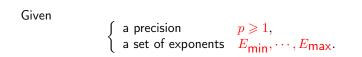
Integer points close to a transcendental curve and correctly-rounded evaluation of a function

Nicolas Brisebarre (C.N.R.S.) and Guillaume Hanrot (É.N.S. Lyon)

Effective Aspects in Diophantine Approximation - March 28, 2023

(Binary) Floating Point (FP) Arithmetic

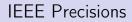


A finite FP number \boldsymbol{x} is represented by 2 integers:

- integer significand M, $2^{p-1} \leq |M| \leq 2^p 1$,
- exponent E, $E_{\min} \leq E \leq E_{\max}$

such that

$$x = \frac{M}{2^{p-1}} \times 2^E.$$



IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point

	precision p	min. exponent	maximal exponent
		$E_{\sf min}$	$E_{\sf max}$
binary32 (single)	24	-126	127
binary64 (double)	53	-1022	1023
binary128 (quadruple)	113	-16382	16383

We have $x = \frac{M}{2^{p-1}} \times 2^E$ with $2^{p-1} \leq |M| \leq 2^p - 1$ and $E_{\min} \leq E \leq E_{\max}$. In the IEEE 754 standard, the user defines an active rounding mode.

In this talk, we use:

• round to nearest (default). If $x \in \mathbb{R}$, RN(x): the floating-point number closest to x. In case of a tie, value whose integral significand is even.

Breakpoint: a point where the rounding function changes.

In the IEEE 754 standard, the user defines an active rounding mode.

In this talk, we use:

• round to nearest (default). If $x \in \mathbb{R}$, RN(x): the floating-point number closest to x. In case of a tie, value whose integral significand is even.

Breakpoint: a point where the rounding function changes.

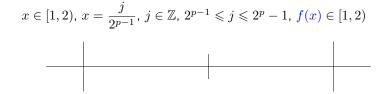
Here, breakpoint = the middle of two consecutive FP numbers.

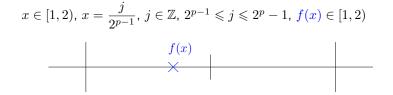
A correctly-rounded operation whose entries are FP numbers must return what we would get by infinitely precise operation followed by rounding.

A correctly-rounded operation whose entries are FP numbers must return what we would get by infinitely precise operation followed by rounding.

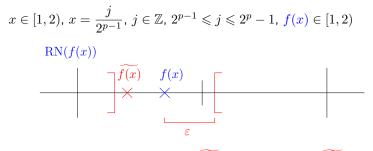
IEEE-754 (1985): Correct rounding for +, -, ×, ÷, $\sqrt{}$ and some conversions.

IEEE-754 (2008): suggests correct rounding for some elementary functions ($\sqrt[n]{}$, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh...).





Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

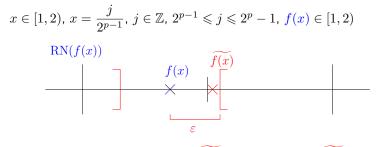


Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

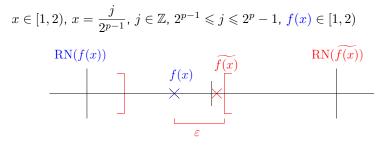
$$x \in [1,2), x = \frac{j}{2^{p-1}}, j \in \mathbb{Z}, 2^{p-1} \leq j \leq 2^p - 1, f(x) \in [1,2)$$

$$\frac{\operatorname{RN}(f(x)) = \operatorname{RN}(\widetilde{f(x)})}{\overbrace{\qquad}}$$

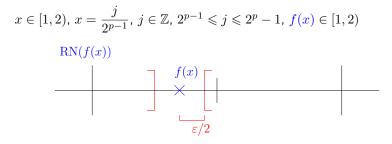
Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.



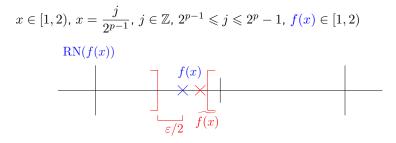
Given $\varepsilon > 0$, the computed value f(x) satisfies $|f(x) - f(x)| < \varepsilon$.



Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.



Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.



Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

$$x \in [1, 2), x = \frac{j}{2^{p-1}}, j \in \mathbb{Z}, 2^{p-1} \leq j \leq 2^p - 1, f(x) \in [1, 2)$$

$$RN(f(x)) = RN(\widetilde{f(x)})$$

$$f(x) = f(x)$$

$$F(x) = f(x)$$

$$F(x) = f(x)$$

Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

$$x \in [1, 2), x = \frac{j}{2^{p-1}}, j \in \mathbb{Z}, 2^{p-1} \leq j \leq 2^p - 1, f(x) \in [1, 2)$$

$$\operatorname{RN}(f(x)) = \operatorname{RN}(\widetilde{f(x)})$$

$$f(x) = f(x)$$

$$f(x) = f(x)$$

$$f(x) = f(x)$$

Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

Potential issues:

Given $\varepsilon > 0$, the computed value $\widetilde{f(x)}$ satisfies $|f(x) - \widetilde{f(x)}| < \varepsilon$.

Potential issues:

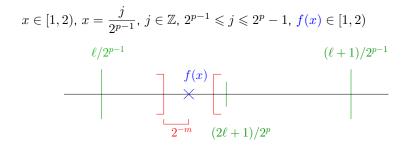
- What if f(x) is a breakpoint?
- What about the number of subdivisions?
- ε should be uniform! And as large as possible!

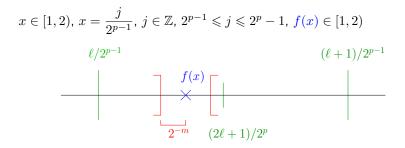
$$x \in [1, 2), \ x = \frac{j}{2^{p-1}}, \ j \in \mathbb{Z}, \ 2^{p-1} \leqslant j \leqslant 2^p - 1, \ f(x) \in [1, 2)$$

$$RN(f(x))$$

$$f(x)$$

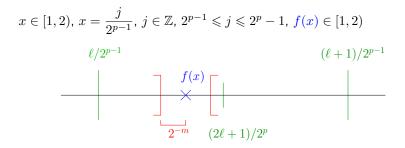
$$x = \frac{f(x)}{2^{-m}}$$





We want to find $m \in \mathbb{N}$ s.t.

• either there exists $\ell \in \llbracket 2^{p-1}, 2^p - 1 \rrbracket$ s.t. $f(x) = (2\ell + 1)/2^p$,



We want to find $m \in \mathbb{N}$, as small as possible, s.t. for all FP x:

• either there exists $\ell \in \llbracket 2^{p-1}, 2^p - 1 \rrbracket$ s.t. $f(x) = (2\ell + 1)/2^p$,

or

for all
$$k \in [\![2^{p-1}, 2^p - 1]\!], \left| f(x) - \frac{2k+1}{2^p} \right| \ge 2^{-m}$$

Assume, w.l.o.g., that x and $f(x) \in [1, 2)$.

Q. (TMD) We want to determine $m \in \mathbb{N}$, as small as possible, s.t. for all $j \in [2^{p-1}, 2^p - 1]$,

• either there exists $\ell \in [\![2^{p-1}, 2^p - 1]\!]$ s.t. $f\left(\frac{j}{2^{p-1}}\right) = \frac{2\ell+1}{2^p}$,

or

for all
$$2^{p-1} \leq k \leq 2^p - 1$$
, $\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2k+1}{2^p} \right| \geq \frac{1}{2^m}$

Consider the function 2^x and the binary64 FP number (base 2, p = 53)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

 $2^{52+x} = 4509371038706515.49999999999999999994026\cdots \text{(decimal)}$ = $\underbrace{1\cdots}_{53 \text{ bits}} \underbrace{.01\cdots}_{60 \text{ consecutive }1's}$

Consider the function 2^x and the binary64 FP number (base 2, p = 53)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

$$2^{52+x} = 4509371038706515.4999999999999999994026\cdots \text{(decimal)}$$

=
$$\underbrace{1\cdots}_{53 \text{ bits}} \underbrace{.01\cdots\ldots10}_{60 \text{ consecutive } 1's} \cdots \text{(binary)}.$$

Hardest-to-round (HR) case for function 2^x and binary64 FP numbers. Lefèvre et al.: the value of m is 113 ($\sim 2p, p = 53$) here.

Consider the function 2^x and the binary64 FP number (base 2, p = 53)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

$$2^{52+x} = 4509371038706515.4999999999999999994026\cdots \text{(decimal)}$$

=
$$\underbrace{1\cdots}_{53 \text{ bits}} \underbrace{.01\cdots\ldots10}_{60 \text{ consecutive } 1's} \cdots \text{(binary)}.$$

Hardest-to-round (HR) case for function 2^x and binary64 FP numbers. Lefèvre et al.: the value of m is 113 ($\sim 2p, p = 53$) here.

Function $f: \sqrt[n]{}$, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh...

Consider the function 2^x and the binary64 FP number (base 2, p = 53)

$$x = \frac{8520761231538509}{2^{62}}$$

We have

$$2^{52+x} = 4509371038706515.49999999999999999994026\cdots \text{(decimal)} \\ = \underbrace{1\cdots}_{53 \text{ bits}} \underbrace{.01\cdots\cdots}_{60 \text{ consecutive } 1's} \cdots \text{(binary)}.$$

Hardest-to-round (HR) case for function 2^x and binary64 FP numbers. Lefèvre et al.: the value of m is 113 ($\sim 2p, p = 53$) here.

Function $f: \sqrt[n]{}$, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh... Heuristically, $m \sim 2p$. Assume, w.l.o.g., that x and $f(x) \in [1, 2)$.

Q. (TMD) We want to determine $m \in \mathbb{N}$, as small as possible, s.t. for all $j \in [\![2^{p-1}, 2^p - 1]\!]$,

• either there exists $\ell \in \llbracket 2^{p-1}, 2^p - 1 \rrbracket$ s.t. $f\left(\frac{j}{2^{p-1}}\right) = \frac{2\ell + 1}{2^p}$,

or

for all
$$2^{p-1} \leq \ell \leq 2^p - 1$$
, $\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell + 1}{2^p} \right| \ge 2^{-m}$

A breakpoint is a point where the rounding function changes. In this talk, it is the middle of two consecutive FP numbers.

First challenge:

• Determine the set BP_f of all the FP numbers $x \in [1, 2)$ such that f(x) is a breakpoint.

In other words, determine all $j, \ell \in [\![2^{p-1}, 2^p - 1]\!]$ s.t.

$$f\left(\frac{j}{2^{p-1}}\right) = \frac{2\ell+1}{2^p}.$$

Transcendental elementary Functions sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh. Hermite-Lindemann's theorem: $\alpha \neq 0$ algebraic $\Rightarrow e^{\alpha}$ transcendental.

Transcendental elementary Functions sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh. Hermite-Lindemann's theorem: $\alpha \neq 0$ algebraic $\Rightarrow e^{\alpha}$ transcendental. Therefore, let x a FP number, f(x) is not a breakpoint, except for straightforward cases $(e^0, \ln(1), \sin(0), \ldots)$.

Transcendental elementary Functions sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh. Hermite-Lindemann's theorem: $\alpha \neq 0$ algebraic $\Rightarrow e^{\alpha}$ transcendental. Therefore, let x a FP number, f(x) is not a breakpoint, except for straightforward cases $(e^0, \ln(1), \sin(0), \ldots)$.

What about the Euler Gamma function? For Re(z) > 0,

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} \mathrm{d}t.$$

Very little is known:

 $\Gamma(1/2), \Gamma(1/3), \Gamma(1/4), \Gamma(1/6), \Gamma(2/3), \Gamma(3/4), \Gamma(5/6)$ are transcendental and there are some partial irrationality results.

Let $f: [1,2) \mapsto [1,2)$, f is transcendental and analytic in the neighborhood of [1,2).

Let $f: [1,2) \mapsto [1,2)$, f is transcendental and analytic in the neighborhood of [1,2).

Let $g \in \mathcal{C}([a,b])$,

$$||g||_{\infty,[a,b]} := \max_{x \in [a,b]} |g(x)|.$$

We want to find all $2^{p-1} \leq i, j \leq 2^p - 1$ s.t.

$$f\left(\frac{i}{2^{p-1}}\right) = \frac{2j+1}{2^p},$$

We want to find all $2^{p-1} \leq i, j \leq 2^p - 1$ s.t.

$$f\left(\frac{i}{2^{p-1}}\right) = \frac{2j+1}{2^p},$$

i.e.
$$2^p f\left(\frac{i}{2^{p-1}}\right) = 2j+1.$$

We want to find all $2^{p-1} \leq i, j \leq 2^p - 1$ s.t.

$$f\left(\frac{i}{2^{p-1}}\right) = \frac{2j+1}{2^p},$$

i.e.
$$2^p f\left(\frac{i}{2^{p-1}}\right) = 2j+1.$$

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

$$\left|P_{\ell,k}(2^{p-1}u,2^pf(u))\right| < 1, \quad k = 1,2,$$

for all $u \in I_{\ell}$.

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, \quad k = 1, 2 \text{ for all } u \in I_{\ell}.$

For all ℓ , if there exist $2^{p-1}\leqslant i,j\leqslant 2^p-1$ s.t. $i/2^{p-1}\in I_\ell$ and

$$f\left(\frac{i}{2^{p-1}}\right) = \frac{2j+1}{2^p},$$

We build a trap! We find a partition of $[1, 2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X, Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, \quad k = 1, 2 \text{ for all } u \in I_{\ell}.$

For all $\ell,$ if there exist $2^{p-1}\leqslant i,j\leqslant 2^p-1$ s.t. $i/2^{p-1}\in I_\ell$ and

$$f\left(\frac{i}{\underbrace{2^{p-1}}{u}}\right) = \underbrace{\frac{2j+1}{2^p}}_{v},$$

then we have, for k = 1, 2,

 $P_{\ell,k}(i,2j+1) \in \mathbb{Z}$ and $|P_{\ell,k}(i,2j+1)| < 1!$

We build a trap! We find a partition of $[1, 2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X, Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, \quad k = 1, 2 \text{ for all } u \in I_{\ell}.$

For all $\ell,$ if there exist $2^{p-1}\leqslant i,j\leqslant 2^p-1$ s.t. $i/2^{p-1}\in I_\ell$ and

$$f\left(\frac{i}{\underbrace{2^{p-1}}{u}}\right) = \underbrace{\frac{2j+1}{2^p}}_{v},$$

then we have, for k = 1, 2,

 $P_{\ell,k}(i,2j+1) \in \mathbb{Z}$ and $|P_{\ell,k}(i,2j+1)| < 1! \Rightarrow P_{\ell,k}(i,2j+1) = 0.$

We build a trap! We find a partition of $[1, 2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X, Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, \quad k = 1, 2 \text{ for all } u \in I_{\ell}.$

For all $\ell,$ if there exist $2^{p-1}\leqslant i,j\leqslant 2^p-1$ s.t. $i/2^{p-1}\in I_\ell$ and

$$f\left(\frac{i}{\underbrace{2^{p-1}}{u}}\right) = \underbrace{\frac{2j+1}{v}}_{v},$$

then we have, for k = 1, 2,

 $P_{\ell,k}(i,2j+1) \in \mathbb{Z}$ and $|P_{\ell,k}(i,2j+1)| < 1! \Rightarrow P_{\ell,k}(i,2j+1) = 0.$

We eliminate (heuristic assumption!) one of the two variables and we get *i* and *j*, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, k = 1, 2 \text{ for all } u \in I_{\ell}.$

Specify the basis that we use for these polynomials.

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

- Specify the basis that we use for these polynomials.
- e How do we guarantee the smallness of a function, analytic in a neighborhood of an interval [a, b]?

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

- Specify the basis that we use for these polynomials.
- e How do we guarantee the smallness of a function, analytic in a neighborhood of an interval [a, b]? Chebyshev interpolation

We build a trap! We find a partition of $[1, 2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X, Y] \setminus \{0\}$ with

- Specify the basis that we use for these polynomials.
- e How do we guarantee the smallness of a function, analytic in a neighborhood of an interval [a, b]? Chebyshev interpolation
- I How do we compute these polynomials? Lattice basis reduction

We build a trap! We find a partition of $[1,2) = \bigcup_{\ell} I_{\ell}$ such that, for all ℓ , we can compute $P_{\ell,1}, P_{\ell,2} \in \mathbb{Z}[X,Y] \setminus \{0\}$ with

 $|P_{\ell,k}(2^{p-1}u, 2^p f(u))| < 1, k = 1, 2 \text{ for all } u \in I_{\ell}.$

- Specify the basis that we use for these polynomials.
- e How do we guarantee the smallness of a function, analytic in a neighborhood of an interval [a, b]? Chebyshev interpolation
- I How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice of the basis.

Basis in Use

Let $d \in \mathbb{N}$, if $X = 2^{p-1}x$ and $Y = 2^p f(x)$ the elements of the basis that we use are:

i.e., the basis of use is $((2^{p-1}x)^k(2^pf(x))^\ell)_{\substack{0 \le \ell \le d \\ 0 \le k \le d-\ell}}$. Dimension N = (d+1)(d+2)/2.

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n$.

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n$.

Let $p_n \in \mathbb{R}_n[X]$ that interpolates $\varphi \in \mathcal{C}([-1,1])$ at the $(\mu_k)_{k=0,..,n}$.

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $p_n \in \mathbb{R}_n[X]$ that interpolates $\varphi \in \mathcal{C}([-1,1])$ at the $(\mu_k)_{k=0,..,n}$.

The polynomial p_n is a quasi-optimal uniform approximation to φ :

$$\|\varphi - p_n\|_{\infty, [-1,1]} \leq 2\left(\frac{1}{\pi}\log(n+1) + 1\right)\min_{Q \in \mathbb{R}_n[x]} \|\varphi - Q\|_{\infty, [-1,1]}.$$

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $p_n \in \mathbb{R}_n[X]$ that interpolates $\varphi \in \mathcal{C}([-1,1])$ at the $(\mu_k)_{k=0,..,n}$.

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $p_n \in \mathbb{R}_n[X]$ that interpolates $\varphi \in \mathcal{C}([-1,1])$ at the $(\mu_k)_{k=0,..,n}$.

The polynomial p_n is a quasi-optimal uniform approximation to φ .

$$\underbrace{\|\varphi\|_{\infty,[-1,1]}}_{\text{small}} \leqslant \|p_n\|_{\infty,[-1,1]} + \|\varphi - p_n\|_{\infty,[-1,1]}$$

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $p_n \in \mathbb{R}_n[X]$ that interpolates $\varphi \in \mathcal{C}([-1,1])$ at the $(\mu_k)_{k=0,..,n}$.

The polynomial p_n is a quasi-optimal uniform approximation to φ .

$$\underbrace{\|\varphi\|_{\infty,[-1,1]}}_{\text{small}} \leqslant \underbrace{\|p_n\|_{\infty,[-1,1]}}_{\text{small}} + \underbrace{\|\varphi - p_n\|_{\infty,[-1,1]}}_{\text{small}}$$

Bounding the Interpolation Polynomial at Chebyshev Nodes

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $P \in \mathbb{R}_n[X]$, we have

$$\max_{x \in [-1,1]} |P(x)| \leq \left(\frac{2}{\pi} \log(n+1) + 1\right) \max_{k=0,\dots,n} |P(\mu_k)|.$$

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n$.

Let $\varphi \in \mathcal{C}([-1,1])$, let $p_n \in \mathbb{R}_n[X]$ that interpolates φ at the $(\mu_k)_{k=0,..,n}$, we have

$$||p_n||_{\infty} \leq \left(\frac{2}{\pi} \log(n+1) + 1\right) \max_{k=0,\dots,n} |p_n(\mu_k)| \\ = \left(\frac{2}{\pi} \log(n+1) + 1\right) \max_{k=0,\dots,n} |\varphi(\mu_k)|.$$

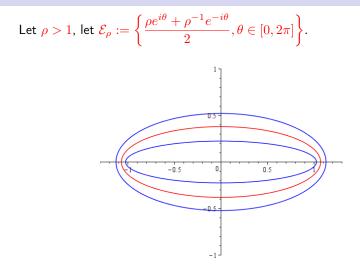
Let
$$\rho > 1$$
, let $\mathcal{E}_{\rho} := \left\{ \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2}, \theta \in [0, 2\pi] \right\}.$

Let
$$\rho > 1$$
, let $\mathcal{E}_{\rho} := \left\{ \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2}, \theta \in [0, 2\pi] \right\}.$

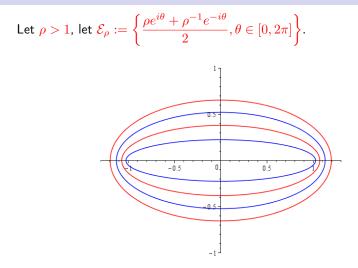
Bernstein ellipses for $\rho = 1.05$,

Let
$$\rho > 1$$
, let $\mathcal{E}_{\rho} := \left\{ \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2}, \theta \in [0, 2\pi] \right\}.$

Bernstein ellipses for $\rho = 1.05, 1.25,$



Bernstein ellipses for $\rho = 1.05, 1.25, 1.45,$



Bernstein ellipses for $\rho = 1.05, 1.25, 1.45, 1.65,$



Bernstein ellipses for $\rho = 1.05, 1.25, 1.45, 1.65, 1.85$.

Bounding the Remainder

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n$.

Bounding the Remainder

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n$.

Let $\rho > 1$, let φ be a function analytic in a neighborhood of $\overline{\mathcal{E}_{\rho}}$. Let $p_n \in \mathbb{R}_n[X]$ that interpolates φ at the $(\mu_k)_{k=0,..,n}$, we have

$$\|\varphi - p_n\|_{\infty, [-1,1]} \leqslant \frac{4M_{\rho}(\varphi)}{\rho^n(\rho-1)}.$$

where $M_{\rho}(\varphi) = \max_{z \in \mathcal{E}_{\rho}} |\varphi(z)|.$

Interpolation at Chebyshev Nodes and Uniform Approximation

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Interpolation at Chebyshev Nodes and Uniform Approximation

Definition

Let $n \in \mathbb{N}$, the Chebyshev nodes of the first kind of order n are the points $\mu_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k = 0, \dots, n.$

Let $\rho > 1$, let φ be a function analytic in a neighborhood of $\overline{\mathcal{E}_{\rho}}$. Let $p_n \in \mathbb{R}_n[X]$ that interpolates φ at the $(\mu_k)_{k=0,..,n}$, we have

$$\begin{aligned} \|\varphi\|_{\infty} &\leqslant \|p_n\|_{\infty} + \|\varphi - p_n\|_{\infty} \\ &\leqslant \left(\frac{2}{\pi}\log(n+1) + 1\right) \max_{k=0,\dots,n} |\varphi(\mu_k)| + \frac{4M_{\rho}(\varphi)}{\rho^n(\rho-1)}. \end{aligned}$$

where $M_{\rho}(\varphi) = \max_{z \in \mathcal{E}_{\rho}} |\varphi(z)|$.

Interpolation at Chebyshev Nodes and Uniform Approximation: The case of [a, b]

Let I = [a, b], one defines

• scaled Chebyshev nodes of the first kind of order n:

 $\mu_{k,[a,b]} = \frac{b-a}{2} \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) + \frac{a+b}{2}, k = 0, \dots, n,$

Interpolation at Chebyshev Nodes and Uniform Approximation: The case of [a, b]

Let I = [a, b], one defines

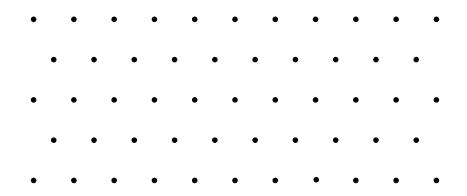
• scaled Chebyshev nodes of the first kind of order *n*:

$$\mu_{k,[a,b]} = \frac{b-a}{2} \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) + \frac{a+b}{2}, k = 0, \dots, n,$$

• a scaled Bernstein ellipse

$$\mathcal{E}_{\rho,a,b} = \left\{ \frac{b-a}{2} \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2} + \frac{a+b}{2}, \theta \in [0, 2\pi] \right\}$$

Lattice Basis Reduction



An Approach based on Lattice Basis Reduction

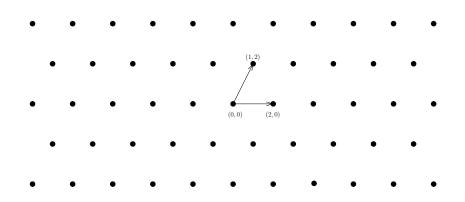
Definition

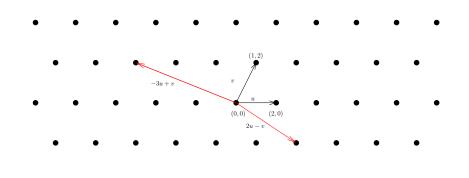
Let L be a nonempty subset of \mathbb{R}^d , L is a lattice iff there exists a set of vectors $b_1, \ldots, b_k \mathbb{R}$ -linearly independent such that

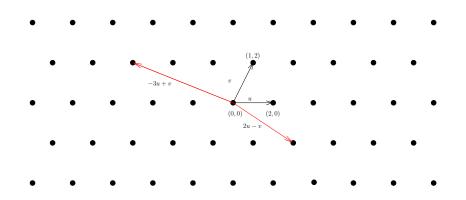
 $L = \mathbb{Z}.b_1 \oplus \cdots \oplus \mathbb{Z}.b_k.$

 (b_1,\ldots,b_k) is a basis of the lattice L.

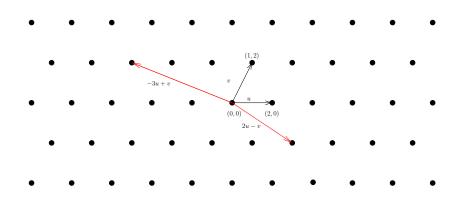
Examples. \mathbb{Z}^d , every subgroup of \mathbb{Z}^d .







SVP (Shortest Vector Problem)



SVP (Shortest Vector Problem) is NP-hard.

SVP (Shortest Vector Problem) is NP-hard. *Factoring Polynomials with Rational Coefficients*, A. K. Lenstra, H. W. Lenstra and L. Lovász, Math. Annalen **261**, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial time.

Theorem

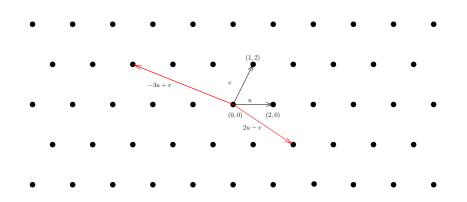
Let *L* a lattice of dimension *k*. LLL provides a basis (b_1, \ldots, b_k) made of "pretty" short vectors. We have $||b_1|| \leq 2^{(k-1)/2}\lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of *L*. It terminates in at most $O(k^6 \ln^3 B)$ operations with $B \ge ||b_i||^2$ for all *i*.

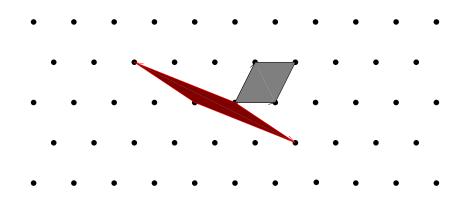
Theorem

Let L a lattice of dimension k. LLL provides a basis (b_1, \ldots, b_k) made of "pretty" short vectors. We have $||b_1|| \leq 2^{(k-1)/2} \lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of L. It terminates in at most $O(k^6 \ln^3 B)$ operations with $B \ge ||b_i||^2$ for all i.

Let (b_1, \ldots, b_k) be an LLL-reduced basis L then

 $||b_1|| \leq 2^{k/2} (\text{vol } L)^{1/k}$ and $||b_2|| \leq 2^{k/2} (\text{vol } L)^{\frac{1}{k-1}}.$





Theorem

Let L a lattice of dimension k. LLL provides a basis (b_1, \ldots, b_k) made of "pretty" short vectors. We have $||b_1|| \leq 2^{(k-1)/2} \lambda_1(L)$ where $\lambda_1(L)$ denotes the norm of a shortest nonzero vector of L. It terminates in at most $O(k^6 \ln^3 B)$ operations with $B \ge ||b_i||^2$ for all i.

Let (b_1, \ldots, b_k) be an LLL-reduced basis L then

 $||b_1|| \leq 2^{k/2} (\text{vol } L)^{1/k}$ and $||b_2|| \leq 2^{k/2} (\text{vol } L)^{\frac{1}{k-1}}.$

Let
$$d \in \mathbb{N}$$
, $P_1 = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v$ and
 $P_2 = \sum_{0 \leqslant u+v \leqslant d} \beta_{u,v} X^u Y^v \in \mathbb{Z}[X, Y]$. We want to have
 $|P_k(2^{p-1}x, 2^p f(x))| < 1, \qquad k = 1, 2,$
for all $x \in I = [a, b]$.

$$f_{k,\ell}(x) = (2^{p-1}x)^{\ell} (2^p f(x))^k$$
 and $r_{k,\ell} = \frac{4M_{\rho}(f_{k,\ell})}{\rho^{N-1}(\rho-1)}$

$$f_{k,\ell}(x) = (2^{p-1}x)^{\ell} (2^p f(x))^k$$
 and $r_{k,\ell} = \frac{4M_{\rho}(f_{k,\ell})}{\rho^{N-1}(\rho-1)}$

Our lattice: \mathcal{L} generated by the rows of

$\left(egin{array}{c} f_{0,0}(x_0) \ f_{0,1}(x_0) \end{array} ight)$	···· ···	$f_{0,0}(x_{N-1})\ f_{0,1}(x_{N-1})$	0	$r_{0,1}$	0		$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
		:	÷	$\mathcal{D}_{\mathcal{L}}$	÷.,	$\mathcal{D}_{\mathcal{A}}$	÷
$\begin{cases} f_{d-1,1}(x_0) \\ f_{d,0}(x_0) \end{cases}$		$\begin{array}{c} f_{d-1,1}(x_{N-1}) \\ f_{d,0}(x_{N-1}) \end{array}$: 0	····	0 	$\stackrel{r_{d-1,1}}{0}$	$\begin{pmatrix} 0 \\ r_{d,0} \end{pmatrix}$

$$f_{k,\ell}(x) = (2^{p-1}x)^{\ell} (2^p f(x))^k$$
 and $r_{k,\ell} = \frac{4M_{\rho}(f_{k,\ell})}{\rho^{N-1}(\rho-1)}$

Our lattice: \mathcal{L} generated by the rows of

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$\begin{array}{c} \alpha_{0,0} \\ +\alpha_{0,1} \\ \vdots \\ +\alpha_{d-1,1} \\ +\alpha_{d,0} \end{array} \begin{pmatrix} f_{0,0}(x_0) & \cdots & f_{0,0}(x_{N-1}) & r_{0,0} & 0 & \cdots & \cdots & 0 \\ f_{0,1}(x_0) & \cdots & f_{0,1}(x_{N-1}) & 0 & r_{0,1} & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ f_{d-1,1}(x_0) & \cdots & f_{d-1,1}(x_{N-1}) & \vdots & \cdots & 0 & r_{d-1,1} & 0 \\ f_{d,0}(x_0) & \cdots & f_{d,0}(x_{N-1}) & 0 & \cdots & \cdots & 0 & r_{d,0} \end{pmatrix},$$

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$\begin{array}{c} \alpha_{0,0} \\ +\alpha_{0,1} \\ \vdots \\ +\alpha_{d-1,1} \\ +\alpha_{d,0} \end{array} \begin{pmatrix} f_{0,0}(x_0) & \cdots & f_{0,0}(x_{N-1}) & r_{0,0} & 0 & \cdots & \cdots & 0 \\ f_{0,1}(x_0) & \cdots & f_{0,1}(x_{N-1}) & 0 & r_{0,1} & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ f_{d-1,1}(x_0) & \cdots & f_{d-1,1}(x_{N-1}) & \vdots & \cdots & 0 & r_{d-1,1} & 0 \\ f_{d,0}(x_0) & \cdots & f_{d,0}(x_{N-1}) & 0 & \cdots & \cdots & 0 & r_{d,0} \end{pmatrix},$$

i.e.,

$$\left(\sum_{0\leqslant u+v\leqslant d}\alpha_{u,v}f_{u,v}(x_0),\cdots,\sum_{0\leqslant u+v\leqslant d}\alpha_{u,v}f_{u,v}(x_{N-1}),\alpha_{0,0}r_{0,0},\cdots,\alpha_{d,0}r_{d,0}\right).$$

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

Let p_n the interpolation polynomial of g at the Chebyshev nodes and $r_n = \|g - p_n\|_{\infty}$. If the vector V is small, then

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

Let p_n the interpolation polynomial of g at the Chebyshev nodes and $r_n = ||g - p_n||_{\infty}$. If the vector V is small, then

• p_n is small,

Let $d \in \mathbb{N}$, $P = \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

Let p_n the interpolation polynomial of g at the Chebyshev nodes and $r_n = \|g - p_n\|_{\infty}$. If the vector V is small, then

- p_n is small,
- $r_n \leqslant \sum_{0 \leqslant u+v \leqslant d} |\alpha_{u,v}| r_{u,v}$ is small.

Let $d \in \mathbb{N}$, $P = \sum_{0 \leq u+v \leq d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X,Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

Let p_n the interpolation polynomial of g at the Chebyshev nodes and $r_n = \|g - p_n\|_{\infty}$. If the vector V is small, then

• p_n is small,

• $r_n \leqslant \sum_{0 \leqslant u+v \leqslant d} |\alpha_{u,v}| r_{u,v}$ is small.

Hence, the function g is "small" !

Let $d \in \mathbb{N}$, $P = \sum_{0 \leq u+v \leq d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X, Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector $V = \left(\sum_{0 \leq u+v \leq d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leq u+v \leq d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$

If the vector V is small, the function g is "small" !

Let $d \in \mathbb{N}$, $P = \sum_{0 \leq u+v \leq d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X, Y]$. The function $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector

$$V = \left(\sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leqslant u+v \leqslant d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0} r_{0,0}, \cdots, \alpha_{d,0} r_{d,0}\right).$$

If the vector V is small, the function g is "small" !

LLL gives us two such short vectors

Let
$$d \in \mathbb{N}$$
, $P = \sum_{0 \leq u+v \leq d} \alpha_{u,v} X^u Y^v \in \mathbb{Z}[X, Y]$. The function
 $g(x) = P(2^{p-1}x, 2^p f(x))$ corresponds to the vector
 $V = \left(\sum_{0 \leq u+v \leq d} \alpha_{u,v} f_{u,v}(x_0), \cdots, \sum_{0 \leq u+v \leq d} \alpha_{u,v} f_{u,v}(x_{N-1}), \alpha_{0,0}r_{0,0}, \cdots, \alpha_{d,0}r_{d,0}\right).$

If the vector V is small, the function g is "small" !

LLL gives us two such short vectors, as long as the volume of the lattice is small.

$$f_{k,\ell}(x) = (2^{p-1}x)^{\ell} (2^p f(x))^k$$
 and $r_{k,\ell} = \frac{4M_{\rho}(f_{k,\ell})}{\rho^{N-1}(\rho-1)}$

Our lattice: \mathcal{L} generated by the rows of

$$f_{k,\ell}(x) = (2^{p-1}x)^{\ell} (2^p f(x))^k$$
 and $r_{k,\ell} = \frac{4M_{\rho}(f_{k,\ell})}{\rho^{N-1}(\rho-1)}$

Our lattice: \mathcal{L} generated by the rows of

Its volume vol(L): determinant of the matrix.

Let $d \in \mathbb{N} \setminus \{0\}$ and N = (d+1)(d+2)/2. We have, for $\rho > 1$,

$$\operatorname{vol}(\mathcal{L})^{1/N} \leqslant O(N) \frac{2^{2pd/3}}{\rho^{(N-1)/2}} \left| \frac{b-a}{2} \rho + \frac{b+a}{2} \right|^{d/3} M_{\rho,a,b}(f)^{d/3}$$

where
$$M_{\rho,a,b}(f) = \max_{z \in \mathcal{E}_{\rho,a,b}} |f(z)|$$
 and
 $\mathcal{E}_{\rho,a,b} = \left\{ \frac{b-a}{2} \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2} + \frac{a+b}{2}, \theta \in [0, 2\pi] \right\}.$

Let $d \in \mathbb{N} \setminus \{0\}$ and N = (d+1)(d+2)/2. We have, for $\rho > 1$,

$$\operatorname{vol}(\mathcal{L})^{1/N} \leqslant O(N) \frac{2^{2pd/3}}{\rho^{(N-1)/2}} \left| \frac{b-a}{2} \rho + \frac{b+a}{2} \right|^{d/3} M_{\rho,a,b}(f)^{d/3}$$

where $M_{\rho,a,b}(f) = \max_{z \in \mathcal{E}_{\rho,a,b}} |f(z)|$ and $\mathcal{E}_{\rho,a,b} = \left\{ \frac{b-a}{2} \frac{\rho e^{i\theta} + \rho^{-1}e^{-i\theta}}{2} + \frac{a+b}{2}, \theta \in [0, 2\pi] \right\}.$

Plug $\rho = 2/(b-a)$: For Euler's Gamma, d = O(p) is enough to tackle the whole [a, b].

Let $d \in \mathbb{N} \setminus \{0\}$ and N = (d+1)(d+2)/2. We have, for $\rho > 1$,

$$\operatorname{vol}(\mathcal{L})^{1/N} \leqslant O(N) \frac{2^{2pd/3}}{\rho^{(N-1)/2}} \left| \frac{b-a}{2} \rho + \frac{b+a}{2} \right|^{d/3} M_{\rho,a,b}(f)^{d/3}$$

where $M_{\rho,a,b}(f) = \max_{z \in \mathcal{E}_{\rho,a,b}} |f(z)|$ and $\mathcal{E}_{\rho,a,b} = \left\{ \frac{b-a}{2} \frac{\rho e^{i\theta} + \rho^{-1}e^{-i\theta}}{2} + \frac{a+b}{2}, \theta \in [0, 2\pi] \right\}.$

Plug $\rho = 2/(b-a)$: For Euler's Gamma, d = O(p) is enough to tackle the whole [a, b].

If [a, b] = [1, 2], 40 CPU minutes for p = 53 and 46 CPU days for p = 113.

Computations

For Euler's Gamma, d = O(p) is enough to tackle the whole [a, b] $(\rho = 2/(b - a))$.

If [a,b] = [1,2], less than 40 CPU minutes for p = 53 and 46 CPU days for p = 113.

¹https://www.sagemath.org/ ²http://arblib.org/ ³https://github.com/fplll/fplll

Computations

For Euler's Gamma, d = O(p) is enough to tackle the whole [a, b] $(\rho = 2/(b - a))$.

If [a, b] = [1, 2], less than 40 CPU minutes for p = 53 and 46 CPU days for p = 113.

Our experiments were done in Sagemath^1 and heavily use the Arb^2 and fplll^3 libraries

¹https://www.sagemath.org/ ²http://arblib.org/ ³https://github.com/fplll/fplll

A breakpoint is a point where the rounding function changes. In this talk, it is the middle of two consecutive FP numbers.

Two-step challenge:

• Determine the set BP_f of all the FP numbers x such that f(x) is a breakpoint;

A breakpoint is a point where the rounding function changes. In this talk, it is the middle of two consecutive FP numbers.

Two-step challenge:

- Determine the set BP_f of all the FP numbers x such that f(x) is a breakpoint;
- Find $m \in \mathbb{N}$, as small as possible, such that for all $j, \ell \in [\![2^{p-1}, 2^p 1]\!]$ s.t. $j/2^{p-1} \notin BP_f$ and

$$\left|f\left(\frac{j}{2^{p-1}}\right)-\frac{2\ell+1}{2^p}\right|\geqslant 2^{-m}$$

A breakpoint is a point where the rounding function changes. In this talk, it is the middle of two consecutive FP numbers.

Two-step challenge:

- Determine the set BP_f of all the FP numbers x such that f(x) is a breakpoint;
- Find $m \in \mathbb{N}$, as small as possible, such that for all $j, \ell \in [\![2^{p-1}, 2^p 1]\!]$ s.t. $j/2^{p-1} \notin BP_f$ and

$$\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \right| \ge 2^{-m}.$$

Holy Grail: $m \sim 2p$.

A breakpoint is a point where the rounding function changes. In this talk, it is the middle of two consecutive FP numbers.

Two-step challenge:

- Determine the set BP_f of all the FP numbers x such that f(x) is a breakpoint;
- Find $m \in \mathbb{N}$, as small as possible, such that for all $j, \ell \in [\![2^{p-1}, 2^p 1]\!]$ s.t. $j/2^{p-1} \notin BP_f$ and

$$\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \right| \ge 2^{-m}.$$

Holy Grail: $m \sim 2p$. True for p = 53 (V. Lefèvre et al).

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for p = 113, for all $j, \ell \in [\![2^{p-1}, 2^p - 1]\!]$ and

$$\exp\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \ge \frac{1}{2^{12p}}$$

in less than 9 CPU days.

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for p = 113, for all $j, \ell \in [\![2^{p-1}, 2^p - 1]\!]$ and

$$\left|\exp\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p}\right| \ge \frac{1}{2^{12p}}$$

in less than 9 CPU days.

Not the end of the story, since 12p should be replaced with $\sim 2p$.

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for p = 113, for all $j, \ell \in [\![2^{p-1}, 2^p - 1]\!]$ and

$$\exp\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \ge \frac{1}{2^{12p}}$$

in less than 9 CPU days.

Not the end of the story, since 12p should be replaced with $\sim 2p$.

Still, this work should hopefully help paving the way for correctly rounded elementary functions in IEEE binary128/quadruple precision.

Additional material

Assume there exist $x \in [1,2)$, $k \in \mathbb{N} \setminus \{0\}$ and $\ell \in [\![2^{p-1}, 2^p - 1]\!]$ s.t.

$$\left| f(x) - \frac{2\ell + 1}{2^p} \right| < \frac{1}{2^{p+k}}.$$

Assume there exist $x \in [1,2)$, $k \in \mathbb{N} \setminus \{0\}$ and $\ell \in [2^{p-1}, 2^p - 1]$ s.t.

$$\left| \left(f(x) - \frac{1}{2^p} \right) - \frac{\ell}{2^{p-1}} \right| < \frac{1}{2^{p+k}}.$$

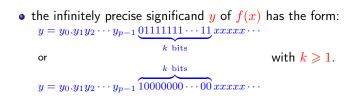
Assume there exist $x \in [1,2)$, $k \in \mathbb{N} \setminus \{0\}$ and $\ell \in [2^{p-1}, 2^p - 1]$ s.t.

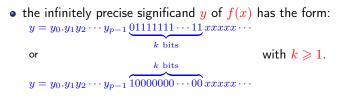
$$\left| \left(f(x) - \frac{1}{2^p} \right) - \frac{\ell}{2^{p-1}} \right| < \frac{1}{2^{p+k}}.$$

The infinitely precise significand y of f(x) has the form:

$$y = y_0.y_1y_2\cdots y_{p-1}\underbrace{01111111\cdots 11}_{k \text{ bits}} xxxxx\cdots$$

or
$$y = y_0.y_1y_2\cdots y_{p-1}\underbrace{1000000\cdots 00}_{xxxxx} xxx\cdots$$





• Assuming that after the k^{th} position the "1" and "0" are equally likely, the "probability" of having $k \ge k_0$ is 2^{1-k_0} ;

• the infinitely precise significand y of f(x) has the form:

 $y = y_0.y_1y_2\cdots y_{p-1}\underbrace{01111111\cdots 11}_{k \text{ bits}} xxxxx\cdots$ or $y = y_0.y_1y_2\cdots y_{p-1}\underbrace{1000000\cdots 00}_{k \text{ bits}} xxxxx\cdots$ with $k \ge 1$.

- Assuming that after the k^{th} position the "1" and "0" are equally likely, the "probability" of having $k \ge k_0$ is 2^{1-k_0} ;
- if we consider 2^{p-1} input FP numbers, around $2^{p-1} \times 2^{1-k_0} = 2^{p-k_0}$ values for which $k \ge k_0$;

Here, $f = \sin \text{ over } [1, 2)$, p = 16.

k	Actual number	Expected number
	of occurrences	of occurrences
1	16397	16384
2	8151	8192
3	4191	4096
4	2043	2048
5	1010	1024
6	463	512
7	255	256

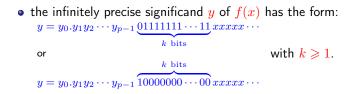
Here, $f = \sin \text{ over } [1, 2)$, p = 16.

k	Actual number	Expected number
	of occurrences	of occurrences
8	131	128
9	62	64
10	35	32
11	16	16
12	7	8
13	6	4
14	0	2
15	1	1

Here, $f = \sin \text{ over } [1, 2)$, p = 16.

k	Actual number	Expected number
	of occurrences	of occurrences
8	131	128
9	62	64
10	35	32
11	16	16
12	7	8
13	6	4
14	0	2
15	1	1

Here, the heuristic seems reasonable.



- the infinitely precise significand y of f(x) has the form: $y = y_0.y_1y_2\cdots y_{p-1} \underbrace{01111111\cdots 11}_{k \text{ bits}} xxxxx\cdots$ or $y = y_0.y_1y_2\cdots y_{p-1} \underbrace{01000000\cdots 00}_{k \text{ bits}} xxxxx\cdots$ with $k \ge 1$.
- Assuming that after the k^{th} position the "1" and "0" are equally likely, the "probability" of having $k \ge k_0$ is 2^{1-k_0} ;

- the infinitely precise significand y of f(x) has the form: $y = y_0.y_1y_2\cdots y_{p-1} \underbrace{01111111\cdots 11}_{k \text{ bits}} xxxxx\cdots$ or $y = y_0.y_1y_2\cdots y_{p-1} \underbrace{011000000\cdots 00}_{k \text{ bits}} xxxxx\cdots$
- Assuming that after the k^{th} position the "1" and "0" are equally likely, the "probability" of having $k \ge k_0$ is 2^{1-k_0} ;
- if we consider 2^{p-1} input FP numbers, around $2^{p-1} \times 2^{1-k_0} = 2^{p-k_0}$ values for which $k \ge k_0$;

 \rightarrow roughly,

"
$$m_{opt} \sim 2p$$
" (Q).

NB, G. Hanrot and O. Robert (2017)

Let $f : [1,2) \mapsto [1,2)$, $f \in \mathcal{C}^2$, let $k \in \mathbb{N}$.

Determine the proportion of $j\in [\![2^{p-1},2^p-1]\!]$ s.t. there exists $\ell\in [\![2^{p-1},2^p-1]\!]$ with

$$\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \right| < \frac{1}{2^{p+k}}.$$

NB, G. Hanrot and O. Robert (2017) Let $f : [1,2) \mapsto [1,2), f \in C^2$, let $k \in \mathbb{N}$. Determine the proportion of $j \in [\![2^{p-1}, 2^p - 1]\!]$ s.t. there exists $\ell \in [\![2^{p-1}, 2^p - 1]\!]$ with

$$\left| f\left(\frac{j}{2^{p-1}}\right) - \frac{2\ell+1}{2^p} \right| < \frac{1}{2^{p+k}}.$$

Proposition

For exp over [1,2), if $p \ge 24$, the heuristic is valid for $0 \le k < p/3$.