) = (
√
−3 + (3−

√
−3)e2πit )/3 .

In particular, in connection with our third subject, this gives
eight infinite families of algebraic evaluations of 2F1(a,b; c; z)
with all four variables rational.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Hyperbolic Triangles

We now generalize Fricke’s formula for E1/4
4 . Recall some

hyperbolic geometry: H completed upper half plane, ∆ ⊂ H a
hyperbolic triangle (edges geodesics) with angles
(π/p, π/q, π/r) with p, q, and r in Z≥2 ∪∞ with
1/p + 1/q + 1/r < 1. It is cocompact if p, q, and r are finite.
We simply write ∆ = (p,q, r).

Given vertices τ0, τ1, τ∞, the Schwarz reflection principle
implies that there exists a unique meromorphic function J from
H to P1(C) such that J(τ0) = 0, J(τ1) = 1, J(τ∞) =∞ and
invariant under the group Γ of orientation-preserving maps
generated by reflections along the sides of ∆: J is a
Hauptmodul, and Γ a hyperbolic triangle group.

Note that given the vertices τ0, τ1, and τ∞ we can give a
completely explicit formula for J−1(z), the functional inverse,
hence implicitly for J(τ), see below.
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The Hypergeometric Differential Equation I

Recall that a, b, c being fixed, y(z) = 2F1(a,b; c; z) is a
solution of (1− z)y ′′ + (c − (a + b + 1)z)y ′ − aby = 0, we
denote it by F0(z). If c /∈ Z, a second independent solution is
F1(z) = z1−c

2F1(a + 1− c,b + 1− c; 2− c; z) (similarly if
c ∈ Z, but then a log(z) enters).

The crucial link with hyperbolic triangles (known since the 19th
century, Schwarz theory) is to associate to a triangle (p,q, r)
the hypergeometric functions with parameters a, b, and c such
that

1− c = 1/p, c − a− b = 1/q, and b − a = 1/r

(more generally ±1/p, ±1/q, and ±1/r ). Indeed:

Proposition (Schwarz) If we set H(z) = F1(z)/F0(z), the image
by H of the real line R is a hyperbolic triangle of type (p,q, r) in
the disc model of the hyperbolic plane.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



The Hypergeometric Differential Equation I

Recall that a, b, c being fixed, y(z) = 2F1(a,b; c; z) is a
solution of (1− z)y ′′ + (c − (a + b + 1)z)y ′ − aby = 0, we
denote it by F0(z). If c /∈ Z, a second independent solution is
F1(z) = z1−c

2F1(a + 1− c,b + 1− c; 2− c; z) (similarly if
c ∈ Z, but then a log(z) enters).

The crucial link with hyperbolic triangles (known since the 19th
century, Schwarz theory) is to associate to a triangle (p,q, r)
the hypergeometric functions with parameters a, b, and c such
that

1− c = 1/p, c − a− b = 1/q, and b − a = 1/r

(more generally ±1/p, ±1/q, and ±1/r ). Indeed:

Proposition (Schwarz) If we set H(z) = F1(z)/F0(z), the image
by H of the real line R is a hyperbolic triangle of type (p,q, r) in
the disc model of the hyperbolic plane.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



The Hypergeometric Differential Equation I

Recall that a, b, c being fixed, y(z) = 2F1(a,b; c; z) is a
solution of (1− z)y ′′ + (c − (a + b + 1)z)y ′ − aby = 0, we
denote it by F0(z). If c /∈ Z, a second independent solution is
F1(z) = z1−c

2F1(a + 1− c,b + 1− c; 2− c; z) (similarly if
c ∈ Z, but then a log(z) enters).

The crucial link with hyperbolic triangles (known since the 19th
century, Schwarz theory) is to associate to a triangle (p,q, r)
the hypergeometric functions with parameters a, b, and c such
that

1− c = 1/p, c − a− b = 1/q, and b − a = 1/r

(more generally ±1/p, ±1/q, and ±1/r ). Indeed:

Proposition (Schwarz) If we set H(z) = F1(z)/F0(z), the image
by H of the real line R is a hyperbolic triangle of type (p,q, r) in
the disc model of the hyperbolic plane.

Henri Cohen
Modular, Algebraic, and Gamma-Evaluations of Hypergeometric Series



Hypergeometric Differential Equation II

From this proposition, given the vertices τ0 and τ1 (τ∞ is implicit
since (p,q, r) is given) it is easy to give an explicit formula for
J−1(z), the functional inverse of the Hauptmodul: if as above
H(z) = F1(z)/F0(z), then

J−1(z) =
τ0H(z)− δτ0

H(z)− δ
, with δ = H(1)

τ1 − τ0

τ1 − τ0
.
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The Main Theorem I

Let J(τ) be the above Hauptmodul for the triangle (p,q, r) and
given vertices, and set

E(τ) = J(τ)−(1−1/p)(1− J(τ))−(1−1/q)dJ(τ)

dτ
.

The first main result is that E is a holomorphic modular form of
weight 2 on the triangle group Γ, more correctly Ed is
holomorphic of weight 2d for d = lcm(p,q), its zero set is the
Γ-orbit of τ∞, with known orders.

The second main result gives the link with hypergeometric
functions. Recall 1− c = 1/p, c − a− b = 1/q, b− a = 1/r , the
solutions F0(z) and F1(z) of the hypergeometric differential
equation, and the vertices (τ0, τ1, τ∞) of the hyperbolic
triangle ∆.
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The Main Theorem II

Theorem: locally around τ = τ0 (we can be precise) we have

F0(J(τ)) = E1/2(τ) if τ0 =∞, and otherwise

F0(J(τ)) = γ0(τ − τ0)E1/2(τ) with γ0 = E−1/2(τ0)/(τ0 − τ0) and

F1(J(τ)) = γ1(τ − τ0)E1/2(τ) with γ1 = E−1/2(τ0)(J1−c)′(τ0) :

F0(J(τ)) and F1(J(τ)) correspond to modular forms of weight 1.

Example: (p,q, r) = (∞,2,3), vertices (τ0, τ1, τ∞) = (∞, i ,−ρ)
corresponds to the full modular group Γ = PSL2(Z), and we
have (a,b, c) = (1/12,5/12,1). Since j(∞) =∞, j(i) = 1728,
and j(−ρ) = 0, the corresponding Hauptmodul is

J(τ) = 1728/j(τ) = ((E3
4 − E2

6 )/E3
4 )(τ) .

An easy computation gives

E(τ) = J(τ)−1(1− J(τ))−1/2dJ(τ)/dτ = E1/2
4 (τ) ,

so 2F1(1/12,5/12; 1; 1728/j(τ)) = E1/4
4 (τ), giving Fricke.
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F1(J(τ)) = γ1(τ − τ0)E1/2(τ) with γ1 = E−1/2(τ0)(J1−c)′(τ0) :

F0(J(τ)) and F1(J(τ)) correspond to modular forms of weight 1.

Example: (p,q, r) = (∞,2,3), vertices (τ0, τ1, τ∞) = (∞, i ,−ρ)
corresponds to the full modular group Γ = PSL2(Z), and we
have (a,b, c) = (1/12,5/12,1). Since j(∞) =∞, j(i) = 1728,
and j(−ρ) = 0, the corresponding Hauptmodul is

J(τ) = 1728/j(τ) = ((E3
4 − E2

6 )/E3
4 )(τ) .

An easy computation gives

E(τ) = J(τ)−1(1− J(τ))−1/2dJ(τ)/dτ = E1/2
4 (τ) ,

so 2F1(1/12,5/12; 1; 1728/j(τ)) = E1/4
4 (τ), giving Fricke.
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The Main Theorem III

More interesting example: same triangle but vertices ordered
differently (p,q, r) = (2,3,∞), still the full modular group but
now with τ0 = i 6=∞, so we can apply the other cases of the
theorem. Here the Hauptmodul is J(τ) = 1− j(τ)/1728, and a
similar computation gives

2F1(1/12,1/12; 1/2; 1− j(τ)/1728) =
τ + i

2i
η2(τ)

η2(i)
,

with η(τ) Dedekind eta function of weight 1/2.

Main point: if we choose τ ∈ Q(i), CM theory tells us that the
right-hand side is algebraic, and also that J(τ) is algebraic.
Rational example: τ = 2i , J(τ) = −1323/8 gives the identity

2F1(1/12,1/12; 1/2;−1323/8) = 3/27/4 ,

equivalent via standard hypergeometric transformations to the
famous example given above

2F1(1/12,5/12; 1/2; 1323/1331) = (3/4)111/4 .
Henri Cohen
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Functional Hypergeometric Evaluations I

Using the main theorem, we have seen two functional (as
opposed to numerical) hypergeometric evaluations expressing
2F1 as a modular “form” of weight 1 (3F2 would correspond to
weight 2, and in particular give the 36 known rational
Ramanujan-type formulas for 1/π, see for instance an arXiv
paper of mine). We want to generalize. Notion of arithmetic
hyperbolic triangles, not difficult.

Classified by Takeuchi in 1977: up to equivalence, exactly 85,
with 9 non-compact, 76 compact. The 9 non-compact
correspond to (p,q, r) = (2,q,∞), and (q,q,∞) with q = 3, 4,
or 6, plus (p,∞,∞) with p = 2, 3, and∞, and the
corresponding triangle groups are easy congruence subgroups
of the modular group of levels 1, 2, 3, and 4.
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Functional Hypergeometric Evaluations II

Explicit Hauptmoduln and modular forms, so explicit functional
evaluations as above. Since several (a,b, c) can correspond to
a given group (p,q, r), we find:

16, 16, 16, 8, 8, 8, 5, 5, 1
for a total of 83 functional evaluations for non-compact
hyperbolic arithmetic triangles.

We can obtain additional functional evaluations using for
instance derivatives. Example:

2F1(13/12,5/12; 1; 1728/j(τ)) =
E2(τ)E5/4

4 (τ)

E6(τ)
.

Note that it is E2(τ)− 3/(π=(τ)) which has nice CM properties.
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Algebraic Evaluations I

However, gives numerical evaluations of two different kinds
(assuming τ imaginary quadratic):
When c < 1 (equivalently τ0 6=∞), the right-hand side given by
the theorem is of the form f (τ)/f (τ0), so is algebraic by CM
theory as soon as τ ∈ Q(τ0).

If τ /∈ Q(τ0), or if c ≥ 1, we can prove using the Lerch,
Chowla–Selberg formula that the RHS is algebraic times a
product of Γ(ui) for ui ∈ Q, similar to Γ-evaluations above.

Thus, to obtain algebraic evaluations we need c < 1 and
τ ∈ Q(τ0).
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Algebraic Evaluations II

Thanks to this, restricting to evaluations 2F1(a,b; c; z) with z
rational, and using generalizations of the solution to the class
number 1 problem and CM theory, we find a complete list of
algebraic evaluations for non-compact arithmetic triangle
groups coming from CM, generalizing Beukers–Wolfart’s
example, more precisely

9, 12, 26, 7, 13, 22, 2, 3, 0
evaluations corresponding to the nine groups, for a total of 94
algebraic numerical evaluations with z rational. We emphasize
that here and in the sequel, all evaluations are understood with
z rational (as well as a, b, and c), otherwise the classification
would probably be hopeless.
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Algebraic Evaluations III

Remarks:
• Several evaluations (12 out of the 94 above) are in fact
rational, e.g., 2F1(1/4,1/2; 3/4; 80/81) = 9/5.
• If d is a common denominator of a, b, and c the main theorem
implies that when z ∈ Q and S = 2F1(a,b; c; z) is obtained as a
CM value as above, then Sd ∈ Q(τ) with τ =

√
−1 or

√
−3.

• By a theorem of Wolfart and a deep transcendence result of
Wüstholz, if z = J(τ) is algebraic (in particular rational) and
S = 2F1(a,b; c; z) is algebraic, then τ is imaginary quadratic,
so we have indeed found all such evaluations in the
non-compact case.
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p-adic Evaluations

In every case (including the ones we will see below) there are
corresponding p-adic algebraic evaluations. Note that the
corresponding number fields may be the same or very different,
and that the p-adic value may vanish, while the complex one
never does. Examples (in addition to the Beukers–Wolfart 111/4

one where the number fields are the same):

2F1(1/6,1/3; 1/2; 25/37) = (3/4)
√

3

2F1(1/6,1/3; 1/2; 25/37)5 = −(3/4)
√
−1 ,

2F1(1/6,2/3; 5/6; 80/81) = (3/5)
6
√

405

2F1(1/6,2/3; 5/6; 80/81)5 = 0 .
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Functional Hypergeometric Evaluations III

In the compact case, the main theorem also gives functional
hypergeometric evaluations. However, the functions are
automorphic functions on Shimura curves, completely explicit
but less studied. Recall that the functional inverse J−1(z) is
given by an explicit formula in terms of hypergeometric
functions.

We work backwards. Example: we find numerically that for the
(p,q, r) = (3,6,6) triangle, we have

2F1(1/6,1/3; 5/6; 64/189) = (3/7)1891/6 .

Using suitable vertices for the triangle, we find that
J−1(64/189) = τ = (11

√
−1 + 6

√
−2)/7, which is thus the

image in H of a CM point on the Shimura curve.

In all the evaluations found (849), the cross-ratio [τ, τ1; τ0, τ0],
which is independent of the choice of vertices, belongs to
Q(ζd ), for instance in the above example it simply equals 2/3.
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Algebraic Evaluations IV

We have made a thorough search for algebraic evaluations
(excluding degenerate cases and specializations of general
formulas) corresponding to the 76 compact arithmetic
hyperbolic triangles (several weeks of CPU time), helped by
powerful heuristics, for instance the conjecture that
2F1(a,b; c; z)d ∈ Q(ζd ) for d common denominator of (a,b, c),
and the fact that both z and 1− z are smooth (only small prime
factors), conjecture generalizing a theorem of Gross–Zagier on
singular moduli. Also related to Belyi maps.

In addition to the 94 algebraic evaluations found in the non
compact case, we have found 755 algebraic evaluations
corresponding to compact arithmetic triangle groups. We
believe that we have found more than 90% such evaluations.
Note: all numerical, but work of J. Voight, Y. Yang, and others
give algorithms to prove them all, which we have not done.
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Algebraic Evaluations V

Some extreme cases: For the (2,3,8) triangle:
x = 2F1(17/48,41/48; 7/8; 29884728384/34239431521)
satisfies x24 = a + b

√
2 with a, b rational with 100 digit

numerators and denominators. Note
z = 29884728384/34239431521 = 26347831−247−2127−2 and
1− z = 23371331−247−2127−2, both “smooth”.

For the (2,4,6) triangle:
x = 2F1(1/24,7/24; 5/6; 3024000000/4097152081) satisfies
x6 = 129536/117649.

Evaluations found for 71 out of the 76 compact arithmetic
groups. For instance none found for the (2,3,7) triangle. In
view of the example for (2,3,8), height of z maybe very large.

As already mentioned, all of our 849 algebraic evaluations have
p-adic analogues when the series converges (usually
vp(z) > 0). But using Dwork-type p-adic extensions, also for
vp(z) = 0, conjectural, due to F. Beukers.
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Algebraic Evaluations VI

We have also searched (much less thoroughly) for algebraic
evaluations not corresponding to arithmetic triangle groups: we
have found several for non-arithmetic triangle groups, for
instance x = 2F1(3/14,5/21; 20/21;−8) satisfies x42 ∈ Q(ζ21)
and of degree 252, and for non-triangle groups, for instance
x = 2F1(1/10,1/6; 3/5; 81) satisfies x30 ∈ Q(ζ15) and of
degree 240.

We have found 209 additional algebraic evaluations, but
contrary to the case of arithmetic triangles, we do not believe
that they represent most evaluations, but simply that our search
was incomplete. Note that we use linear, quadratic, cubic, and
quartic transformations of the hypergeometric function to obtain
as many evaluations as we can.
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Thank you for your attention.
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