
Integer points close to a transcendental curve and
correctly-rounded evaluation of a function

Nicolas Brisebarre (C.N.R.S.) and Guillaume Hanrot (É.N.S. Lyon)

Effective Aspects in Diophantine Approximation - March 28, 2023

-1-

(Binary) Floating Point (FP) Arithmetic

Given {
a precision p ⩾ 1,
a set of exponents Emin, · · · , Emax.

A finite FP number x is represented by 2 integers:
integer significand M , 2p−1 ⩽ |M | ⩽ 2p − 1,
exponent E, Emin ⩽ E ⩽ Emax

such that
x =

M

2p−1
× 2E .

-2-

IEEE Precisions

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point

precision p min. exponent maximal exponent
Emin Emax

binary32 (single) 24 −126 127
binary64 (double) 53 −1022 1023
binary128 (quadruple) 113 −16382 16383

We have x = M
2p−1 × 2E with 2p−1 ⩽ |M | ⩽ 2p − 1

and Emin ⩽ E ⩽ Emax.

-3-

http://en.wikipedia.org/wiki/IEEE_floating_point

Rounding modes

In the IEEE 754 standard, the user defines an active rounding mode.

In this talk, we use:
round to nearest (default). If x ∈ R, RN(x): the floating-point
number closest to x. In case of a tie, value whose integral
significand is even.

Breakpoint: a point where the rounding function changes.

Here, breakpoint = the middle of two consecutive FP numbers.

-4-

Rounding modes

In the IEEE 754 standard, the user defines an active rounding mode.

In this talk, we use:
round to nearest (default). If x ∈ R, RN(x): the floating-point
number closest to x. In case of a tie, value whose integral
significand is even.

Breakpoint: a point where the rounding function changes.

Here, breakpoint = the middle of two consecutive FP numbers.

-4-

Correct rounding

A correctly-rounded operation whose entries are FP numbers must return
what we would get by infinitely precise operation followed by rounding.

IEEE-754 (1985): Correct rounding for +, −, ×, ÷, √ and some
conversions.

IEEE-754 (2008): suggests correct rounding for some elementary
functions (n

√
, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,

cosh...).

-5-

Correct rounding

A correctly-rounded operation whose entries are FP numbers must return
what we would get by infinitely precise operation followed by rounding.

IEEE-754 (1985): Correct rounding for +, −, ×, ÷, √ and some
conversions.

IEEE-754 (2008): suggests correct rounding for some elementary
functions (n

√
, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,

cosh...).

-5-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)f̃(x)

ε

RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)f̃(x)

ε

= RN(f̃(x))RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

ε

f̃(x)
RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

ε

f̃(x)
RN(f̃(x))RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

ε/2

RN(f(x))

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

f̃(x)

RN(f(x))

ε/2

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

RN(f(x))= RN(f̃(x))

f̃(x)
ε/2

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

RN(f(x))= RN(f̃(x))

f̃(x)
ε/2

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:

What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

RN(f(x))= RN(f̃(x))

f̃(x)
ε/2

Given ε > 0, the computed value f̃(x) satisfies |f(x)− f̃(x)|< ε.

Potential issues:
What if f(x) is a breakpoint?
What about the number of subdivisions?
ε should be uniform! And as large as possible!

-6-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

2−m

RN(f(x))

either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f(x) = (2ℓ+ 1)/2p,
or

for all k ∈ J2p−1, 2p − 1K,
∣∣∣∣f(x)−

2k + 1

2p

∣∣∣∣⩾ 2−m.

-7-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

2−m

(ℓ+ 1)/2p−1

(2ℓ+ 1)/2p

ℓ/2p−1

either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f(x) = (2ℓ+ 1)/2p,
or

for all k ∈ J2p−1, 2p − 1K,
∣∣∣∣f(x)−

2k + 1

2p

∣∣∣∣⩾ 2−m.

-7-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

2−m

(ℓ+ 1)/2p−1

(2ℓ+ 1)/2p

ℓ/2p−1

We want to find m ∈ N s.t.
either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f(x) = (2ℓ+ 1)/2p,

or

for all k ∈ J2p−1, 2p − 1K,
∣∣∣∣f(x)−

2k + 1

2p

∣∣∣∣⩾ 2−m.

-7-

The Table Maker’s Dilemma

x ∈ [1, 2), x =
j

2p−1
, j ∈ Z, 2p−1 ⩽ j ⩽ 2p − 1, f(x) ∈ [1, 2)

f(x)

2−m

(ℓ+ 1)/2p−1

(2ℓ+ 1)/2p

ℓ/2p−1

We want to find m ∈ N, as small as possible, s.t. for all FP x:
either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f(x) = (2ℓ+ 1)/2p,
or

for all k ∈ J2p−1, 2p − 1K,
∣∣∣∣f(x)−

2k + 1

2p

∣∣∣∣⩾ 2−m.

-7-

The Table Maker’s Dilemma: Diophantine Problems

Assume, w.l.o.g., that x and f(x) ∈ [1, 2).

Q. (TMD) We want to determine m ∈ N, as small as possible, s.t. for all
j ∈ J2p−1, 2p − 1K,

either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f
(

j
2p−1

)
= 2ℓ+1

2p ,
or

for all 2p−1 ⩽ k ⩽ 2p − 1,

∣∣∣∣f
(

j

2p−1

)
− 2k + 1

2p

∣∣∣∣ ⩾
1

2m
.

-8-

The Table Maker’s Dilemma: an Example

Consider the function 2x and the binary64 FP number (base 2, p = 53)

x =
8520761231538509

262

We have

252+x = 4509371038706515.4999999999999999994026 · · · (decimal)
= 1 · · ·︸︷︷︸

53 bits

.01 · · · · · · · · · · · · 1︸ ︷︷ ︸
60 consecutive 1′s

0 · · · (binary).

Hardest-to-round (HR) case for function 2x and binary64 FP numbers.
Lefèvre et al.: the value of m is 113 (∼ 2p, p = 53) here.

Function f : n
√

, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh...
Heuristically, m ∼ 2p.

-9-

The Table Maker’s Dilemma: an Example

Consider the function 2x and the binary64 FP number (base 2, p = 53)

x =
8520761231538509

262

We have

252+x = 4509371038706515.4999999999999999994026 · · · (decimal)
= 1 · · ·︸︷︷︸

53 bits

.01 · · · · · · · · · · · · 1︸ ︷︷ ︸
60 consecutive 1′s

0 · · · (binary).

Hardest-to-round (HR) case for function 2x and binary64 FP numbers.
Lefèvre et al.: the value of m is 113 (∼ 2p, p = 53) here.

Function f : n
√

, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh...
Heuristically, m ∼ 2p.

-9-

The Table Maker’s Dilemma: an Example

Consider the function 2x and the binary64 FP number (base 2, p = 53)

x =
8520761231538509

262

We have

252+x = 4509371038706515.4999999999999999994026 · · · (decimal)
= 1 · · ·︸︷︷︸

53 bits

.01 · · · · · · · · · · · · 1︸ ︷︷ ︸
60 consecutive 1′s

0 · · · (binary).

Hardest-to-round (HR) case for function 2x and binary64 FP numbers.
Lefèvre et al.: the value of m is 113 (∼ 2p, p = 53) here.

Function f : n
√

, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh...

Heuristically, m ∼ 2p.

-9-

The Table Maker’s Dilemma: an Example

Consider the function 2x and the binary64 FP number (base 2, p = 53)

x =
8520761231538509

262

We have

252+x = 4509371038706515.4999999999999999994026 · · · (decimal)
= 1 · · ·︸︷︷︸

53 bits

.01 · · · · · · · · · · · · 1︸ ︷︷ ︸
60 consecutive 1′s

0 · · · (binary).

Hardest-to-round (HR) case for function 2x and binary64 FP numbers.
Lefèvre et al.: the value of m is 113 (∼ 2p, p = 53) here.

Function f : n
√

, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh...
Heuristically, m ∼ 2p.

-9-

The Table Maker’s Dilemma: Diophantine Problems

Assume, w.l.o.g., that x and f(x) ∈ [1, 2).

Q. (TMD) We want to determine m ∈ N, as small as possible, s.t. for all
j ∈ J2p−1, 2p − 1K,

either there exists ℓ ∈ J2p−1, 2p − 1K s.t. f

(
j

2p−1

)
=

2ℓ+ 1

2p
,

or

for all 2p−1 ⩽ ℓ ⩽ 2p − 1,

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾ 2−m.

-10-

The Table Maker’s Dilemma: First Challenge

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

First challenge:
Determine the set BPf of all the FP numbers x ∈ [1, 2) such that
f(x) is a breakpoint.

In other words, determine all j, ℓ ∈ J2p−1, 2p − 1K s.t.

f

(
j

2p−1

)
=

2ℓ+ 1

2p
.

-11-

State of the Art

Transcendental elementary Functions sin, cos, arcsin, arccos, tan,
arctan, exp, log, sinh, cosh. Hermite-Lindemann’s theorem: α ̸= 0
algebraic ⇒ eα transcendental.

Therefore, let x a FP number, f(x) is
not a breakpoint, except for straightforward cases (e0, ln(1), sin(0), . . .).

What about the Euler Gamma function? For Re(z) > 0,

Γ(z) =

∫ +∞

0

tz−1e−tdt.

Very little is known:
Γ(1/2),Γ(1/3),Γ(1/4),Γ(1/6),Γ(2/3),Γ(3/4),Γ(5/6) are
transcendental and there are some partial irrationality results.

-12-

State of the Art

Transcendental elementary Functions sin, cos, arcsin, arccos, tan,
arctan, exp, log, sinh, cosh. Hermite-Lindemann’s theorem: α ̸= 0
algebraic ⇒ eα transcendental. Therefore, let x a FP number, f(x) is
not a breakpoint, except for straightforward cases (e0, ln(1), sin(0), . . .).

What about the Euler Gamma function? For Re(z) > 0,

Γ(z) =

∫ +∞

0

tz−1e−tdt.

Very little is known:
Γ(1/2),Γ(1/3),Γ(1/4),Γ(1/6),Γ(2/3),Γ(3/4),Γ(5/6) are
transcendental and there are some partial irrationality results.

-12-

State of the Art

Transcendental elementary Functions sin, cos, arcsin, arccos, tan,
arctan, exp, log, sinh, cosh. Hermite-Lindemann’s theorem: α ̸= 0
algebraic ⇒ eα transcendental. Therefore, let x a FP number, f(x) is
not a breakpoint, except for straightforward cases (e0, ln(1), sin(0), . . .).

What about the Euler Gamma function? For Re(z) > 0,

Γ(z) =

∫ +∞

0

tz−1e−tdt.

Very little is known:
Γ(1/2),Γ(1/3),Γ(1/4),Γ(1/6),Γ(2/3),Γ(3/4),Γ(5/6) are
transcendental and there are some partial irrationality results.

-12-

Our setting

Let f : [1, 2) 7→ [1, 2), f is transcendental and analytic in the
neighborhood of [1, 2).

Let g ∈ C([a, b]),
∥g∥∞,[a,b] := max

x∈[a,b]
|g(x)|.

-13-

Our setting

Let f : [1, 2) 7→ [1, 2), f is transcendental and analytic in the
neighborhood of [1, 2).

Let g ∈ C([a, b]),
∥g∥∞,[a,b] := max

x∈[a,b]
|g(x)|.

-13-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We want to find all 2p−1 ⩽ i, j ⩽ 2p − 1 s.t.

f

(
i

2p−1

)
=

2j + 1

2p
,

i.e. 2pf

(
i

2p−1

)
= 2j + 1.

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2,

for all u ∈ Iℓ.

-14-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We want to find all 2p−1 ⩽ i, j ⩽ 2p − 1 s.t.

f

(
i

2p−1

)
=

2j + 1

2p
,

i.e. 2pf

(
i

2p−1

)
= 2j + 1.

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2,

for all u ∈ Iℓ.

-14-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We want to find all 2p−1 ⩽ i, j ⩽ 2p − 1 s.t.

f

(
i

2p−1

)
=

2j + 1

2p
,

i.e. 2pf

(
i

2p−1

)
= 2j + 1.

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2,

for all u ∈ Iℓ.

-14-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

For all ℓ, if there exist 2p−1 ⩽ i, j ⩽ 2p − 1 s.t. i/2p−1 ∈ Iℓ and

f

(
i

2p−1︸ ︷︷ ︸
u

)
=

2j + 1

2p︸ ︷︷ ︸
v

,

then we have, for k = 1, 2,

Pℓ,k(i, 2j + 1) ∈ Z and |Pℓ,k(i, 2j + 1)| < 1! ⇒ Pℓ,k(i, 2j + 1) = 0.

We eliminate (heuristic assumption!) one of the two variables and we get
i and j, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

-15-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

For all ℓ, if there exist 2p−1 ⩽ i, j ⩽ 2p − 1 s.t. i/2p−1 ∈ Iℓ and

f

(
i

2p−1

︸ ︷︷ ︸
u

)
=

2j + 1

2p

︸ ︷︷ ︸
v

,

then we have, for k = 1, 2,

Pℓ,k(i, 2j + 1) ∈ Z and |Pℓ,k(i, 2j + 1)| < 1! ⇒ Pℓ,k(i, 2j + 1) = 0.

We eliminate (heuristic assumption!) one of the two variables and we get
i and j, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

-15-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

For all ℓ, if there exist 2p−1 ⩽ i, j ⩽ 2p − 1 s.t. i/2p−1 ∈ Iℓ and

f

(
i

2p−1︸ ︷︷ ︸
u

)
=

2j + 1

2p︸ ︷︷ ︸
v

,

then we have, for k = 1, 2,

Pℓ,k(i, 2j + 1) ∈ Z and |Pℓ,k(i, 2j + 1)| < 1!

⇒ Pℓ,k(i, 2j + 1) = 0.

We eliminate (heuristic assumption!) one of the two variables and we get
i and j, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

-15-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

For all ℓ, if there exist 2p−1 ⩽ i, j ⩽ 2p − 1 s.t. i/2p−1 ∈ Iℓ and

f

(
i

2p−1︸ ︷︷ ︸
u

)
=

2j + 1

2p︸ ︷︷ ︸
v

,

then we have, for k = 1, 2,

Pℓ,k(i, 2j + 1) ∈ Z and |Pℓ,k(i, 2j + 1)| < 1! ⇒ Pℓ,k(i, 2j + 1) = 0.

We eliminate (heuristic assumption!) one of the two variables and we get
i and j, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

-15-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

For all ℓ, if there exist 2p−1 ⩽ i, j ⩽ 2p − 1 s.t. i/2p−1 ∈ Iℓ and

f

(
i

2p−1︸ ︷︷ ︸
u

)
=

2j + 1

2p︸ ︷︷ ︸
v

,

then we have, for k = 1, 2,

Pℓ,k(i, 2j + 1) ∈ Z and |Pℓ,k(i, 2j + 1)| < 1! ⇒ Pℓ,k(i, 2j + 1) = 0.

We eliminate (heuristic assumption!) one of the two variables and we get
i and j, if they exist (Coppersmith; Boneh & Durfee; Stehlé).

-15-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.
2 How do we guarantee the smallness of a function, analytic in a

neighborhood of an interval [a, b]?

Chebyshev interpolation

3 How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.

2 How do we guarantee the smallness of a function, analytic in a
neighborhood of an interval [a, b]?

Chebyshev interpolation

3 How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.
2 How do we guarantee the smallness of a function, analytic in a

neighborhood of an interval [a, b]?

Chebyshev interpolation

3 How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.
2 How do we guarantee the smallness of a function, analytic in a

neighborhood of an interval [a, b]? Chebyshev interpolation

3 How do we compute these polynomials?

Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.
2 How do we guarantee the smallness of a function, analytic in a

neighborhood of an interval [a, b]? Chebyshev interpolation

3 How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Our Approach: Polynomial Interpolation and Lattice Basis
Reduction

We build a trap! We find a partition of [1, 2) = ∪ℓIℓ such that, for all ℓ,
we can compute Pℓ,1, Pℓ,2 ∈ Z[X,Y] \ {0} with

∣∣Pℓ,k(2
p−1u, 2pf(u))

∣∣ < 1, k = 1, 2 for all u ∈ Iℓ.

1 Specify the basis that we use for these polynomials.
2 How do we guarantee the smallness of a function, analytic in a

neighborhood of an interval [a, b]? Chebyshev interpolation

3 How do we compute these polynomials? Lattice basis reduction

Actually, the lattice reduction step makes it possible to refine the choice
of the basis.

-16-

Basis in Use

Let d ∈ N, if X = 2p−1x and Y = 2pf(x) the elements of the basis that
we use are:

1,
X, Y,
X2, XY, Y 2,

...
...

...
. . .

Xd−1, Xd−2Y, Xd−3Y 2, · · · Y d−1,
Xd, Xd−1Y, Xd−2Y 2, · · · XY d−1, Y d,

i.e., the basis of use is
(
(2p−1x)k(2pf(x))ℓ

)
0⩽ℓ⩽d

0⩽k⩽d−ℓ
.

Dimension N = (d+ 1)(d+ 2)/2.

-17-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ:

∥φ− pn∥∞,[−1,1] ⩽ 2

(
1

π
log(n+ 1) + 1

)
min

Q∈Rn[x]
∥φ−Q∥∞,[−1,1].

-18-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ:

∥φ− pn∥∞,[−1,1] ⩽ 2

(
1

π
log(n+ 1) + 1

)
min

Q∈Rn[x]
∥φ−Q∥∞,[−1,1].

-18-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ:

∥φ− pn∥∞,[−1,1] ⩽ 2

(
1

π
log(n+ 1) + 1

)
min

Q∈Rn[x]
∥φ−Q∥∞,[−1,1].

-18-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ.

∥φ∥∞,[−1,1]︸ ︷︷ ︸
small

⩽ ∥pn∥∞,[−1,1]︸ ︷︷ ︸
small

+ ∥φ− pn∥∞,[−1,1]︸ ︷︷ ︸
small

-19-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ.

∥φ∥∞,[−1,1]︸ ︷︷ ︸
small

⩽ ∥pn∥∞,[−1,1]

︸ ︷︷ ︸
small

+ ∥φ− pn∥∞,[−1,1]

︸ ︷︷ ︸
small

-19-

Ensuring the Smallness of a Function: Interpolation at
Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let pn ∈ Rn[X] that interpolates φ ∈ C([−1, 1]) at the (µk)k=0,..,n.

The polynomial pn is a quasi-optimal uniform approximation to φ.

∥φ∥∞,[−1,1]︸ ︷︷ ︸
small

⩽ ∥pn∥∞,[−1,1]︸ ︷︷ ︸
small

+ ∥φ− pn∥∞,[−1,1]︸ ︷︷ ︸
small

-19-

Bounding the Interpolation Polynomial at Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let P ∈ Rn[X], we have

max
x∈[−1,1]

|P (x)| ⩽
(
2

π
log(n+ 1) + 1

)
max

k=0,...,n
|P (µk)|.

-20-

Bounding the Interpolation Polynomial at Chebyshev Nodes

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let φ ∈ C([−1, 1]), let pn ∈ Rn[X] that interpolates φ at the (µk)k=0,..,n,
we have

∥pn∥∞ ⩽

(
2

π
log(n+ 1) + 1

)
max

k=0,...,n
|pn(µk)|

=

(
2

π
log(n+ 1) + 1

)
max

k=0,...,n
|φ(µk)|.

-20-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65, 1.85.

-21-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05,

1.25, 1.45, 1.65, 1.85.

-21-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05, 1.25,

1.45, 1.65, 1.85.

-21-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45,

1.65, 1.85.

-21-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65,

1.85.

-21-

Bounding the Remainder - Bernstein Ellipse

Let ρ > 1, let Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65, 1.85.
-21-

Bounding the Remainder

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let ρ > 1, let φ be a function analytic in a neighborhood of Eρ. Let
pn ∈ Rn[X] that interpolates φ at the (µk)k=0,..,n, we have

∥φ− pn∥∞,[−1,1] ⩽
4Mρ(φ)

ρn(ρ− 1)
.

where Mρ(φ) = maxz∈Eρ
|φ(z)|.

-22-

Bounding the Remainder

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let ρ > 1, let φ be a function analytic in a neighborhood of Eρ. Let
pn ∈ Rn[X] that interpolates φ at the (µk)k=0,..,n, we have

∥φ− pn∥∞,[−1,1] ⩽
4Mρ(φ)

ρn(ρ− 1)
.

where Mρ(φ) = maxz∈Eρ
|φ(z)|.

-22-

Interpolation at Chebyshev Nodes and Uniform
Approximation

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let ρ > 1, let φ be a function analytic in a neighborhood of Eρ. Let
pn ∈ Rn[X] that interpolates φ at the (µk)k=0,..,n, we have

∥φ∥∞ ⩽ ∥pn∥∞ + ∥φ− pn∥∞

⩽

(
2

π
log(n+ 1) + 1

)
max

k=0,...,n
|φ(µk)|+

4Mρ(φ)

ρn(ρ− 1)
.

where Mρ(φ) = maxz∈Eρ
|φ(z)|.

-23-

Interpolation at Chebyshev Nodes and Uniform
Approximation

Definition
Let n ∈ N, the Chebyshev nodes of the first kind of order n are the
points µk = cos

(
(2k+1)π
2(n+1)

)
, k = 0, . . . , n.

Let ρ > 1, let φ be a function analytic in a neighborhood of Eρ. Let
pn ∈ Rn[X] that interpolates φ at the (µk)k=0,..,n, we have

∥φ∥∞ ⩽ ∥pn∥∞ + ∥φ− pn∥∞

⩽

(
2

π
log(n+ 1) + 1

)
max

k=0,...,n
|φ(µk)|+

4Mρ(φ)

ρn(ρ− 1)
.

where Mρ(φ) = maxz∈Eρ
|φ(z)|.

-23-

Interpolation at Chebyshev Nodes and Uniform
Approximation: The case of [a, b]

Let I = [a, b], one defines
scaled Chebyshev nodes of the first kind of order n:
µk,[a,b] =

b−a
2 cos

(
(2k+1)π
2(n+1)

)
+ a+b

2 , k = 0, . . . , n,

a scaled Bernstein ellipse
Eρ,a,b =

{
b−a
2

ρeiθ+ρ−1e−iθ

2 + a+b
2 , θ ∈ [0, 2π]

}
.

-24-

Interpolation at Chebyshev Nodes and Uniform
Approximation: The case of [a, b]

Let I = [a, b], one defines
scaled Chebyshev nodes of the first kind of order n:
µk,[a,b] =

b−a
2 cos

(
(2k+1)π
2(n+1)

)
+ a+b

2 , k = 0, . . . , n,

a scaled Bernstein ellipse
Eρ,a,b =

{
b−a
2

ρeiθ+ρ−1e−iθ

2 + a+b
2 , θ ∈ [0, 2π]

}
.

-24-

Lattice Basis Reduction

-25-

An Approach based on Lattice Basis Reduction

Definition
Let L be a nonempty subset of Rd, L is a lattice iff there exists a set of
vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.

-26-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

-27-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

SVP (Shortest Vector Problem) is NP-hard.

-28-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

SVP (Shortest Vector Problem)

is NP-hard.

-28-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

SVP (Shortest Vector Problem) is NP-hard.

-28-

Lenstra-Lenstra-Lovász Algorithm

SVP (Shortest Vector Problem) is NP-hard.
Factoring Polynomials with Rational Coefficients, A. K. Lenstra, H. W.
Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial
time.

-29-

Lenstra-Lenstra-Lovász Algorithm

Theorem
Let L a lattice of dimension k.
LLL provides a basis (b1, . . . , bk) made of “pretty” short vectors. We have
||b1|| ⩽ 2(k−1)/2λ1(L) where λ1(L) denotes the norm of a shortest
nonzero vector of L.
It terminates in at most O(k6 ln3 B) operations with B ⩾ ||bi||2 for all i.

Let (b1, . . . , bk) be an LLL-reduced basis L then

||b1|| ⩽ 2k/2(vol L)1/k and ||b2|| ⩽ 2k/2(vol L)
1

k−1 .

-30-

Lenstra-Lenstra-Lovász Algorithm

Theorem
Let L a lattice of dimension k.
LLL provides a basis (b1, . . . , bk) made of “pretty” short vectors. We have
||b1|| ⩽ 2(k−1)/2λ1(L) where λ1(L) denotes the norm of a shortest
nonzero vector of L.
It terminates in at most O(k6 ln3 B) operations with B ⩾ ||bi||2 for all i.

Let (b1, . . . , bk) be an LLL-reduced basis L then

||b1|| ⩽ 2k/2(vol L)1/k and ||b2|| ⩽ 2k/2(vol L)
1

k−1 .

-30-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

-31-

Example: The Lattice Z(2, 0)⊕ Z(1, 2)

-32-

Lenstra-Lenstra-Lovász Algorithm

Theorem
Let L a lattice of dimension k.
LLL provides a basis (b1, . . . , bk) made of “pretty” short vectors. We have
||b1|| ⩽ 2(k−1)/2λ1(L) where λ1(L) denotes the norm of a shortest
nonzero vector of L.
It terminates in at most O(k6 ln3 B) operations with B ⩾ ||bi||2 for all i.

Let (b1, . . . , bk) be an LLL-reduced basis L then

||b1|| ⩽ 2k/2(vol L)1/k and ||b2|| ⩽ 2k/2(vol L)
1

k−1 .

-33-

How do we compute P1 and P2?

Let d ∈ N, P1 =
∑

0⩽u+v⩽d αu,vX
uY v and

P2 =
∑

0⩽u+v⩽d βu,vX
uY v ∈ Z[X,Y]. We want to have

∣∣Pk(2
p−1x, 2pf(x))

∣∣ < 1, k = 1, 2,

for all x ∈ I = [a, b].

-34-

How do we compute P1 and P2? The Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. Let (xj)0⩽j⩽N−1 denote
Chebyshev nodes for the interval I = [a, b].
We introduce, for 0 ⩽ k ⩽ d, 0 ⩽ ℓ ⩽ d− k,

fk,ℓ(x) = (2p−1x)ℓ(2pf(x))k and rk,ℓ =
4Mρ(fk,ℓ)

ρN−1(ρ− 1)
.

Our lattice: L generated by the rows of

f0,0
f0,1

...

fd−1,1

fd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

-35-

How do we compute P1 and P2? The Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. Let (xj)0⩽j⩽N−1 denote
Chebyshev nodes for the interval I = [a, b].
We introduce, for 0 ⩽ k ⩽ d, 0 ⩽ ℓ ⩽ d− k,

fk,ℓ(x) = (2p−1x)ℓ(2pf(x))k and rk,ℓ =
4Mρ(fk,ℓ)

ρN−1(ρ− 1)
.

Our lattice: L generated by the rows of

f0,0
f0,1

...

fd−1,1

fd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

-35-

How do we compute P1 and P2? The Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. Let (xj)0⩽j⩽N−1 denote
Chebyshev nodes for the interval I = [a, b].
We introduce, for 0 ⩽ k ⩽ d, 0 ⩽ ℓ ⩽ d− k,

fk,ℓ(x) = (2p−1x)ℓ(2pf(x))k and rk,ℓ =
4Mρ(fk,ℓ)

ρN−1(ρ− 1)
.

Our lattice: L generated by the rows of

f0,0
f0,1

...

fd−1,1

fd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

-35-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

P (2p−1x, 2pf(x)) corresponds to the vector

α0,0

+α0,1

...

+αd−1,1

+αd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

,

i.e.,

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

-36-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

P (2p−1x, 2pf(x)) corresponds to the vector

α0,0

+α0,1

...

+αd−1,1

+αd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

,

i.e.,

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

-36-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

P (2p−1x, 2pf(x)) corresponds to the vector

α0,0

+α0,1

...

+αd−1,1

+αd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

,

i.e.,

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

-36-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

Let pn the interpolation polynomial of g at the Chebyshev nodes and
rn = ∥g − pn∥∞.
If the vector V is small, then

pn is small,
rn ⩽

∑
0⩽u+v⩽d |αu,v|ru,v is small.

Hence, the function g is “small” !

-37-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

Let pn the interpolation polynomial of g at the Chebyshev nodes and
rn = ∥g − pn∥∞.
If the vector V is small, then

pn is small,
rn ⩽

∑
0⩽u+v⩽d |αu,v|ru,v is small.

Hence, the function g is “small” !

-37-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

Let pn the interpolation polynomial of g at the Chebyshev nodes and
rn = ∥g − pn∥∞.
If the vector V is small, then

pn is small,

rn ⩽
∑

0⩽u+v⩽d |αu,v|ru,v is small.
Hence, the function g is “small” !

-37-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

Let pn the interpolation polynomial of g at the Chebyshev nodes and
rn = ∥g − pn∥∞.
If the vector V is small, then

pn is small,
rn ⩽

∑
0⩽u+v⩽d |αu,v|ru,v is small.

Hence, the function g is “small” !

-37-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

Let pn the interpolation polynomial of g at the Chebyshev nodes and
rn = ∥g − pn∥∞.
If the vector V is small, then

pn is small,
rn ⩽

∑
0⩽u+v⩽d |αu,v|ru,v is small.

Hence, the function g is “small” !

-37-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

If the vector V is small, the function g is “small” !

LLL gives us two such short vectors, as long as the volume of the lattice
is small.

-38-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

If the vector V is small, the function g is “small” !

LLL gives us two such short vectors

, as long as the volume of the lattice
is small.

-38-

How do we compute P1 and P2?

Let d ∈ N, P =
∑

0⩽u+v⩽d αu,vX
uY v ∈ Z[X,Y]. The function

g(x) = P (2p−1x, 2pf(x)) corresponds to the vector

V =

(∑

0⩽u+v⩽d

αu,vfu,v(x0), · · · ,
∑

0⩽u+v⩽d

αu,vfu,v(xN−1),

α0,0r0,0, · · · , αd,0rd,0

)
.

If the vector V is small, the function g is “small” !

LLL gives us two such short vectors, as long as the volume of the lattice
is small.

-38-

How do we compute P1 and P2? Volume of the Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. Let (xj)0⩽j⩽N−1 denote
Chebyshev nodes for the interval I = [a, b].
We introduce, for 0 ⩽ k ⩽ d, 0 ⩽ ℓ ⩽ d− k,

fk,ℓ(x) = (2p−1x)ℓ(2pf(x))k and rk,ℓ =
4Mρ(fk,ℓ)

ρN−1(ρ− 1)
.

Our lattice: L generated by the rows of

f0,0
f0,1

...

fd−1,1

fd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

Its volume vol(L): determinant of the matrix.

-39-

How do we compute P1 and P2? Volume of the Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. Let (xj)0⩽j⩽N−1 denote
Chebyshev nodes for the interval I = [a, b].
We introduce, for 0 ⩽ k ⩽ d, 0 ⩽ ℓ ⩽ d− k,

fk,ℓ(x) = (2p−1x)ℓ(2pf(x))k and rk,ℓ =
4Mρ(fk,ℓ)

ρN−1(ρ− 1)
.

Our lattice: L generated by the rows of

f0,0
f0,1

...

fd−1,1

fd,0

f0,0(x0) · · · f0,0(xN−1) r0,0 0 · · · · · · 0
f0,1(x0) · · · f0,1(xN−1) 0 r0,1 0 · · · 0

... · · ·
...

...
. . .

. . .
. . .

...

fd−1,1(x0) · · · fd−1,1(xN−1)
... · · · 0 rd−1,1 0

fd,0(x0) · · · fd,0(xN−1) 0 · · · · · · 0 rd,0

Its volume vol(L): determinant of the matrix.

-39-

How do we compute P1 and P2? Volume of the Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. We have, for ρ > 1,

vol(L)1/N ⩽ O(N)
22pd/3

ρ(N−1)/2

∣∣∣∣
b− a

2
ρ+

b+ a

2

∣∣∣∣
d/3

Mρ,a,b(f)
d/3

where Mρ,a,b(f) = maxz∈Eρ,a,b
|f(z)| and

Eρ,a,b =
{

b−a
2

ρeiθ+ρ−1e−iθ

2 + a+b
2 , θ ∈ [0, 2π]

}
.

Plug ρ = 2/(b− a): For Euler’s Gamma, d = O(p) is enough to tackle
the whole [a, b].

If [a, b] = [1, 2], 40 CPU minutes for p = 53 and 46 CPU days for
p = 113.

-40-

How do we compute P1 and P2? Volume of the Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. We have, for ρ > 1,

vol(L)1/N ⩽ O(N)
22pd/3

ρ(N−1)/2

∣∣∣∣
b− a

2
ρ+

b+ a

2

∣∣∣∣
d/3

Mρ,a,b(f)
d/3

where Mρ,a,b(f) = maxz∈Eρ,a,b
|f(z)| and

Eρ,a,b =
{

b−a
2

ρeiθ+ρ−1e−iθ

2 + a+b
2 , θ ∈ [0, 2π]

}
.

Plug ρ = 2/(b− a): For Euler’s Gamma, d = O(p) is enough to tackle
the whole [a, b].

If [a, b] = [1, 2], 40 CPU minutes for p = 53 and 46 CPU days for
p = 113.

-40-

How do we compute P1 and P2? Volume of the Lattice

Let d ∈ N \ {0} and N = (d+ 1)(d+ 2)/2. We have, for ρ > 1,

vol(L)1/N ⩽ O(N)
22pd/3

ρ(N−1)/2

∣∣∣∣
b− a

2
ρ+

b+ a

2

∣∣∣∣
d/3

Mρ,a,b(f)
d/3

where Mρ,a,b(f) = maxz∈Eρ,a,b
|f(z)| and

Eρ,a,b =
{

b−a
2

ρeiθ+ρ−1e−iθ

2 + a+b
2 , θ ∈ [0, 2π]

}
.

Plug ρ = 2/(b− a): For Euler’s Gamma, d = O(p) is enough to tackle
the whole [a, b].

If [a, b] = [1, 2], 40 CPU minutes for p = 53 and 46 CPU days for
p = 113.

-40-

Computations

For Euler’s Gamma, d = O(p) is enough to tackle the whole [a, b]
(ρ = 2/(b− a)).

If [a, b] = [1, 2], less than 40 CPU minutes for p = 53 and 46 CPU days
for p = 113.

Our experiments were done in Sagemath1 and heavily use the Arb2 and
fplll3 libraries

1https://www.sagemath.org/
2http://arblib.org/
3https://github.com/fplll/fplll

-41-

https://www.sagemath.org/
http://arblib.org/
https://github.com/fplll/fplll

Computations

For Euler’s Gamma, d = O(p) is enough to tackle the whole [a, b]
(ρ = 2/(b− a)).

If [a, b] = [1, 2], less than 40 CPU minutes for p = 53 and 46 CPU days
for p = 113.

Our experiments were done in Sagemath1 and heavily use the Arb2 and
fplll3 libraries

1https://www.sagemath.org/
2http://arblib.org/
3https://github.com/fplll/fplll

-41-

https://www.sagemath.org/
http://arblib.org/
https://github.com/fplll/fplll

The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

Two-step challenge:
Determine the set BPf of all the FP numbers x such that f(x) is a
breakpoint;

Find m ∈ N, as small as possible, such that for all
j, ℓ ∈ J2p−1, 2p − 1K s.t. j/2p−1 /∈ BPf and

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾ 2−m.

Holy Grail: m ∼ 2p. True for p = 53 (V. Lefèvre et al).

-42-

The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

Two-step challenge:
Determine the set BPf of all the FP numbers x such that f(x) is a
breakpoint;
Find m ∈ N, as small as possible, such that for all
j, ℓ ∈ J2p−1, 2p − 1K s.t. j/2p−1 /∈ BPf and

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾ 2−m.

Holy Grail: m ∼ 2p. True for p = 53 (V. Lefèvre et al).

-42-

The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

Two-step challenge:
Determine the set BPf of all the FP numbers x such that f(x) is a
breakpoint;
Find m ∈ N, as small as possible, such that for all
j, ℓ ∈ J2p−1, 2p − 1K s.t. j/2p−1 /∈ BPf and

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾ 2−m.

Holy Grail: m ∼ 2p.

True for p = 53 (V. Lefèvre et al).

-42-

The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

Two-step challenge:
Determine the set BPf of all the FP numbers x such that f(x) is a
breakpoint;
Find m ∈ N, as small as possible, such that for all
j, ℓ ∈ J2p−1, 2p − 1K s.t. j/2p−1 /∈ BPf and

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾ 2−m.

Holy Grail: m ∼ 2p. True for p = 53 (V. Lefèvre et al).

-42-

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for
p = 113, for all j, ℓ ∈ J2p−1, 2p − 1K and

∣∣∣∣exp
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾
1

212p

in less than 9 CPU days.

Not the end of the story, since 12p should be replaced with ∼ 2p.

Still, this work should hopefully help paving the way for correctly rounded
elementary functions in IEEE binary128/quadruple precision.

-43-

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for
p = 113, for all j, ℓ ∈ J2p−1, 2p − 1K and

∣∣∣∣exp
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾
1

212p

in less than 9 CPU days.

Not the end of the story, since 12p should be replaced with ∼ 2p.

Still, this work should hopefully help paving the way for correctly rounded
elementary functions in IEEE binary128/quadruple precision.

-43-

Our results

Thanks to an extension of the presented ideas, we obtain for instance, for
p = 113, for all j, ℓ ∈ J2p−1, 2p − 1K and

∣∣∣∣exp
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ ⩾
1

212p

in less than 9 CPU days.

Not the end of the story, since 12p should be replaced with ∼ 2p.

Still, this work should hopefully help paving the way for correctly rounded
elementary functions in IEEE binary128/quadruple precision.

-43-

Additional material

-44-

Some insight (Warning: Hand-waving!). . .

Assume there exist x ∈ [1, 2), k ∈ N \ {0} and ℓ ∈ J2p−1, 2p − 1K s.t.
∣∣∣∣f(x)−

2ℓ+ 1

2p

∣∣∣∣ <
1

2p+k
.

The infinitely precise significand y of f(x) has the form:

y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸
k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

-45-

Some insight (Warning: Hand-waving!). . .

Assume there exist x ∈ [1, 2), k ∈ N \ {0} and ℓ ∈ J2p−1, 2p − 1K s.t.
∣∣∣∣
(
f(x)− 1

2p

)
− ℓ

2p−1

∣∣∣∣ <
1

2p+k
.

The infinitely precise significand y of f(x) has the form:

y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸
k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

-45-

Some insight (Warning: Hand-waving!). . .

Assume there exist x ∈ [1, 2), k ∈ N \ {0} and ℓ ∈ J2p−1, 2p − 1K s.t.
∣∣∣∣
(
f(x)− 1

2p

)
− ℓ

2p−1

∣∣∣∣ <
1

2p+k
.

The infinitely precise significand y of f(x) has the form:

y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸
k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

-45-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

-46-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

-46-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

-46-

Assessing the Heuristic: the Example of sin

Here, f = sin over [1, 2), p = 16.

k
Actual number
of occurrences

Expected number
of occurrences

1 16397 16384
2 8151 8192
3 4191 4096
4 2043 2048
5 1010 1024
6 463 512
7 255 256

Here, the heuristic seems reasonable.

-47-

Assessing the Heuristic: the Example of sin

Here, f = sin over [1, 2), p = 16.

k
Actual number
of occurrences

Expected number
of occurrences

8 131 128
9 62 64
10 35 32
11 16 16
12 7 8
13 6 4
14 0 2
15 1 1

Here, the heuristic seems reasonable.

-47-

Assessing the Heuristic: the Example of sin

Here, f = sin over [1, 2), p = 16.

k
Actual number
of occurrences

Expected number
of occurrences

8 131 128
9 62 64
10 35 32
11 16 16
12 7 8
13 6 4
14 0 2
15 1 1

Here, the heuristic seems reasonable.

-47-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

→ roughly,
”mopt ∼ 2p” (Q).

-48-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

→ roughly,
”mopt ∼ 2p” (Q).

-48-

Some Insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yp−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k ⩾ 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k ⩾ k0 is 21−k0 ;

if we consider 2p−1 input FP numbers, around
2p−1 × 21−k0 = 2p−k0 values for which k ⩾ k0 ;

→ roughly,
”mopt ∼ 2p” (Q).

-48-

Proving the Heuristic

NB, G. Hanrot and O. Robert (2017)

Let f : [1, 2) 7→ [1, 2), f ∈ C2, let k ∈ N.

Determine the proportion of j ∈ J2p−1, 2p − 1K s.t. there exists
ℓ ∈ J2p−1, 2p − 1K with

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ <
1

2p+k
.

Proposition

For exp over [1, 2), if p ⩾ 24, the heuristic is valid for 0 ⩽ k < p/3.

-49-

Proving the Heuristic

NB, G. Hanrot and O. Robert (2017)

Let f : [1, 2) 7→ [1, 2), f ∈ C2, let k ∈ N.

Determine the proportion of j ∈ J2p−1, 2p − 1K s.t. there exists
ℓ ∈ J2p−1, 2p − 1K with

∣∣∣∣f
(

j

2p−1

)
− 2ℓ+ 1

2p

∣∣∣∣ <
1

2p+k
.

Proposition

For exp over [1, 2), if p ⩾ 24, the heuristic is valid for 0 ⩽ k < p/3.

-49-

